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ON CONVERGENCE RATES OF LINEARIZED PROXIMAL
ALGORITHMS FOR CONVEX COMPOSITE OPTIMIZATION WITH

APPLICATIONS∗
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Abstract. In the present paper, we investigate a linearized proximal algorithm (LPA) for solving
a convex composite optimization problem. Each iteration of the LPA is a proximal minimization
of the convex composite function with the inner function being linearized at the current iterate.
The LPA has the attractive computational advantage that the solution of each subproblem is a
singleton, which avoids the difficulty as in the Gauss–Newton method (GNM) of finding a solution
with minimum norm among the set of minima of its subproblem, while still maintaining the same local
convergence rate as that of the GNM. Under the assumptions of local weak sharp minima of order p
(p ∈ [1, 2]) and a quasi-regularity condition, we establish a local superlinear convergence rate for the
LPA. We also propose a globalization strategy for the LPA based on a backtracking line-search and
an inexact version of the LPA. We further apply the LPA to solve a (possibly nonconvex) feasibility
problem, as well as a sensor network localization problem. Our numerical results illustrate that
the LPA meets the demand for an efficient and robust algorithm for the sensor network localization
problem.
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1. Introduction. We consider the following convex composite optimization prob-
lem:

(1.1) min
x∈Rn

f(x) := h(F (x)),

where the outer function h : Rm → R is convex, and the inner function F : Rn → R
m

is continuously differentiable. We denote by hmin and C the minimum value and the
set of minima for the function h, respectively; that is,

(1.2) hmin := min
y∈Rm

h(y) and C := arg min
y∈Rm

h(y).

The convex composite optimization framework (1.1) provides a unified framework of
a wide variety of important optimization problems, such as convex inclusions, non-
smooth and nonconvex optimization, penalty methods for nonlinear programming,
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1208 YAOHUA HU, CHONG LI, AND XIAOQI YANG

and regularized minimization problems; see [8, 13, 18, 31, 36] and references therein.
Moreover, this model provides a unified framework for the development and analysis
of optimization algorithms.

The development of optimization algorithms for solving problem (1.1) has at-
tracted a great deal of attention. The famous Gauss–Newton method (GNM) has
been extensively applied to solve problem (1.1) and is stated as follows.

Algorithm 1. Given ρ ≥ 1, Δ ∈ (0,+∞], and x0 ∈ R
n. Having xk, the next

iterate xk+1 is generated as follows. If h(F (xk)) = min{h(F (xk) + F ′(xk)d) : ‖d‖ ≤
Δ}, then stop; otherwise, choose dk ∈ DΔ(xk) := argmin‖d‖≤Δ{h(F (xk) +F ′(xk)d)}
such that ‖dk‖ ≤ ρ dist(0, DΔ(xk)) is satisfied, and set xk+1 = xk + dk.

Many articles have been devoted to establishing a local quadratic convergence
rate of the GNM; see [9, 10, 21, 39] and references therein. In particular, Burke and
Ferris [10] made a great contribution in the development of the GNM, whose work
extended that of Womersley [39] without the assumption of the set of minima for h
being a singleton, and also proposed a globalization strategy based on a backtracking
line-search. Their work is based on the following two assumptions:

(A1) C is the set of weak sharp minima for h, and
(A2) a regularity condition of the inclusion F (x) ∈ C holds.

(See Definitions 3 and 7 for the details.) Under assumptions (A1) and (A2), Burke and
Ferris [10] proved the local quadratic convergence rate, as well as a global quadratic
convergence rate of Algorithm 1 when a globalization strategy is included. Without
assumption (A1), Li and Wang [21] established the same local quadratic convergence
rate as that of Burke and Ferris [10], and they also proposed an inexact version of
Algorithm 1 and established its local superlinear convergence.

However, from a practical point of view, it is inefficient to implement Algorithm 1,
because the search direction dk is found among the set DΔ(xk) possibly with min-
imum norm, and it is difficult to find dk for many applications, especially for large
scale problems. Hence, numerical algorithms with low cost and high efficiency are
required for solving the convex composite optimization problem. The proximal point
algorithm was originally presented by Martinet [23] and developed by Rockafellar
[30] for finding a zero of a maximal monotone operator. Nowadays, the idea of the
proximal point algorithm is very popular and is extensively applied in designing algo-
rithms for structured optimization problems, and several variants of proximal point
algorithms were proposed, such as the accelerated proximal point algorithm [25, 37],
the proximal gradient algorithm [2, 40], and the alternating direction method of mul-
tipliers [7, 14]. In 2008, Lewis and Wright [18] used this idea to propose a linearized
proximal algorithm, named ProxDescent, for solving the convex composite optimiza-
tion problem (1.1) (or a more general problem where the outer function h is assumed
to be extended-value and prox-regular, not necessarily convex). Each subproblem
of the ProxDescent is a proximal minimization of the composite function, with the
inner function being linearized at the current iterate and the stepsize being updated
to maintain a descent property. Thus their algorithm is a descent one. Their work is
of high theoretical significance in investigating the properties of local solutions of the
subproblem. They also proved a global convergence result of the ProxDescent, i.e.,
that the cluster points of the sequence produced by ProxDescent are stationary points
of (1.1). Recently, Sagastizábal [32] proposed a composite proximal bundle algorithm
for solving (1.1) with a positively homogeneous convex function h, by employing a
bundle of subgradient information of the outer function and gradient of the inner
function at the current iterate, and established that the sequence produced by the
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LINEARIZED PROXIMAL ALGORITHMS AND APPLICATIONS 1209

algorithm either stops finitely or has a cluster point being a stationary point of (1.1).
In the present paper, we study the linearized proximal algorithm, named LPA,

proposed in [18] but using general stepsizes for solving (1.1), and we investigate its
local convergence rates. As general stepsizes are used, the resulting algorithm is
generally not a descent one. Hence our algorithm is significantly different from the
ProxDescent. In fact, the introduction of the LPA was motivated by both the GNM
and the proximal point algorithm. The LPA shares many of their advantages while
also overcoming their disadvantages. The subproblem of the LPA is an unconstrained
strongly convex optimization problem, which is easier to solve than that of the GNM.
Consequently, the LPA has the attractive computational advantage that the solution
of each subproblem is a singleton, which avoids the difficulty of finding a solution
with minimum norm among the set of minima of its subproblem as in the GNM,
while still maintaining the same local convergence rate as that of the GNM. Under
the assumptions of local weak sharp minima of order p (p ∈ [1, 2]) and a quasi-
regularity condition, we establish the local superlinear convergence rate for the LPA.
This is the main contribution of the present paper. Based on a backtracking line-
search, we also propose a globalization strategy for the LPA and obtain the global
superlinear convergence result. Furthermore, we extend the LPA to the inexact setting
and provide the superlinear convergence results of the inexact LPA similar to that of
(exact) LPA. In particular, as a consequence of our main result, [18, Theorem 7.4] can
be partially improved in the sense that any sequence generated by the ProxDescent
for solving the convex composite optimization problem (1.1) is shown to converge to
a global solution of (1.1) at a superlinear rate under the weak sharp minima and the
regular condition; [18, Theorem 7.4] only presented the convergence to a stationary
point; see Remark 16 for details. Moreover, to the best of our knowledge, our results
of the convergence rate on the LPA-type algorithms (e.g., Theorems 12, 18, and 20)
seem new in the literature.

The motivation of our work also stems from various applications. In particular,
we consider the (possibly nonconvex) feasibility problem as an application of the con-
vex composite optimization, which is at the core of the modeling of many problems
in various areas of mathematics and physical sciences. For example, there has been
an increasing use of ad hoc wireless sensor networks for monitoring the environmental
information across an entire physical space. Typical networks of this type consist of a
large number of inexpensive wireless sensors deployed in a geographical area with the
ability to communicate with their neighbors within a limited radio range. The sensor
network localization problem consists of determining the positions of the sensors in a
network by using the given incomplete pairwise distance measurements. However, the
use of the GPS system is a very expensive solution to this requirement, as a huge num-
ber of sensors are required. Therefore, there is great demand for developing efficient
and robust algorithms that can estimate or localize sensor positions in a network by
using only the mutual distance measures that the wireless sensors receive from their
neighbors. The sensor network localization problem can be cast into a nonconvex fea-
sibility problem. We further reformulate the feasibility problem as framework (1.1)
and then apply the LPA to solve the feasibility problem, as well as the sensor network
localization problem. In particular, when applied to the sensor network localization
problem, the numerical results illustrate that the LPA achieves the more precise solu-
tion, costs less CPU time, and requires less information (the small radio range and the
few anchors) than that of the semidefinite relaxation technique; see the explanations
in section 4 for details.

The paper is organized as follows. In section 2, we present the notation and
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1210 YAOHUA HU, CHONG LI, AND XIAOQI YANG

preliminary results used in the present paper. In section 3, we investigate the local
convergence property of the LPA under the assumptions of local weak sharp minima
of order p and the quasi-regularity condition, and we propose the globalized LPA and
inexact LPA, as well as their convergence behavior. Applications to the feasibility
problem and numerical experiments on the sensor network localization problem are
demonstrated in section 4.

2. Notation and preliminary results. We consider the n-dimensional Eu-
clidean space R

n. We view a vector as a column one, and denote by 〈x, y〉 the inner
product of two vectors x, y ∈ R

n. We use ‖x‖ to denote the standard Euclidean norm
of x, that is, ‖x‖ =

√〈x, x〉. For x ∈ R
n and δ ∈ R+, B(x, δ) denotes the open ball

of radius δ centered at x. For a closed convex subset Z ⊆ R
n, the negative polar of

Z, denoted by Z�, is defined by

(2.1) Z� := {y : 〈y, z〉 ≤ 0 for each z ∈ Z}.

For a point x and a set Z, the Euclidean distance of x from Z, denoted by dist(x, Z),
is defined by

dist(x, Z) := inf
z∈Z

‖x− z‖.

We adopt the convention that dist(x, ∅) = +∞ for the whole paper. For f : Rn → R,
ε ≥ 0, and X ⊆ R

n, the ε-optimal solution set of f over X is defined by

ε-argmin
x∈X

f(x) :=

{
x ∈ X : f(x) ≤ inf

y∈X
f(y) + ε

}
.

For a convex function f : Rn → R, the subdifferential of f at x ∈ R
n is defined by

∂f(x) := {g : f(y) ≥ f(x) + 〈g, y − x〉 for each y ∈ R
n}.

For F : Rn → R
m and X ⊆ R

n, we say that F is a C1,1 function on X , denoted by
F ∈ C1,1

L (X), if F is continuously differentiable with a Lipschitz continuous gradient
F ′ on X ; i.e., there exists L > 0 such that

‖F ′(x) − F ′(y)‖ ≤ L‖x− y‖ for each x, y ∈ X.

