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Abstract: Frequency comb sources have revolutionized
metrology and spectroscopy and found applications in
many fields. Stable, low-cost, high-quality frequency
comb sources are important to these applications. Mod-
eling of the frequency comb sources will help the under-
standing of the operation mechanism and optimization of
thedesignof such sources. In this paper,we review the the-
oretical models used and recent progress of the modeling
of frequency comb sources.
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1 Introduction
Ever since the invention of lasers, advances in photonics
have brought significant breakthroughs in many branches
of science and engineering. The latest example is the gen-
eration of frequency comb sources which finds applica-
tions in metrology, optical atomic clocks, high precision
spectroscopy, etc [1–5]. Optical frequency comb genera-
tion was cited in the 2005 Nobel Prize in Physics. Stable,
low-cost and high-quality frequency comb sources are ex-
pected to bring in revolutionary changes in others fields
such as high-speed optical data transmission andultrafast
signal processing.

Recently, modeling has become an integral part of re-
search in photonics. Cumulative efforts in the theory and
modeling of the performance of photonic devices in the
past decades have resulted in many theoretical models,
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the predictions of which match the experimental observa-
tions well. Availability of commercial numerical packages
encapsulating these models allows easy access of power-
ful simulation tools to many. Simulation results are now
routinely used to “explain” experimental observations and
guide the design of experiments. However, it is important
to remember that a model is only as good as our “under-
standing” of the physicalmechanisms of the phenomenon
or application being studied. The choice of the physical ef-
fects to be included in a model is the key to the success
in theory and modeling, but it can also be easily misused.
Thus results frommodeling and simulation should always
be handled with care. It is important to bear in mind that
qualitative similarity between experimental observations
and simulation results are only supporting evidence of the
validity of the model, it is certainly not a proof.

The key technology in frequency comb generation is
the method to stabilize the carrier-envelope phase (CEP)
of an optical pulse train [1, 2, 6, 7]. Figure 1A shows that
if the laser spectrum spans an octave or more, the laser
cavity can be fully stabilized by using self-referencing CEP
methods based on the f -2f detection technique with sec-
ond harmonic generation (SHG) [1]. The second harmonic
of the one of the frequency comb teeth at lower frequency
fl is identical to a high-frequency component fh except for
a possible phase mismatch δ, which is related to the car-
rier envelope offset frequency fceo. The phase mismatch δ
can be eliminated by using feedback control on the beat-
ing signal between the frequency components 2fl and fh.
The resulting spectrum of the mode-locked laser will then
be fully stabilized. If octave spanning spectra are not avail-
able, high-order harmonics technique, such as 2f -3f self-
referencing, which uses SHG and third harmonic genera-
tion (THG) to generate two slightly mismatched frequen-
cies, can also be applied [8–10] as shown in Figure 1B. If
self-referencing stabilization is not possible, then the laser
can be stabilized by locking to other stable light sources
via a frequency chain as shown in Figure 1C, which was
widely used in frequency chain techniques from many
years ago [11, 12]. Since the self-referencing mechanism
to stabilize the CEP is rather mature, especially when oc-
tave spanning spectra are available, it will not be the fo-
cus of this review. Interested readers can refer to Refs. [13–
16] and the references therein. As we devote this review to
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Figure 1: Self-referencing carrier envelope phase stabilization with
(A) f -2f and (B) 2f -3f mismatch detection techniques and (C) ex-
ternal referencing carrier envelope phase stabilization to lock the
comb spectrum to a known frequency fref via the bridging of a fre-
quency chain.

the modeling of the generation of octave spanning optical
sources only, we assume that some feedback mechanisms
havebeenutilized to stabilize theCEP.Wealso assume that
the self-referencing CEP control mechanism does not af-
fect the generation of the octave spanning optical output
except to stabilize its CEP. We note that in most theoretical
models describing the evolution of optical pulses in dielec-
tric media or photonic devices, the rapid oscillation at the
optical carrier frequency is removed by using the slowly
varying envelope approximation. Only the evolution of the
envelope of the electric field is studied. Most of themodels
reviewed in this paper will fall into this category.

Highly stabilized mode-locked lasers are by far the
most popular optical frequency comb sources [15–17].
However, generation of octave spanning spectra, or equiv-
alently few femtosecond pulses, directly from a mode-
locked laser remains a challenging task. It is a feat that
has been demonstrated by solid state lasers only [18] and
is still beyond the reach of fiber lasers [19]. Instead of di-
rect generation from amode-locked laser, octave spanning
spectra can also be obtained by expanding the spectra of

a mode-locked laser output in a highly nonlinear medium
such as a photonic crystal fiber (PCF), in a process known
as supercontinuum (SC) generation [20]. The most desir-
able features of using mode-locked lasers to generate co-
herent octave spanning supercontinua are the high peak
power and ultrashort duration of the laser pulses. Typi-
cally, pulse duration less than 100 fs and peak power of
several kilowatts are the minimum requirements for the
pulses to ensure the coherence of the generated supercon-
tinuum [20]. Kerr combs, discovered in 2007 [21], are an-
other significant class of optical frequency comb sources.
The frequency comb is generated by coupling a single con-
tinuous wave pump source into a high-finesse microres-
onator [21]. The CW pump source interacts with the modes
of the microresonator by Kerr nonlinearity, and forms the
hyperparametric oscillation [22–24] i.e., the combination
of modulation instability (MI) and cascaded four-wave-
mixing (FWM).