A well-known property of the C1,1 function is presented as follows; see [3, Proposition
A.24].

Lemma 2. Let F : Rn → R
m and X ⊆ R

n. If F ∈ C1,1
L (X), then for all x, y ∈ X,

it holds that

‖F (y)− F (x) − F ′(x)(y − x)‖ ≤ L

2
‖y − x‖2.

The concepts of weak sharp minima were introduced by Burke and Ferris [12] and
have been extensively studied and widely used to analyze the convergence properties
of many algorithms; see [10, 21, 43, 44] and references therein. We recall in the
following definition the concepts of weak sharp minima: items (b) and (c) were taken
from Burke and Ferris [12] and Burke and Deng [11], respectively. Let h : Rm → R,
and let hmin and C be given in (1.2).
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LINEARIZED PROXIMAL ALGORITHMS AND APPLICATIONS 1211

Definition 3. Let S ⊆ R
m and η > 0. C is said to be

(a) the set of weak sharp minima for h on S with modulus η if

h(y)− hmin ≥ η dist(y, C) for each y ∈ S;

(b) the set of (global) weak sharp minima for h with modulus η if C is the set of
weak sharp minima for h on R

n with modulus η;
(c) the set of local weak sharp minima for h at ȳ ∈ C if there exist ε > 0 and

ηε > 0 such that C is the set of weak sharp minima for h on B(ȳ, ε) with
modulus ηε.

One natural extension of these concepts is that of (global and local) weak sharp
minima of order p (p ≥ 1); see [6, 16, 27, 35] and references therein. Item (b) in the
following definition was introduced by Studniarski and Ward [35].

Definition 4. Let S ⊆ R
m, η > 0, and p ≥ 1. C is said to be

(a) the set of weak sharp minima of order p for h on S with modulus η if

(2.2) h(y)− hmin ≥ η distp(y, C) for each y ∈ S;

(b) the set of local weak sharp minima of order p for h at ȳ ∈ C if there exist
ε > 0 and ηε > 0 such that C is the set of weak sharp minima of order p for
h on B(ȳ, ε) with modulus ηε.

Remark 5. We define the weak sharp minima constant of order p for h on S by

ηp(h;S) := inf
y∈S\C

h(y)− hmin

distp(y, C)

and the local weak sharp minima constant of order p for h at ȳ ∈ C by

(2.3) ηp(h; ȳ) := sup
ε>0

inf
y∈B(ȳ,ε)\C

h(y)− hmin

distp(y, C)
.

Clearly, C is the set of weak sharp minima of order p for h on S (resp., the set of
local weak sharp minima of order p for h at ȳ) if and only if ηp(h;S) > 0 (resp.,
ηp(h; ȳ) > 0).

The following lemma provides a useful property of the composition of a function,
satisfying the weak sharp minima of order p, and a C1,1 function, which will repeatedly
be used in the study of the convergence behavior of the LPA.

Lemma 6. Let S ⊆ R
m, η > 0, and p ≥ 1. Let C be the set of weak sharp

minima of order p for h on S with modulus η. Suppose that F ∈ C1,1
L (X). Then, for

all x, y ∈ X satisfying F (x) + F ′(x)(y − x) ∈ S, it holds that

(2.4) dist(F (y), C) ≤ 1

2
L‖y − x‖2 + η−

1
p (h(F (x) + F ′(x)(y − x)) − hmin)

1
p .

Proof. By Lemma 2 and (2.2), it follows that

dist(F (y), C) ≤ ‖F (y)− F (x) − F ′(x)(y − x)‖+ dist(F (x) + F ′(x)(y − x), C)

≤ 1

2
L‖y − x‖2 + η−

1
p (h(F (x) + F ′(x)(y − x))− hmin)

1
p .

The proof is complete.

D
ow

nl
oa

de
d 

05
/1

1/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1212 YAOHUA HU, CHONG LI, AND XIAOQI YANG

Associated to problem (1.1), we consider the inclusion

(2.5) F (x) ∈ C,

where F : Rn → R
m is continuously differentiable, and C ⊆ R

m is defined by (1.2).
For x ∈ R

n, let D(x) be defined by

(2.6) D(x) := {d ∈ R
n : F (x) + F ′(x)d ∈ C}.

The quasi-regularity condition in the following definition provides a local bound on
the set D(x).

Definition 7. Let S ⊆ R
m and β > 0. We say that

(a) a point x̄ ∈ R
n is a regular point of inclusion (2.5) if

ker(F ′(x̄)T ) ∩ (C − F (x̄))� = {0};
(b) inclusion (2.5) is said to satisfy the quasi-regularity condition on S with con-

stant β if

(2.7) dist(0, D(x)) ≤ β dist(F (x), C) for each x ∈ S

(and so D(x) = ∅ for each x ∈ S);
(c) a point x̄ ∈ R

n is a quasi-regular point of inclusion (2.5) if there exist r > 0
and βr > 0 such that inclusion (2.5) satisfies the quasi-regularity condition
on B(x̄, r) with constant βr.

Remark 8.
(a) The notion of a regular point was introduced and applied to establish the

local convergence rate of the GNM for problem (1.1) in Burke and Ferris [10].
By [10, Proposition 3.3], one sees that any regular point of inclusion (2.5) is
a quasi-regular point.

(b) The notion of the quasi-regular point was originally introduced by Li and Ng
[20]. Recall from [20] that a point x̄ ∈ R

n is a quasi-regular point of inclusion
(2.5) if there exist r > 0 and an increasing positive-valued function κ(·) on
[0, r) such that

(2.8) dist(0, D(x)) ≤ κ(‖x− x̄‖) dist(F (x), C) for each x ∈ B(x̄, r).

One can check directly by definition that this is equivalent to the concept of
the quasi-regular point given in Definition 7.

(c) We define the quasi-regularity constant β(x̄) as the infimum over all positive
constants βr for which inclusion (2.5) satisfies the quasi-regularity condition
on B(x̄, r) for some positive radius r, that is,

(2.9) β(x̄) := inf
r>0

{β : (2.7) holds on B(x̄, r)}.

Then x̄ ∈ R
n is a quasi-regular point of inclusion (2.5) if and only if β(x̄) <

+∞.

3. Linearized proximal algorithms and convergence analysis. Through-
out the whole section, we always assume that p ∈ [1, 2], unless otherwise specified. In
this section, we shall investigate an LPA to solve problem (1.1), and we establish the
local convergence behavior of the LPA under the assumptions of the local weak sharp
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LINEARIZED PROXIMAL ALGORITHMS AND APPLICATIONS 1213

minima of order p and the quasi-regularity condition. We also provide a globalization
strategy for the LPA by virtue of the backtracking line-search, and an inexact version
of the LPA, together with their convergence analysis.

We proceed with the (inexact) linearized proximal mapping and some basic prop-
erties. Let v > 0 and ε ≥ 0. The linearized proximal mapping LPv,ε : Rn ⇒ R

n is
defined as, for each x ∈ R

n, the ε-optimal solution set of the following optimization
problem:

(3.1) min
d∈Rn

f(x; d) := h(F (x) + F ′(x)d) +
1

2v
‖d‖2,

that is,

(3.2) LPv,ε(x) := ε-arg min
d∈Rn

{
h(F (x) + F ′(x)d) +

1

2v
‖d‖2

}
.

In the special case when ε = 0, we write LPv(x) for LPv,0(x) for simplicity; note that
LPv(x) is a singleton for each x ∈ R

n. The following lemma presents some useful
properties of the linearized proximal mapping.

Lemma 9. Let v > 0 and ε > 0, and let x ∈ R
n satisfying D(x) = ∅ and d ∈

LPv,ε(x). Then the following statements hold:
(i) ‖d‖2 ≤ dist2(0, D(x)) + 2vε,
(ii) h(F (x) + F ′(x)d) ≤ hmin +

1
2vdist

2(0, D(x)) + ε.

Proof. Note by (2.6) that h(F (x) + F ′(x)d̃) = hmin for each d̃ ∈ D(x). Then one
has by definition (cf. (3.2)) that

h(F (x) + F ′(x)d) +
1

2v
‖d‖2 ≤ h(F (x) + F ′(x)d̃) +

1

2v
‖d̃‖2 + ε = hmin +

1

2v
‖d̃‖2 + ε.

Taking the infimum over D(x) on the right-hand side of the above inequality, we
obtain

(3.3) h(F (x) + F ′(x)d) +
1

2v
‖d‖2 ≤ hmin +

1

2v
dist2(0, D(x)) + ε.

Thus, (i) and (ii) follow.

3.1. Linearized proximal algorithm. This subsection is devoted to the study
of the LPA. Note that the outer function h in the convex composite optimization
problem (1.1) is convex. The ProxDescent [18] for solving (1.1) is a special case of the
following LPA (as the stepsize in ProxDescent is selected such that a descent property
is satisfied: h(F (xk))−h(F (xk+dk)) ≥ σ (h(F (xk))− h(F (xk) + F ′(xk)dk)) for some
σ ∈ (0, 1)).

Algorithm 10. Given an initial point x0 ∈ R
n and a sequence of stepsizes

{vk} ⊆ (0,+∞). Having xk, we calculate the search direction dk := LPvk(xk) by
solving the optimization problem (3.1) (with xk in place of x). If dk = 0, then it
stops; otherwise, we set xk+1 = xk + dk.

Remark 11. In the special case when h := 1
2‖ · ‖2, Algorithm 10 is reduced to

the well-known Levenberg–Marquardt method [24] for solving the following nonlinear
least squares problem:

min
x∈Rn

1

2
‖F (x)‖2.
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1214 YAOHUA HU, CHONG LI, AND XIAOQI YANG

Indeed, applying Algorithm 10 to this problem, the first order optimality condition
of (3.1) (with xk in place of x) implies that

0 = F ′(xk)
	(F (xk) + F ′(xk)dk) +

dk
v
.

Thus, the closed formula of the iteration of Algorithm 10 is given by

xk+1 = xk + dk = xk − v
(
I + vF ′(xk)

	F ′(xk)
)−1

F ′(xk)
	F (xk) for each k = 0, 1, . . . ,

which is the Levenberg–Marquardt method (also the trust region method for the
nonlinear least squares problem [42]).

The main theorem of this subsection is as follows. It provides some sufficient
conditions around initial points ensuring the convergence of Algorithm 10. For the
convergence results in the remainder of the present paper (i.e., Theorems 12, 18, and
20 and Corollaries 14 and 22), our analysis, without loss of generality, focuses only on
the special case when the stepsizes are chosen to be a constant, that is, vk ≡ v, unless
otherwise specified, as the corresponding convergence results for the general case can
be established similarly; see the explanation in Remark 13(a) for more details.

Theorem 12. Let η > 0, β > 0, and δ̄ > 0. Let x̄ ∈ R
n, and let C be the set

of weak sharp minima of order p for h on B(F (x̄), δ̄) with modulus η. Suppose that
F ∈ C1,1

L (B(x̄, δ̄)), and that inclusion (2.5) satisfies the quasi-regularity condition on
B(x̄, δ̄) with constant β. Suppose further that there exists δ > 0 such that

(a) δ ≤ min
{

δ̄
2 ,

2δ̄
5L0

}
,

(b) dist(F (x̄), C) < δ
2β ,

(c) β
(
Lδ + 2

(
1

2ηv

) 1
p δ

2−p
p
) ≤ 1,

where L0 is the Lipschitz constant for F on B(x̄, δ̄). Then there exists a neighborhood
N(x̄) of x̄ such that, for any x0 ∈ N(x̄), the sequence {xk} generated by Algorithm 10
with initial point x0 converges at a rate of 2

p to a solution x∗ satisfying F (x∗) ∈ C.

Proof. Set

(3.4) β̄ :=
δ − 2βdist(F (x̄), C)

2βL0
and r0 := min{δ, β̄}.

Then r0 > 0 due to assumption (b). Let x0 ∈ N(x̄) := B(x̄, r0). Then one has that
‖x0 − x̄‖ ≤ r0 ≤ δ < δ̄ (by assumption (a)). Thus, by the choice of L0, we have that

‖F (x0)− F (x̄)‖ ≤ L0r0 ≤ L0β̄,

and it follows that

(3.5) dist(F (x0), C) ≤ ‖F (x0)−F (x̄)‖+dist(F (x̄), C) ≤ L0β̄+dist(F (x̄), C) =
δ

2β
,

where the last inequality follows from the definition of β̄ in (3.4). We shall show by
induction that the following estimates hold for all i = 0, 1, 2, . . . :

(3.6) ‖xi − x̄‖ < 2δ(≤ δ̄) and dist(F (xi), C) ≤ δ

β

(
1

2

)( 2
p )

i
+i

.

Note that (3.6) holds for i = 0 (thanks to the choice of x0 and (3.5)). Now assume
that (3.6) holds for each i ≤ k − 1. Then, by the assumed quasi-regularity condition,
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LINEARIZED PROXIMAL ALGORITHMS AND APPLICATIONS 1215

D(xi) = ∅. Thus, Lemma 9 is applicable (with xi, di, 0 in place of x, d, ε), and we
conclude that
(3.7)

‖di‖ ≤ dist(0, D(xi)) ≤ βdist(F (xi), C) ≤ δ

(
1

2

)( 2
p )

i
+i

for each i = 0, . . . , k − 1.

Hence

‖xk − x̄‖ ≤
k−1∑
i=0

‖di‖+ ‖x0 − x̄‖ < δ
k−1∑
i=0

(
1

2

)( 2
p )

i
+i

+ r0.

Since p ≤ 2 and r0 ≤ δ (see (3.4)), it follows that

(3.8) ‖xk − x̄‖ < δ + r0 ≤ 2δ.

Since xk−1 ∈ B(x̄, 2δ) and by the choice of L0 (δ̄ ≥ 2δ), one has that ‖F (xk−1) −
F (x̄)‖ ≤ 2L0δ and ‖F ′(xk−1)‖ ≤ L0. Thus, by (3.7), it follows that

‖F (xk−1)+F ′(xk−1)dk−1−F (x̄)‖ ≤ ‖F (xk−1)−F (x̄)‖+‖F ′(xk−1)‖‖dk−1‖ ≤ 5

2
L0δ ≤ δ̄

(due to assumption (a)). Hence Lemma 6 is applicable (with xk−1, xk, B(F (x̄), δ̄),
B(x̄, δ̄) in place of x, y, S, X), and we obtain that

dist(F (xk), C) ≤ L

2
‖dk−1‖2 +

(
1

η

) 1
p

(h(F (xk−1) + F ′(xk−1)dk−1)− hmin)
1
p .

By Lemma 9, it follows that

(3.9)

dist(F (xk), C) ≤ L

2
dist2(0, D(xk−1)) +

(
1

2ηv

) 1
p

dist
2
p (0, D(xk−1))

≤ L

2
δ2
(
1

2

)2
(
( 2

p )
k−1

+k−1
)

+

(
1

2ηv

) 1
p

δ
2
p

(
1

2

) 2
p

(
( 2

p)
k−1

+k−1
)

(due to (3.7)). Since

2

((
2

p

)k−1

+ k − 1

)
≥ 2

p

((
2

p

)k−1

+ k − 1

)
≥
(
2

p

)k

+ k − 1

(noting that p ∈ [1, 2] and k ≥ 1), it follows from (3.9) that

(3.10) dist(F (xk), C) ≤ δ

(
Lδ + 2

(
1

2ηv

) 1
p

δ
2−p
p

)(
1

2

)( 2
p )

k
+k

≤ δ

β

(
1

2

)( 2
p)

k
+k

,

where the last inequality holds by assumption (c). Combining (3.8) and (3.10), one
sees that (3.6) holds for i = k and so for each i = 0, 1, 2, . . . . This, together with
Lemma 9(i) and (2.7), implies that

‖di‖ ≤ dist(0, D(xi)) ≤ βdist(F (xi), C) ≤ δ

(
1

2

)( 2
p )

i
+i

for each i = 0, 1, 2, . . . .
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1216 YAOHUA HU, CHONG LI, AND XIAOQI YANG

Thus, {xk} is a Cauchy sequence and then converges to a point x∗. Clearly, F (x∗) ∈ C
by (3.10), and

‖xk − x∗‖ ≤
+∞∑
i=k

‖di‖ ≤ 2δ

(
1

2

)( 2
p )

k
+k

.

This means that {xk} converges to x∗ at a rate of 2
p , and the proof is complete.

In Theorem 12, we have established the local convergence theorem of Algorithm 10
under the assumptions of local weak sharp minima of order p and the quasi-regularity
condition. For different order p, we make a remark on the assumptions and the local
convergence rate as follows.

Remark 13.
(a) Theorem 12 is also true for Algorithm 10 when using the general stepsize

sequence {vk} if the assumption (c) of Theorem 12 is changed as

(c) β
(
Lδ + 2

(
1

2η inf vk

) 1
p δ

2−p
p
) ≤ 1.

This remark is also valid for Theorems 18 and 20.
(b) When p ∈ [1, 2), Theorem 12 indicates the local superlinear convergence rate

of Algorithm 10. In the special case when p = 1, Theorem 12 shows the local
quadratic convergence rate of Algorithm 10, which shares the same conver-
gence rate as that of the GNM; see [10, 21]. The main difference between
the convergence analysis of Algorithm 10 and that of the GNM stems from
their different subproblems. In particular, Li and Wang [21] directly used
the minimal property of the GNM subproblem to derive the quadratic con-
vergence property of ‖dk‖, while our convergence analysis of Algorithm 10
utilized Lemma 9 and the assumption of weak sharp minima to estimate the
convergence rate of dist(F (xk), C).

(c) When p = 2, Theorem 12 exhibits the local linear convergence rate of Algo-
rithm 10. Furthermore, the assumption (c) of Theorem 12 is reduced to

(c) β
(
Lδ +

(
2
ηv

)1/2) ≤ 1.

This assumption (c) not only requires δ to be small, but also needs v to be
large, which coincides with the property given by Rockafellar [30] that the
proximal point algorithm reaches the linear convergence rate if the stepsize
stays large enough.

Note that in Theorem 12, we do not assume F (x̄) ∈ C; actually, we even do
not need to assume the feasibility of inclusion (2.5). In the case when F (x̄) ∈ C,
the assumption (b) of Theorem 12 automatically holds. Thus, we present the local
convergence property of Algorithm 10 as follows.

Corollary 14. Let x̄ ∈ R
n satisfy the inclusion (2.5), and let C be the set of

local weak sharp minima of order p for h at F (x̄) with the local weak sharp minima
constant ηp(h;F (x̄)). Suppose that F ∈ C1,1

L (B(x̄, r)) for some r > 0, and that x̄ is a
quasi-regular point of inclusion (2.5) with the quasi-regularity constant β(x̄). Suppose

further that p ∈ [1, 2) or the stepsize v > 2β(x̄)2

ηp(h;F (x̄)) (if p = 2). Then there exists a

neighborhood N(x̄) of x̄ such that, for any x0 ∈ N(x̄), the sequence {xk} generated by
Algorithm 10 with initial point x0 converges at a rate of 2

p to a solution x∗ satisfying

F (x∗) ∈ C.
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LINEARIZED PROXIMAL ALGORITHMS AND APPLICATIONS 1217

Proof. Let ε̄ ∈ (0, ηp(h;F (x̄))) be such that

(3.11) v >
2(β(x̄) + ε̄)2

ηp(h;F (x̄))− ε̄
if p = 2.

Recall from the definition of ηp(h;F (x̄)) in (2.3) and the definition of β(x̄) in (2.9)
that there exists δ̄ ∈ (0, r), such that C is the set of weak sharp minima of order p for
h on B(F (x̄), δ̄) with modulus η := ηp(h;F (x̄)) − ε̄ and that inclusion (2.5) satisfies
the quasi-regularity condition on B(x̄, δ̄) with constant β := β(x̄) + ε̄. We denote by
L0 the Lipschitz constant for F on B(x̄, δ̄). Set

δ :=

⎧⎪⎪⎨
⎪⎪⎩

min

{
δ̄
2 ,

2δ̄
5L0

, 1
2Lβ ,

(
2ηv
(4β)p

) 1
2−p

}
, p ∈ [1, 2),

min

{
δ̄
2 ,

2δ̄
5L0

, 1
Lβ

(
1−

(
2β2

ηv

) 1
2

)}
, p = 2.

(3.12)

Then one can directly check that δ > 0 and satisfies the assumptions (a), (b), and (c)
of Theorem 12. Thus, Theorem 12 is applicable and the conclusion follows.

By the proof of Corollary 14 (and that of Theorem 12), we further have the
following remark, which will be useful in the proof of Theorem 18.

Remark 15. Suppose that the assumptions of Corollary 14 are satisfied. Then,
for any δ > 0, there exists rδ ∈ (0, δ) such that any sequence {x̃k} generated by
Algorithm 10 with initial point x̃0 ∈ B(x̄, rδ) satisfies the following property:

(3.13) ‖x̃k − x̄‖ < δ for any k = 0, 1, 2, . . . .

Remark 16. As a consequence of Corollary 14, we can prove that any sequence
{xk} generated by the ProxDescent [18] for solving the convex composite optimization
problem (1.1) converges to a global solution of (1.1) at a rate of 2

p if there exists a

cluster point x̄ of {xk} such that C is the set of local weak sharp minima of order
p (1 ≤ p < 2) for h at F (x̄) and x̄ is a regular point of inclusion (2.5). Indeed,
by [18, Theorem 7.4], one sees that x̄ is a stationary point of problem (1.1), that
is, 0 ∈ F ′(x̄)	 ◦ ∂h(F (x̄)). This implies that ∂h(F (x̄)) ∩ kerF ′(x̄)	 = ∅. Note by
definition that ∂h(F (x̄)) ⊆ (C − F (x̄))�. Thus, ∅ = ∂h(F (x̄)) ∩ kerF ′(x̄)	 ⊆ (C −
F (x̄))� ∩ kerF ′(x̄)	 = {0}; hence, 0 ∈ ∂h(F (x̄)) and F (x̄) ∈ C. Then Corollary 14
is applicable to concluding that {xk} converges to a global solution of (1.1) at a rate
of 2

p .

3.2. Globalized LPA. By virtue of the backtracking line-search, this subsection
proposes a globalization strategy for the LPA and establishes its global convergence
theorem. The globalized LPA presented in the following paragraph is in the spirit of
the ideas used in [8, 10].

Algorithm 17. Given constants c ∈ (0, 1) and γ ∈ (0, 1), an initial point x0 ∈
R

n, and a sequence of stepsizes {vk} ⊆ (0,+∞). Having xk, we calculate the search
direction dk := LPvk(xk) by solving the optimization problem (3.1). If dk = 0, then
it stops; otherwise, we set xk+1 = xk + tkdk, where tk is the maximum value of γs for
s = 0, 1, . . . , such that
(3.14)

h(F (xk + γsdk))− h(F (xk)) ≤ cγs

(
h(F (xk) + F ′(xk)dk) +

1

2vk
‖dk‖2 − h(F (xk))

)
.
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1218 YAOHUA HU, CHONG LI, AND XIAOQI YANG

The idea of adopting the backtracking line-search strategy for solving the convex
composite optimization problem originated from the works of Burke [8] and Burke
and Ferris [10]. The backtracking line-search strategy preserves the descent property
of the objective function (cf. (3.14)), which is critical in establishing the global con-
vergence property of Algorithm 17 (cf. [8]). Li and Wang [21] also provided a similar
globalization strategy for the GNM and proved the global quadratic convergence rate
of the globalized GNM.

We now establish in the following theorem a global superlinear convergence result
for Algorithm 17 under the assumptions of local weak sharp minima of order p and the
regularity condition. In particular, if the local weak sharp minima is satisfied, then
it indicates the global quadratic convergence rate of Algorithm 17, which shares the
same convergence rate as that of the globalized GNM, under the same assumptions
as in [10].

Theorem 18. Let {xk} be a sequence generated by Algorithm 17 and assume that
{xk} has a cluster point x̄. Suppose that 1 ≤ p < 2 and that C is the set of local weak
sharp minima of order p for h at F (x̄). Suppose further that F is of class C1,1 near x̄,
and that x̄ is a regular point of inclusion (2.5). Then F (x̄) ∈ C, and {xk} converges
to x̄ at a rate of 2

p .

Proof. We first claim that F (x̄) ∈ C. Indeed, the sequence {xk} is also the
one generated by the descent methods studied in [8] (see (2.1) in [8], with {dk},
h(F (xk)+F ′(xk)dk)+

1
2v‖dk‖2−h(F (xk)) in place of Dk, Δk, which satisfy conditions

(2.2) in [8]). Thus, [8, Theorems 2.4 and 5.3] can be applied to conclude that x̄ is
a stationary point of problem (1.1): 0 ∈ F ′(x̄)	 ◦ ∂h(F (x̄)). Similar to the idea in
Remark 16, we obtain F (x̄) ∈ C, as desired.

Next, we show that there exists δ > 0 such that the following implication holds
for any k:

(3.15) ‖xk − x̄‖ < δ =⇒ tk = 1.

Suppose, on the contrary, that there exist a sequence {δi} ⊆ (0, 1) with δi ↓ 0 and a
subsequence {ki} ⊆ N such that xki ∈ B(x̄, δi) and tki = 1. Then xki → x̄ and, for
each ki,
(3.16)

h(F (xki + dki))− h(F (xki )) > c

(
h (F (xki) + F ′(xki )dki) +

1

2v
‖dki‖2 − h(F (xki))

)
.

Hence, by the continuity of F and the assumption that xki → x̄, it follows that

(3.17) F (xki) → F (x̄) and dist(F (xki ), C) → 0

(as F (x̄) ∈ C, as we showed before). By the assumptions, there exist δ̄ > 0, η > 0,
and β > 0 such that

(3.18) h(z)− hmin ≥ η distp(z, C) for each z ∈ B(F (x̄), δ̄),

(3.19) dist(0, D(x)) ≤ β dist(F (x), C) for each x ∈ B(x̄, δ̄),

and

‖F ′(x) − F ′(y)‖ ≤ L‖x− y‖ for each x, y ∈ B(x̄, δ̄).
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LINEARIZED PROXIMAL ALGORITHMS AND APPLICATIONS 1219

Combining (3.17) and (3.19), we apply Lemma 9(i) to obtain that

(3.20) dist(0, D(xki)) → 0 and ‖dki‖ → 0.

Thus, there exists an integer i0 such that, for all i ≥ i0, the following inequalities
hold:

(3.21) ‖xki − x̄‖ <
δ̄

2
, ‖dki‖ <

δ̄

2
,

and

(3.22) ‖F (xki + dki)− F (x̄)‖ < δ̄, ‖F (xki) + F ′(xki )dki − F (x̄)‖ < δ̄.

Then it follows from Lemmas 9 that

h(F (xki+dki))− hmin ≤ h(F (xki + dki))−h (F (xki )+F ′(xki)dki )+
1

2v
dist2(0, D(xki)).

(3.23)

Without loss of generality, we assume that h is Lipschitz continuous on B(F (x̄), δ̄)
with Lipschitz constant K (using a smaller δ̄ if necessary). Now let i ≥ i0. Then, by
(3.22) and (3.21), we conclude from Lemma 2 that

h(F (xki + dki))− h (F (xki ) + F ′(xki)dki) ≤ K‖F (xki + dki)− F (xki)− F ′(xki )dki‖
≤ KL

2
dist2(0, D(xki)),

and it follows from (3.23) that

(3.24) h(F (xki + dki))− hmin ≤ τdist2(0, D(xki )),

where τ := KL
2 + 1

2v < +∞. This, together with (3.16), implies that

hmin − h(F (xki)) + τdist2(0, D(xki)) ≥ h(F (xki + dki))− h(F (xki ))

> c

(
h(F (xki) + F ′(xki)dki ) +

1

2v
‖dki‖2 − h(F (xki))

)

≥ c

(
hmin +

1

2v
‖dki‖2 − h(F (xki ))

)
.

Hence

(3.25) (1− c) (hmin − h(F (xki))) + τdist2(0, D(xki)) ≥
c

2v
‖dki‖2 > 0

(noting that dki = 0 by (3.16)). On the other hand, applying (3.18) and (3.19), we
conclude that

(1− c) (hmin − h(F (xki))) ≤ (c− 1)ηβ−pdistp(0, D(xki)).

Hence it follows from (3.25) that

0 < (c− 1)ηβ−p + τdist2−p(0, D(xki)).

Since dist(0, D(xki)) → 0 (see (3.20)) and p < 2, we arrive by taking the limit at
0 < (c− 1)ηβ−p, which is clearly a contradiction. Thus, we establish the implication
(3.15) for some δ > 0.
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1220 YAOHUA HU, CHONG LI, AND XIAOQI YANG

Finally, we show that {xk} converges to x̄ at a rate of 2
p . Let δ > 0 be such that the

implication (3.15) holds for any k. Then, by Remark 15, there exists rδ ∈ (0, δ) such
that any sequence {x̃k} generated by Algorithm 10 with initial point x̃0 ∈ B(x̄, rδ)
satisfies (3.13). Since x̄ is a cluster point of {xk}, there exists an integer j0 such that
‖xj0 − x̄‖ < rδ. Let x̃0 := xj0 ∈ B(x̄, rδ), and let {x̃k} be generated by Algorithm 10,
with x̃0 being the initial point. Then we have that ‖x̃k−x̄‖ < δ for any k = 0, 1, 2, . . . .
By Corollary 14, we may assume that {x̃k} is convergent (using a smaller positive
number rδ if necessary). Moreover, since ‖xj0 − x̄‖ < rδ ≤ δ, it follows from (3.15)
that tj0 = 1. This means that x̃1 and xj0+1 are the same. Hence ‖xj0+1− x̄‖ < δ, and
we further have that tj0+1 = 1. Inductively, we conclude that tk = 1 for all k ≥ j0.
Thus {xk}k≥j0 coincides with {x̃k} and so is convergent (to x̄) at a rate of 2

p (as so is

{x̃k}, as noted earlier). Therefore the proof is complete.

3.3. Inexact LPA. In practical terms, it could be computationally very ex-
pensive to exactly solve the subproblem (3.1) at each iteration. In this section, we
propose an inexact version of the LPA, which is to solve (3.1) only approximately at
each iteration (with progressively better accuracy), and investigate its local conver-
gence behavior. Specifically, we present the inexact version of the LPA as follows.

Algorithm 19. Given constants M > 0 and α > 2, initial points x0 ∈ R
n and

d−1 ∈ R
n, and a sequence of stepsizes {vk} ⊆ (0,+∞). Having xk and dk−1, we set

εk = M‖dk−1‖α and determine xk+1 and dk as follows. If LPvk(xk) = 0, then it
stops; else, if 0 ∈ LPvk,εk(xk), then we set dk = ‖dk−1‖α−1dk−1 and xk+1 = xk + dk;
otherwise, we calculate dk ∈ LPvk,εk(xk) and set xk+1 = xk + dk.

The following theorem provides some sufficient conditions around initial points
ensuring the convergence of Algorithm 19.

Theorem 20. Let η > 0, β > 0, and δ̄ > 0. Let x̄ ∈ R
n and let C be the set

of weak sharp minima of order p for h on B(F (x̄), δ̄) with modulus η. Suppose that
F ∈ C1,1

L (B(x̄, δ̄)), and that inclusion (2.5) satisfies the quasi-regularity condition on
B(x̄, δ̄) with constant β. Suppose further that there exists δ > 0 such that

(a) δ ≤ min
{

δ̄
3 ,

2δ̄
7L0

, 1
2

(
1

32vM

) 1
α−2
}
,

(b) dist(F (x̄), C) < δ
2β ,

(c) β
(
Lδ + 2

(
1

2ηv

) 1
p δ

2−p
p
) ≤ 1

2
√
2
,

where L0 is the Lipschitz constant for F on B(x̄, δ̄). Then there exists a neighborhood
N(x̄) of x̄ such that, for any x0 ∈ N(x̄), any sequence {xk} generated by Algorithm 19

with initial points x0 and ‖d−1‖ ≤ ( δ2

8vM

) 1
α converges at a rate of q := min

{
α
2 ,

2
p

}
to

a solution x∗ satisfying F (x∗) ∈ C.

Proof. Let β̄, r0, and N(x̄) be defined, respectively, as in the beginning of the
proof for Theorem 12, and let x0 ∈ N(x̄). Then, as discussed there, we have that

(3.26) dist(F (x0), C) ≤ δ

2β
and dist(0, D(x0)) ≤ δ

2
.

By the assumed quasi-regularity condition, Lemma 9 is applicable, and it follows that

(3.27) ‖d0‖ ≤ (dist2(0, D(x0)) + 2vM‖d−1‖α
) 1

2 ≤
√
2

2
δ.
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LINEARIZED PROXIMAL ALGORITHMS AND APPLICATIONS 1221

We shall show by induction that the following estimates hold for each i = 0, 1, 2, . . . :

(3.28) ‖xi − x̄‖ < 3δ, dist(F (xi), C) ≤ δ

β

(
1

2

)qi+i

, and ‖di‖ ≤ 2δ

(
1

2

)qi+i

.

Note first that (3.28) holds for i = 0 (thanks to the choice of x0, and to (3.26) and
(3.27)). Next, assume that (3.28) holds for each i ≤ k − 1. Then it follows that

(3.29) ‖xk − x̄‖ ≤
k−1∑
i=0

‖di‖+ ‖x0 − x̄‖ ≤ 2δ
k−1∑
i=0

(
1

2

)qi+i

+ δ < 3δ.

Since xk−1 ∈ B(x̄, 3δ) and by the choice of L0, one has that ‖F (xk−1)−F (x̄)‖ ≤ 3L0δ
and ‖F ′(xk−1)‖ ≤ L0 (as δ̄ ≥ 3δ). Thus, we have that

‖F (xk−1) + F ′(xk−1)dk−1 − F (x̄)‖ ≤ ‖F (xk−1)− F (x̄)‖+ L0‖dk−1‖ ≤ 7

2
L0δ < δ̄

(due to assumption (a)). Hence Lemmas 6 and 9(ii) are applicable, and we conclude
that

dist(F (xk), C) ≤ L

2
‖dk−1‖2 +

(
1

η

) 1
p

(h(F (xk−1) + F ′(xk−1)dk−1)− hmin)
1
p

≤ L

2
‖dk−1‖2 +

(
1

2ηv

) 1
p (

dist2(0, D(xk−1)) + 2vM‖dk−2‖α
) 1

p .

(3.30)

We now claim that

(3.31) dist(F (xk), C) ≤ δ

β

(
1

2

)qk+k

.

In fact, if k = 1, then (3.30), together with (3.26), (3.27), and the choice of d−1,
implies that

dist(F (x1), C) ≤ L

2
‖d0‖2 +

(
1

2ηv

) 1
p (

dist2(0, D(x0)) + 2vM‖d−1‖α
) 1

p

≤ L

2

(√
2

2
δ

)2

+

(
1

2ηv

) 1
p

((
δ

2

)2

+ 2vM
δ2

8vM

) 1
p

=
1

4
Lδ2 +

(
1

2ηv

) 1
p
(
1

2
δ2
) 1

p

,

and so (3.31) is established because

1

4
Lδ2 +

(
1

2ηv

) 1
p
(
1

2
δ2
) 1

p

=
δ

4

(
1

2

) 1
p−1

((
1

2

)1− 1
p

Lδ + 2

(
1

2ηv

) 1
p

δ
2−p
p

)

≤ δ

8β
≤ δ

β

(
1

2

)q+1

,
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1222 YAOHUA HU, CHONG LI, AND XIAOQI YANG

where the first inequality is true by assumption (c) and the fact that
(
1
2

) 1
p−1 ∈ [1,

√
2]

(noting p ∈ [1, 2]). Now we consider the case when k ≥ 2. Then, noting the elementary
inequality

(3.32) (a+ b)r ≤ ar + br for any a ≥ 0, b ≥ 0, and r ∈ (0, 1],

one has, from (3.30) and the induction assumption that (3.28) holds for each i ≤ k−1,
that
(3.33)

dist(F (xk), C) ≤ L

2
‖dk−1‖2 +

(
1

2ηv

) 1
p (

dist
2
p (0, D(xk−1)) + (2vM)

1
p ‖dk−2‖α

p

)

≤ L

2
(2δ)2

(
1

2

)2(qk−1+k−1)

+

(
1

2ηv

) 1
p

(
δ

2
p

(
1

2

) 2
p (q

k−1+k−1)

+ (2vM)
1
p (2δ)

α
p

(
1

2

)α
p (qk−2+k−2)

)
.

Noting by 2vM ≤ 1
16 (2δ)

2−α (that is, δ ≤ 1
2

(
1

32vM

) 1
α−2 by assumption (a)), we have

that

(2vM)
1
p (2δ)

α
p ≤

(
1

16
(2δ)2−α

) 1
p

(2δ)
α
p =

(
1

2
δ

) 2
p

,(3.34)

and also note that

2(qk−1 + k − 1) ≥ qk + k,
2

p
(qk−1 + k − 1) ≥ qk + k − 1,

and
α

p
(qk−2 + k − 2) ≥ qk + k − 2

(as q = min{α
2 ,

2
p}, α > 2, p ∈ [1, 2], and k ≥ 2). It follows from (3.33) that

dist(F (xk), C) ≤ L

2
(2δ)2

(
1

2

)qk+k

+

(
1

2ηv

) 1
p

(
δ

2
p

(
1

2

)qk+k−1

+

(
1

2
δ

) 2
p
(
1

2

)qk+k−2
)

= 2δ

(
Lδ +

(
1

2ηv

) 1
p

(
δ

2−p
p +

(
1

2

) 2
p−1

δ
2−p
p

))(
1

2

)qk+k

≤ 2δ

(
Lδ + 2

(
1

2ηv

) 1
p

δ
2−p
p

)(
1

2

)qk+k

<
δ

β

(
1

2

)qk+k

,

where the last inequality holds because, by assumption (c), Lδ + 2
(

1
2ηv

) 1
p δ

2−p
p ≤

1
2
√
2β

< 1
2β . Hence (3.31) is established. Thus, by (2.7), we have that

(3.35) dist(0, D(xk)) ≤ βdist(F (xk), C) < δ

(
1

2

)qk+k

.
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LINEARIZED PROXIMAL ALGORITHMS AND APPLICATIONS 1223

In view of Algorithm 19, if 0 ∈ LPv,εk(xk), then dk = ‖dk−1‖α−1dk−1. This, together
with the induction assumption that (3.28) holds for i = k − 1, implies that

(3.36) ‖dk‖ = ‖dk−1‖α ≤ (2δ)α
(
1

2

)α(qk−1+k−1)

< 2δ

(
1

2

)qk+k

(noting that α > 2 ≥ q); otherwise, dk ∈ LPv,εk(xk), and it follows from Lemma 9(i)
that

‖dk‖ ≤ (dist2(0, D(xk)) + 2vM‖dk−1‖α
) 1

2 ≤ dist(0, D(xk)) + (2vM)
1
2 ‖dk−1‖α

2

(thanks to (3.32)). Then, by (3.35) and the induction assumption that (3.28) holds
for i = k − 1, it follows that

‖dk‖ ≤ δ

(
1

2

)qk+k

+ (2vM)
1
2 (2δ)

α
2

(
1

2

)α
2 (qk−1+k−1)

.

Since α
2 (q

k−1 + k − 1) ≥ qk + k − 1 (as α
2 ≥ q ≥ 1) and since (2vM)

1
2 (2δ)

α
2 ≤ 1

2δ by
(3.34) (with 2 in place of p), it follows that

‖dk‖ ≤ δ

(
1

2

)qk+k

+
δ

2

(
1

2

)qk+k−1

= 2δ

(
1

2

)qk+k

.(3.37)

Hence, combining (3.29), (3.31), (3.36), and (3.37), one checks that (3.28) holds for
i = k and so for each i = 0, 1, 2, . . . . Consequently, {xk} is a Cauchy sequence and
converges to a point x∗, which, by (3.28), satisfies that F (x∗) ∈ C, and

‖xk − x∗‖ ≤
+∞∑
i=k

‖di‖ ≤ 4δ

(
1

2

)qk+k

.

Therefore, {xk} converges to x∗ at a rate of q (= min
{

α
2 ,

2
p

}
), and the proof is

complete.

Remark 21.
(a) Algorithm 19 not only has the attractive computational advantage that the

subproblems need to be solved only approximately, but also inherits the same
convergence rate as that of Algorithm 10 if α ≥ 4/p.

(b) When p ∈ [1, 2), Theorem 20 indicates the local superlinear convergence of
Algorithm 19. In particular, if p = 1 and α ≥ 4, then it shows the local
quadratic convergence rate of Algorithm 19, which shares the same conver-
gence rate as that of the inexact GNM [21] under the weaker conditions.
However, if p = 2, it exhibits the local linear convergence rate of Algorithm
19, where the assumption (c) not only requires δ to be small, but also needs
v to stay large. This coincides with the property given by Rockafellar [30]
that the proximal point algorithm reaches linear convergence if the stepsize
remains large enough.

Similar to the case of Algorithm 10, we have the local convergence property for
Algorithm 19 as follows.

Corollary 22. Let x̄ ∈ R
n satisfy inclusion (2.5), and let C be the set of local

weak sharp minima of order p for h at F (x̄) with the local weak sharp minima constant
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1224 YAOHUA HU, CHONG LI, AND XIAOQI YANG

ηp(h;F (x̄)). Suppose that F ∈ C1,1
L (x̄, r) for some r > 0, and that x̄ is a quasi-regular

point of inclusion (2.5) with the quasi-regularity constant β(x̄). Suppose further that

p ∈ [1, 2) or the stepsize v > 16β(x̄)2

ηp(h;F (x̄)) (if p = 2). Then there exists a neighborhood

N(x̄) of x̄ such that, for any x0 ∈ N(x̄), the sequence {xk} generated by Algorithm 19
with initial points x0 and d−1 near 0 converges at a rate of q := min

{
α
2 ,

2
p

}
to a

solution x∗ satisfying F (x∗) ∈ C.

Proof. Let ε̄ ∈ (0, ηp(h;F (x̄))) such that

(3.38) v >
16(β(x̄) + ε̄)2

(ηp(h;F (x̄))− ε̄)
if p = 2.

Recall from the definition of ηp(h;F (x̄)) in (2.3) and the definition of β(x̄) in (2.9)
that there exists δ̄ ∈ (0, r), such that C is the set of weak sharp minima of order p for
h on B(F (x̄), δ̄) with modulus η := ηp(h;F (x̄)) − ε̄ and that inclusion (2.5) satisfies
the quasi-regularity condition on B(x̄, δ̄) with constant β := β(x̄) + ε̄. We denote by
L0 the Lipschitz constant for F on B(x̄, δ̄). Set

(3.39) δ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
min

{
δ̄
2 ,

2δ̄
7L0

, 1
2 (

1
32vM )

1
α−2 , 1

4
√
2Lβ

,
(

2ηv

(8
√
2β)p

) 1
2−p

}
, p ∈ [1, 2),

min

{
δ̄
2 ,

2δ̄
7L0

, 12 (
1

32vM )
1

α−2 , 1
Lβ

(
1

2
√
2
−
(

2β2

ηv

) 1
2

)}
, p = 2.

Then δ > 0 and satisfies the assumptions (a), (b), (c) of Theorem 20. Thus, Theo-
rem 20 is applicable and the conclusion follows.

The proof of Corollary 22 (and that of Theorem 20) actually shows the points
detailed in the following remark, which will be useful in the proof of Theorem 28.

Remark 23.
(a) Theorem 20 and Corollary 22 remain true if Algorithm 19 is modified by

choosing dk ∈ LPv,εk(xk) in any case (even when 0 ∈ LPv,εk(xk)). Note
that adopting dk = ‖dk−1‖α−1dk−1 in the case when 0 ∈ LPv,εk(xk) in Al-
gorithm 19 is done to avoid solving exactly subproblem (3.1) at the next
iteration (otherwise, dk = 0 could be chosen).

(b) Suppose that the assumptions of Corollary 22 are satisfied, and let {x̃k}
be the sequence generated by Algorithm 19 (or with the modification that
dk ∈ LPv,εk(xk) in any cases) with initial points x̃0 and d̃−1. Then, for any
δ > 0 and M > 0, there exists rδ ∈ (0, δ) such that the following property
holds:

(3.40)
If x̃0 ∈ B(x̄, rδ) and d̃−1 ∈ B(0, rδ), then ‖x̃k − x̄‖ < δ for any k = 0, 1, 2, . . . .

4. Application to feasibility problem. The feasibility problem is at the core
of the modeling of many problems in various areas of mathematics and the physical
sciences. It consists of finding a point in the intersection of a collection of closed sets
(possibly nonconvex); see [1, 17] and references therein. The feasibility problem we
consider here is to find a solution of the following system of inequalities:

(4.1) gi(x) ≤ 0 for each i = 1, . . . ,m,

where gi : R
n → R are all continuously differentiable for i = 1, . . . ,m. The solution

set of (4.1) is denoted by X∗. The feasibility problem described above can be cast
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LINEARIZED PROXIMAL ALGORITHMS AND APPLICATIONS 1225

into framework (1.1) as the following two models:

(4.2) min
x∈Rn

h(F (x)), where F := (g1, . . . , gm)	 and h(·) := 1

2
dist2(·,Rm

− )

and

(4.3) min
x∈Rn

h(F (x)), where F := (g1, . . . , gm)	 and h(·) := dist(·,Rm
− ),

where R
m− := {x = (x1, . . . , xm)	 : xi ≤ 0, i = 1, . . . ,m}.

Thus, one can solve the feasibility problem (4.1) naturally by applying Algo-
rithm 10 or 19 to the reformulated models (4.2) and/or (4.3). In particular, when
applied to the model (4.2), it follows from the first order optimality condition that,
for any fixed x, solving the subproblem (3.1) (with h defined in (4.2)) is equivalent to
solving the nonlinear equations

(4.4) F ′(x)	(F (x) + F ′(x)d)+ +
d

v
= 0,

where x+ denotes the componentwise nonnegative part of x. This motivates us to
propose an algorithm for solving the feasibility problem (4.1), which is given below in
Algorithm 24. For the sake of simplicity, we introduce, for any x ∈ R

n, an auxiliary
function Hx : Rn → R

m defined by

(4.5) Hx(d) := F ′(x)	(F (x) + F ′(x)d)+ +
d

v
for each d ∈ R

n.

Algorithm 24. Given constants M > 0, α > 1, initial points x0 ∈ R
n and

d−1 ∈ R
n, and a sequence of stepsizes {vk} ⊆ (0,+∞). Having xk and dk−1, we

determine xk+1 and dk as follows.
If Hxk

(0) = 0, then it stops; else, if ‖Hxk
(0)‖ ≤ M‖dk−1‖α, then we set dk =

‖dk−1‖α−1dk−1 and xk+1 = xk + dk; otherwise, we solve the nonlinear equations
Hxk

(d) = 0 to obtain dk such that

(4.6) ‖Hxk
(dk)‖ ≤ M‖dk−1‖α,

and we set xk+1 = xk + dk.

Similarly, applying Algorithm 19 directly to (4.3), we present the following algo-
rithm for solving the feasibility problem (4.1).

Algorithm 25. Given constants M > 0 and α > 2, initial points x0 ∈ R
n and

d−1 ∈ R
n, and a sequence of stepsizes {vk} ⊆ (0,+∞). Having xk and dk−1, we set

εk = M‖dk−1‖α and determine xk+1 and dk as follows.
Let f∗

k := mind∈Rn

{
dist(F (xk) +F ′(xk)d,R

m
− ) + 1

2vk
‖d‖2}. If dist(F (xk),R

m
− ) =

f∗
k , then it stops; else, if dist(F (xk),R

m
− ) ≤ f∗

k + εk, then we set dk = ‖dk−1‖α−1dk−1

and xk+1 = xk + dk; otherwise, we set dk to be an εk-optimal solution of

min
d∈Rn

f(xk; d) := dist(F (xk) + F ′(xk)d,R
m
− ) +

1

2vk
‖d‖2,

and xk+1 = xk + dk.

To obtain the convergence properties of Algorithms 24 and 25 by virtue of Corol-
lary 22, we provide the following two propositions to show the weak sharp minima
property and quasi-regularity condition for models (4.2) and (4.3). The first propo-
sition is trivial by definition, and the second one is a consequence of [19, Proposition
4.1].
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1226 YAOHUA HU, CHONG LI, AND XIAOQI YANG

Proposition 26. Let F : Rn → R
m, and let x̄ ∈ R

n be such that F (x̄) ∈ R
m
− .

(i) Let h := 1
2dist

2(·,Rm
− ). Then R

m
− is the set of weak sharp minima of order

2 for h at F (x̄) with η2(h;F (x̄)) = 1
2 .

(ii) Let h := dist(·,Rm
− ). Then R

m
− is the set of weak sharp minima for h at

F (x̄) with η1(h;F (x̄)) = 1.

To ensure the quasi-regularity condition of the inclusion F (x) ∈ R
m
− , we introduce

the Robinson constraint qualification at a point x̄ satisfying F (x̄) ∈ R
m
− (see [29,

Definition 2]); that is, it holds that

(4.7) 0 ∈ int
{
F (x̄) + imF ′(x̄) + R

m
+

}
.

By [29, Theorem 3] (with R
n in place of C), one sees that the Robinson constraint

qualification (4.7) is equivalent to the condition

(4.8) imF ′(x̄) + R
m
+ = R

m.

Proposition 27. Let F : Rn → R
m, and let x̄ ∈ R

n be such that F (x̄) ∈ R
m− .

Suppose that F ∈ C1,1
L (B(x̄, r)) for some r > 0 and that the Robinson constraint

qualification (4.7) is satisfied. Let

(4.9) β̄ := sup
‖y‖≤1

inf
F ′(x̄)d∈y+R

m
−
‖d‖.

Then x̄ is a quasi-regular point of the inclusion F (x) ∈ R
m− with the quasi-regularity

constant β(x̄) ≤ β̄.

Proof. Recall from [19, eq. (2.10)] (with R
m
− in place of C) that the map T−1

x̄ and

its norm ‖T−1
x̄ ‖ are defined by

T−1
x̄ y := {d ∈ R

n : F ′(x̄)d ∈ y + R
m
−} for each y ∈ R

m

and

‖T−1
x̄ ‖ := sup{inf{‖d‖ : d ∈ T−1

x̄ (y)} : ‖y‖ ≤ 1},
respectively. Hence ‖T−1

x̄ ‖ = β̄ by definition. Without loss of generality, we may
assume that r ≤ 1

L . Note that the Robinson constraint qualification (4.7) is equivalent

to (4.8); hence Tx̄ is surjective (and so ‖T−1
x̄ ‖ < +∞). Then one concludes from

[19, Proposition 4.1(ii)] that the inclusion F (x) ∈ R
m
− satisfies the quasi-regularity

condition on B(x̄, t) with constant ‖T−1
x̄ ‖

1−Lt for any t ∈ (0, r). Hence it follows from
(2.9) that

β(x̄) ≤ inf
t>0

{‖T−1
x̄ ‖

1− Lt

}
= β̄,

and the proof is complete.

In the following paragraph we establish the local linear convergence result for
Algorithm 24 by showing that any generated sequence {xk} of this algorithm is also a
sequence generated by Algorithm 19, but with the modification that dk ∈ LPv,εk(xk)
in any case, with the same initial points and some suitable error controls {εk} for
problem (4.2). Recall that β̄ is defined by (4.9).

Theorem 28. Let x̄ ∈ X∗. Suppose that F ∈ C1,1
L (B(x̄, r)) for some r > 0,

imF ′(x̄)+R
m
+ = R

m, and that the stepsize v > 32β̄2. Then there exists a neighborhood
N(x̄) of x̄ such that, for any x0 ∈ N(x̄), any sequence {xk} generated by Algorithm 24
with initial points x0 and d−1 near 0 linearly converges to a solution x∗ ∈ X∗.
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LINEARIZED PROXIMAL ALGORITHMS AND APPLICATIONS 1227

Proof. Let δ := r, α̃ := 2α, and M̃ := M + L2 + 1
v . By Remark 23(b), there

exists rδ ∈ (0, r) such that (3.40) holds with {r, α̃, M̃} in place of {δ, α,M}. Let
x0 ∈ B (x̄, rδ) and d−1 ∈ B (0, rδ) be initial points, and let {xk} and {dk} be the
sequences generated by Algorithm 24. Set εk := vM̃2‖dk−1‖2α for each k = 0, 1, . . . ,
and let h be defined by (4.2). Fix k ∈ N. We first show the following implication:

(4.10) xk ∈ B (x̄, r) =⇒ dk ∈ LPv,εk(xk).

To do this, we assume that xk ∈ B (x̄, r). Without loss of generality, we may assume
that Hxk

(0) = 0 (otherwise, we assume LPv(xk) = 0 and that dk ∈ LPv,εk(xk) is
clear). We now claim that

(4.11) ‖Hxk
(dk)‖ ≤ M̃‖dk−1‖α.

In view of Algorithm 24, we only need to consider the case when ‖Hxk
(0)‖ ≤ M‖dk−1‖α

(since (4.11) automatically holds otherwise). By (4.5), one has that

(4.12) ‖Hxk
(dk)−Hxk

(0)‖ ≤ ‖F ′(xk)
	‖‖(F (xk)+F ′(xk)dk)+−(F (xk))+‖+ 1

v
‖dk‖.

Note that y+ is the projection of y onto R
m
+ . Then it follows from [15, Chap-

ter A, eq. (3.1.6)] that ‖(F (xk) + F ′(xk)dk)+ − (F (xk))+‖ ≤ ‖F ′(xk)dk‖. As F ∈
C1,1

L (B(x̄, r)) and xk ∈ B (x̄, r), it follows from (4.12) that

‖Hxk
(dk)−Hxk

(0)‖ ≤ ‖F ′(xk)‖2‖dk‖+ 1

v
‖dk‖ ≤

(
L2 +

1

v

)
‖dk−1‖α

(due to dk = ‖dk−1‖α−1dk−1), and thus

‖Hxk
(dk)‖ ≤ ‖Hxk

(0)‖+ ‖Hxk
(dk)−Hxk

(0)‖ ≤ M̃‖dk−1‖α.
Hence (4.11) is verified. To proceed, we define, for any x ∈ R

n, the function φx :
R

n → R
m by

ϕx(d) :=
1

2
dist2(F (x) + F ′(x)d,Rm

− ) +
1

2v
‖d‖2 for each d ∈ R

n.

Note that ϕx (for fixed x ∈ R
n) is a convex function and that Hx(·) defined in (4.5)

is its gradient. Hence one has that

ϕxk
(d) ≥ ϕxk

(dk) + 〈Hxk
(dk), d− dk〉 for any d ∈ R

n.

In particular, letting d∗k := LPv(xk) (and so ϕxk
(d∗k) = mind∈Rn ϕxk

(d)), one con-
cludes that

(4.13) ϕxk
(dk) ≤ ϕxk

(d∗k)− 〈Hxk
(dk), d

∗
k − dk〉 ≤ ϕxk

(d∗k) + ‖Hxk
(dk)‖‖d∗k − dk‖.

Moreover, by [30, Proposition 3], we have that ‖d∗k−dk‖ ≤ v‖Hxk
(dk)‖. This, together

with (4.13) and (4.11), implies that

ϕxk
(dk) ≤ ϕxk

(d∗k) + v‖Hxk
(dk)‖2 ≤ ϕxk

(d∗k) + vM̃2‖dk−1‖2α = ϕxk
(d∗k) + εk.

This means that dk ∈ LPv,εk(xk). Thus, implication (4.10) is checked. Next we
further verify that

(4.14) dk ∈ LPv,εk(xk) for each k ∈ N.
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1228 YAOHUA HU, CHONG LI, AND XIAOQI YANG

Granting this and noting by Propositions 26(i) and 27 that both the weak sharp
minima assumption (p = 2) for h and the quasi-regularity assumption for the inclusion
F (x) ∈ R

m
− are satisfied, one sees that Corollary 22 (and Remark 23(a)) is applicable;

hence the conclusion follows.
To show (4.14), note first that x0 ∈ B (x̄, rδ) ⊆ B (x̄, r), and so d0 ∈ LPv,ε0(x0)

by implication (4.10). We next assume that di ∈ LPv,εi(xi) for any i ≤ k. Then, by

(3.40) (with {r, α̃, M̃} in place of {δ, α,M}), we have that xk+1 ∈ B (x̄, r) and dk+1 ∈
LPv,εk+1

(xk+1) by implication (4.10). Thus (4.14) is seen to hold by mathematical
induction; hence the proof is complete.

For Algorithm 25, we have the following local quadratic convergence result.

Theorem 29. Let x̄ ∈ X∗. Suppose that F ∈ C1,1
L (B(x̄, r)) for some r > 0 and

that imF ′(x̄) +R
m
+ = R

m. Then there exists a neighborhood N(x̄) of x̄ such that, for
any x0 ∈ N(x̄), any sequence {xk} generated by Algorithm 25 with initial points x0

and d−1 near 0 quadratically converges to some x∗ ∈ X∗.

Proof. Note that Algorithm 25 is a direct application of Algorithm 19 to problem
(4.3). Propositions 26(i) and 27 say that both the weak sharp minima assumption
(p = 1) for h and the quasi-regularity assumption for the inclusion F (x) ∈ R

m
− are

satisfied. Hence Corollary 22 is applicable, and the conclusion follows.

For the subproblem of solving each nonlinear equation Hxk
(d) = 0 in Algo-

rithm 24, there are many efficient methods such as Newton-type methods and trust
region methods; see the monograph [26] for more details. Note that the function Hx

(for fixed x ∈ R
n) is p-order semismooth1 everywhere for any p > 0 (which could

be verified by definition). Recall from [28] that the semismooth Newton method for
p-order semismooth functions converges locally at a rate of 1 + p. This means that
the semismooth Newton method is highly efficient in solving each nonlinear equation
Hxk

(d) = 0 (indeed, one iteration is enough in most cases for our application in the
sensor network localization problem below). This motivates us to present the follow-
ing algorithm based on one semismooth Newton iteration for solving each nonlinear
equation Hxk

(d) = 0.

Algorithm 30. Given initial points x0 ∈ R
n, d−1 ∈ R

n, and a sequence of
stepsizes {vk} ⊆ (0,+∞). Having xk and dk−1, we calculate the search direction dk
by

V = F ′(xk)
	 diag(sgn(F ′(xk)d+F (xk))+)F

′(xk)+
1

vk
In, dk = dk−1−V −1Hxk

(dk−1),

where sgn(·) denotes the sign function, and we set xk+1 = xk + dk.

Before conducting the numerical experiments, we make a remark on the compar-
ison of the proposed algorithms for the feasibility problem.

Remark 31.
(a) As shown by Theorems 29 and 28, Algorithm 25 achieves a local quadratic

convergence rate, while Algorithm 24 concludes a local linear convergence

1A locally Lipschitzian function φ : Rn → R
m is said to be p-order semismooth (p > 0) at x if

lim sup
h→0

sup
V ∈∂φ(x+h)

V h− φ′(x; h)
‖h‖1+p

is bounded,

where φ′(x; h) denotes the directional derivative of φ at x along h, and ∂φ(x) is the generalized
Jacobian of φ at x (see [28]). An important family of the p-order semismooth functions are the
semialgebraic Lipschitz functions, which covers most of applications; see, e.g., [5].

D
ow

nl
oa

de
d 

05
/1

1/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LINEARIZED PROXIMAL ALGORITHMS AND APPLICATIONS 1229

rate. However, their numerical efficiency depends on the costs of solving the
corresponding subproblems. As illustrated in numerical experiments below,
Algorithm 24 is more efficient and costs less CPU time than Algorithm 25.
This is because the semismooth Newton method is highly efficient at solving
each subproblem in Algorithm 24, while each subproblem in Algorithm 25 is
a (large scale) nonsmooth convex optimization problem, and it usually takes
much more time to solve this subproblem by using any popular algorithm
such as the primal-dual interior point method [41] or the alternating direction
method [14].

(b) Although we cannot provide the proof of the linear convergence rate of Algo-
rithm 30, our numerical experiments below illustrate that it shares the same
stability and linear convergence rate as Algorithm 24 and costs less CPU time.

The rest of this section is devoted to demonstrating the performance of the LPA-
type algorithms on the sensor network localization problem, arising from the area of
wireless sensor networks.

Typical wireless sensor networks consist of a large number of inexpensive wireless
sensors deployed in a geographical area with the ability to communicate with their
neighbors within a limited radio range. The sensor network localization problem
consists of estimating the positions of the sensors in a network by using the given
incomplete pairwise distance measurements; see [4, 22, 38] and references therein.
Formally, let Vs = {s1, . . . , sn} ⊂ R

2 and Va = {an+1, . . . , an+m} ⊂ R
2 be the

sets of sensors and anchors (a small quantity of sensors whose positions are known),
respectively. For each pair of (sensor, sensor) or (sensor, anchor), if their distance
is within the radio range (denoted by R), then they can detect each other, and this
edge is recorded in the set Ess (the set of sensor-sensor edges) or Esa (the set of
sensor-anchor edges). That is, Ess and Esa denote the sets of sensor-sensor edges
and sensor-anchor edges, whose length dij is less than or equal to the radio range
R, respectively. Thus, the sensor network localization problem can be cast into the
feasibility problem of finding n locations xi ∈ R

2 (i = 1, . . . , n) such that

‖xi − xj‖2 = d2ij , (i, j) ∈ Ess,

‖xi − xj‖2 > R2, (i, j) /∈ Ess,

‖xi − aj‖2 = d̄2ij , (i, j) ∈ Esa,

‖xi − aj‖2 > R2, (i, j) /∈ Esa;

(4.15)

see [34]. In general, the problem (4.15) is difficult to solve (indeed, it is NP-hard; see
[33]), as the quadratic constraints in it are nonconvex. As shown in (4.2) and (4.3),
we can reformulate the feasibility problem (4.15) as a convex composite optimization
problem (a small perturbation on the strict inequalities of (4.15) is required to main-
tain the closeness of the feasibility system), where the inner functions in (4.2) and
(4.3) are given by

gi,j,1(x) = ‖xi − xj‖2 − d2ij and gi,j,2(x) = d2ij − ‖xi − xj‖2, (i, j) ∈ Ess,

gi,j,0(x) = R2 − ‖xi − xj‖2, (i, j) /∈ Ess,

ḡi,j,1(x) = ‖xi − aj‖2 − d̄2ij and ḡi,j,2(x) = d̄2ij − ‖xi − aj‖2, (i, j) ∈ Esa,

ḡi,j,0(x) = R2 − |xi − aj‖2, (i, j) /∈ Esa.

Here, we will apply Algorithms 24, 25, and 30 to solve it in the numerical experiments.
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1230 YAOHUA HU, CHONG LI, AND XIAOQI YANG

Many works concentrate on the following relaxation model, neglecting all inequal-
ity constraints in (4.15),

(4.16)
‖xi − xj‖2 = d2ij , (i, j) ∈ Ess,

‖xi − aj‖2 = d̄2ij , (i, j) ∈ Esa;

see [4, 22] and references therein. We also apply Algorithms 24 and 25 to solve the
relaxed problem (4.16).

One of the most popular and practical tools for solving the sensor network local-
ization problem is the semidefinite relaxation (SDR) technique, which further relaxes
(4.16) into a semidefinite programming; see, e.g., [4, 22]. We choose the MATLAB
software2 in [4] as the representative of the semidefinite relaxation technique. Fur-
thermore, the proximal bundle method [32] is an implementable algorithm for solving
the convex composite optimization problems, which is also compared in the numerical
experiments. Note that a quadratic subproblem is solved to find the search direction
in each iteration of the proximal bundle method; here we employ the CVX3 to solve
such subproblems.

All numerical experiments are implemented in MATLAB R2013b and executed
on a personal desktop (Intel Core Duo E8500, 3.16 GHz, 4.00 GB of RAM). In the
numerical experiments, the sensors and anchors are randomly placed in the unit square
[−0.5, 0.5]2:

Vs = −0.5 + 0.5 ∗ rand(2, n) and Va = −0.5 + 0.5 ∗ rand(2,m).

The key criterion to characterize the performance of executed algorithms is the ac-
curacy of the estimation {x1, . . . , xn}, measured by the root mean square distance
(RMSD):

RMSD =
1√
n

(
n∑

i=1

‖si − xi‖2
) 1

2

.

In order to facilitate the reading of the numerical results, we list the abbreviations
of the algorithms for the sensor network localization problem in Table 1.

When implementing the LPA-type algorithms, we set M = 1, α = 2, d−1 =
rand(2, n), the constant stepsize v = 100 (unless otherwise specified), the stopping
criterion of inner iteration (except for LPA-SN) as Hxk

(d) < max{‖dk−1‖3, 1e-6} or
the number of iterations is greater than 50, and the stopping criterion of the LPA-type
algorithms as RMSD < 1e-10 or the number of outer iterations is greater than 100.
The initial starting point for LPA-I and LPA-SN is chosen randomly, that for LPA-
II, LPA-II-R, CPB, and CPB-R is set as sensor + 0.2 ∗ randn(2, n) and that for the
LPA-I-R is set as sensor+0.5∗randn(2, n). Observing in the extensive simulations of
the LPA-type algorithms, we find that the number of semismooth Newton iterations
is frequently 1 and occasionally 2 or 3 in the first 10 outer iterations, and always 1 in
the rest of iterations. Hence, it is indicative that the semismooth Newton method is
highly efficient at solving subproblem (4.4) of Algorithm 24. On the other hand, solv-
ing the subproblem of Algorithm 25 seems much harder than using the semismooth
Newton method to solve the subproblem of Algorithm 24, which is consistent with
Remark 31(a).

2The code and description are available in http://www.math.nus.edu.sg/∼mattohkc/SNLSDP.
html.

3CVX, designed by Michael Grant and Stephen Boyd, is a MATLAB-based modeling system for
convex optimization. Detailed information is available from the website http://cvxr.com/cvx/.
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Table 1

List of the algorithms for solving the sensor network localization problem.

Abbreviations Algorithms

SDR SemiDefinite Relaxation method in [4], which is to solve the relaxed problem (4.16).

LPA-I Algorithm 24 for solving problem (4.15).

LPA-II Algorithm 25 for solving problem (4.15).

LPA-SN Algorithm 30 for solving problem (4.15).

LPA-I-R Algorithm 24 for solving the Relaxed problem (4.16).

LPA-II-R Algorithm 25 for solving the Relaxed problem (4.16).

CPB The Composite Proximal Bundle method for solving problem (4.15).

CPB-R The Composite Proximal Bundle method for solving the Relaxed problem (4.16).

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 1. LPA-I can successfully localize the positions of sensors in a wireless sensor network
(100 sensors, 10 anchors, and radio range = 0.3), where the RMSD is 5.3e-11 and the CPU time
is 5.8 seconds.

We first demonstrate the performance of the SDR, LPA-type, and CPB-type
algorithms on a randomly generated network of 100 sensors, 10 anchors, and a radio
range of 0.3. All the algorithms listed in Table 1 are tested in this experiment.
The realization of LPA-I is presented in Figure 1, where the anchors are denoted by
diamonds, the true sensors are denoted by circles, and their estimates are denoted
by asterisks. The performance of all the algorithms are listed in Table 2. Three
observations are indicated by Table 2: (i) SDR, LPA-I, LPA-SN, and LPA-I-R (based
on model (4.2)) can achieve the estimation in a few seconds, while LPA-II and LPA-
II-R (based on model (4.3)) and CPB and CPB-R are not suitable for the large scale
sensor network localization problem, since they take too much time in solving the
subproblems. (ii) We find that the performance of LPA-I and LPA-SN do not depend
on the choice of initial starting points. Thus we believe that LPA-I and LPA-SN
can converge globally, even though this property cannot be proved for the moment.
LPA-II, LPA-I-R, and LPA-II-R converge locally, as shown in Theorems 28 and 29.
The choices of the initial starting points also indicate that LPA-I-R allows a larger
region of the initial points than LPA-II and LPA-II-R. (iii) LPA-I, LPA-SN, and
LPA-I-R achieve a more precise solution and take less CPU time than the SDR and
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1232 YAOHUA HU, CHONG LI, AND XIAOQI YANG

Table 2

Performance of the SDR, LPA-type, and CPB-type algorithms for a sensor network localization
problem (100 sensors, 10 anchors, and radio range = 0.3).

SDR LPA-I LPA-SN LPA-II LPA-I-R LPA-II-R CPB CPB-R

RMSD 1.9e-5 5.3e-11 4.5e-11 1.8e-10 6.1e-11 3.8e-15 1.3e-4 3.4e-4

CPU time (seconds) 7.9 5.8 4.1 765 0.9 22 98 39
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(a) The linear convergence rate.

0 10 20 30 40
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10
0
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LPA−II
LPA−II−R

(b) The quadratic convergence rate.

Fig. 2. Local convergence rate of the LPA-type algorithms.

CPB-type algorithms, since LPA-I, LPA-SN, and LPA-I-R converge fast and do not
need any software package. Moreover, LPA-I and LPA-SN consume more CPU time
than LPA-I-R, because LPA-I and LPA-SN are designed to solve the full version of
feasibility problem (4.15), whose the number of constraints is about triple that of the
relaxation problem (4.16), solved by LPA-I-R.

We also verify the local convergence rate of the LPA-type algorithms by con-
ducting extensive simulations. Figure 2 plots the RMSD of the estimation along the
number of the outer iterations in a random trial. Figure 2(a) illustrates the local lin-
ear convergence rate of LPA-I, LPA-SN, and LPA-I-R (based on model (4.2)), which
is consistent with the theoretical analysis in Theorem 28. Figure 2(b) demonstrates
the local quadratic convergence rate of LPA-II and LPA-II-R (based on model (4.3)),
which is consistent with the theoretical analysis in Theorem 29.

The third experiment is performed to study the variation of RMSD when varying
the circumstances (the radio range and the number of anchors) of the wireless sensor
network of 100 of them. Figure 3(a) shows the variation of RMSD by increasing the
radio range from 0.1 to 0.4 for LPA-I, LPA-SN, LPA-I-R, SDR, and CPB. When
the radio range R is too low, there is not enough information between the sensors
or anchors for the estimation to be effective. The accuracy is improved (the RMSD
decreases) consistently for all algorithms as the radio range is increased. It is also
illustrated that LPA-I and LPA-SN can obtain a more accurate estimation by using
less information between the sensors or anchors (only R ≥ 0.2 is needed). Figure 3(b)
illustrates the variation of RMSD by varying the number of anchors from 1 to 12.
When the number of anchors is too small, the estimation fails since the information
revealed in the network is not enough. The accuracy is enhanced consistently for all
algorithms as the number of anchors increases. The perfect estimation is realized by
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(a) Varying the radio range of a network of 100
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Fig. 3. Variation of RMSD when varying the circumstances of network.
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Fig. 4. Variation of RMSD and CPU time when varying the stepsize.

SDR and CPB when the number of anchors is greater than 4 and 5, respectively, while
LPA-I, LPA-SN, and LPA-I-R require only 2 anchors. This experiment indicates that
the LPA-type algorithms can achieve the perfect estimation (at higher precision) by
using less information (small radio range and few anchors) than that of SDR.

We finally demonstrate the effect of the stepsize on the LPA-type algorithms to
localize a wireless sensor network of 100 sensors and 10 anchors with a radio range
of 0.3. Figure 4 shows the variation of RMSD and CPU time when varying the
stepsize from 10−5 to 105. As shown in Figure 4(a), the accuracy of the estimation is
improved consistently for LPA-I, LPA-SN, and LPA-I-R as the stepsize increases. This
is because the stepsize is indeed a proximal parameter, and this numerical result is
consistent with the theory on the proximal point algorithm in [30] (also Remarks 13(b)
and 21(b)). Thus we conclude that the larger the proximal parameter, the better the
performance. We further find that the perfect estimation requires the stepsize to be
as large as v ≥ 10. It is illustrated in Figure 4(b) that the CPU time drops when
v = 10 or 100 and decreases little when v > 100. Thus, in all of the experiments, we
set the stepsize v = 100 as default.
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The conclusions of the numerical experiments can be summarized as follows:
(i) LPA-I, LPA-SN, and LPA-I-R (based on model (4.2)) can achieve a more pre-
cise solution, take less CPU time, and require less information (small radio range and
few anchors) than SDR does. LPA-II and LPA-II-R (based on model (4.3)) are not
suitable for the large scale sensor network localization problem. (ii) LPA-I and LPA-
SN globally converge to the true sensors, while LPA-II, LPA-I-R, and LPA-II-R only
locally converge. (iii) For LPA-I, LPA-SN, and LPA-I-R, the larger the stepsize, the
more precise the estimation and the less the CPU time. Further from the extensive
simulations, we find that the LPA-type algorithms are a little less robust than SDR.
In particular, the estimation is regarded as “successful” if the estimated RMSD is less
than 1e-3. Thus, the successful estimation rate of SDR is about 96%, while LPA-I
and LPA-SN can only successfully localize 93% wireless sensor networks.

Acknowledgment. The authors are grateful to two anonymous reviewers for
their valuable suggestions and remarks which helped to improve the quality of the
paper.
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