In the following,we review recent progress in themod-
eling of frequency comb sources focusing onmode-locked
lasers, supercontinuum generation, and microresonators.
There is vast amount of literatures on mode-locked lasers
alone. In the writing of this review, we found that over
1,300 papers were published in the last ten years with
the keyword “mode-locked lasers” in them. The discus-
sion in this paper therefore does not aim to be exhaus-
tive. The topics covered are chosen for coherent presen-
tation of the paper. The rest of the paper is organized as
follows. The modeling of mode-locked lasers is discussed
in Section 2. Sections 2.1 and 2.2 respectively describe the
distributed model and discrete model commonly used to
study laser cavities, and the laser configurations described
by these models. In Section 2.3, we discuss the limita-
tion of slowly varying envelope approximation, which is
used todrivepulse envelope equation in thesemodels, and
the short pulse equations which have been proven effec-
tive in modeling the ultrafast phenomena the slowly en-
velope approximation is no longer suitable. How heuris-
tic models based on intuition can be used to enhance
laser performance is discussed in Section 2.4, and Sec-
tion 2.5 describes laser design to overcome the limited
gain bandwidth of the rare-earth doped fibers in the real-
ization of few cycle mode-locked fiber lasers. The model-
ing of supercontinuum generation relevant to frequency
comb generation is discussed in Section 3. Section 3.1
gives thewell-accepted generalizednonlinear Schrödinger
equation, which is used to model SC generation in op-
tical fibers. Section 3.2 gives a brief summary of nonlin-
ear dynamics of SC generation. In Section 3.2, we discuss
the properties of SC relevant to its use as frequency comb
sources. In Section 3.3, we introduce the modeling of SC
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generation in nonlinear waveguides. Section 4 discusses
the formationandmodelingofKerr combmicroresonators.
Section 5 gives the summary and discussion.

2 Mode-locked lasers
Mode-locked lasers that generate high-power ultrashort
pulses are always desirable in the development of lasers.
At the time the self-referenced optical frequency comb
was first demonstrated, Kerr lensmode-locked (KLM) solid
state lasers especially Ti:sapphire lasers were the only
choice to generate ultrashort pulses with less than 100 fs
duration and several nanojoule level single pulse energy,
which is necessary for coherent supercontinuum genera-
tion. Ti:sapphire can provide gain in a wide bandwidth
spanning several hundreds of nanometers, which can
support oscillations of ultrashort pulses even down to a
few cycle of optical waves [25, 26]. Compared to other
laser sources, Ti:sapphire lasers are still preferred in lab-
oratories in nonlinear optics experiments including, but
not be limited to, generation of coherent supercontinua
and self-referenced optical frequency combs, because of
their high power and ultrashort pulsewidth [19, 25–27].
Besides Ti:sapphire lasers, KLM solid state lasers based
on other gain mediums doped by Nd, Cr, Yb, Tm, and
other ions also show high power output but relatively
longer pulses [28, 29]. AlthoughKLMsolid state lasers have
achieved much success in the development of optical fre-
quency comb sources, drawbacks such as weight, bulki-
ness, environmental sensitivity, difficulty of self-starting,
and high costs severely limit their usage outside the labo-
ratories. In contrast, rare-earth-doped fiber lasers, which
are compact, lightweight, alignment free, and low cost,
are desirable if they can generate laser pulses compa-
rable to that from Ti:sapphire lasers in terms of pulse
peak power and duration. Generating high-power ultra-
short pulses in fiber laser cavities are more difficult than
that in Ti:sapphire laser cavities because of the narrow
gain bandwidth, large dispersion, and nonlinearity of
optical fibers [30–32]. To achieve high-power ultrashort
laser pulse output, various mode-locking schemes in-
clude nonlinear polarization evolution (NPE) [33], nonlin-
ear loop mirror (NOLM) [34], semiconductor saturable ab-
sorber mirror (SESAM) [35], carbon nanotube (CNT), and
graphene saturable absorbers [36] have been adopted. Er,
Yb, Tm, and other rare-earth-doped fibers have also been
used to generate lasers at different wavelengths.

Since the pulse formation process in the laser cavities
with different dispersion, nonlinearity, and gain profiles

are very complex, theoreticalmodeling of the laser dynam-
ics is important to understand the physical mechanisms,
optimize the cavity design, capture the nonlinear dynam-
ics and ultimately, design novel laser cavities. In the fol-
lowing, we will review the commonly adopted theoretical
models in laser modeling.

2.1 Distributed model of laser cavities

Figure 2: Schematic of a mode-locked laser. NL: Nonlinearity, GVD:
Group velocity dispersion, SA: Saturable absorber.

Figure 2 shows the schematic of a typical cavity of a
mode-locked ring laser. The laser consists of discrete com-
ponents providing gain, nonlinearity, group velocity dis-
persion, and saturable absorption. In distributed models
of laser cavities, the effect of the discrete components on
the circulating light is distributed throughout the cavity
such that the pulse evolution in the mode-locked laser
can be approximated by a single partial differential equa-
tion. The approximation allows the use of analytical tech-
niques to look for pulse solution of the equation. For ex-
ample, by writing the electric field of the optical signal as
E(z, t) = ψ(z, t) exp(−iω0t), where ω0 is the frequency of
the optical carrier, and using the slowing varying envelope
approximation, the evolution of optical pulses in a mode-
locked laser cavity can be described by the quintic com-
plex Ginzburg–Landau equation (QCGLE), which can be
written as [37, 38]

iψz −
1
2β2ψtt + 𝛾 |ψ|2 ψ + ε |ψ|4 ψ (1)

= i
2 g (ψ + ηψtt) −

i
2

(︁
α − µ |ψ|2 + ν |ψ|4

)︁
ψ,

where z and t are the distance and time variables. The pa-
rameter β2 is the group velocity dispersion (GVD), 𝛾 is the
Kerr nonlinear coefficient, ε is the fifth order nonlinear
coefficient, g is the gain coefficient, α is the linear loss,
and ηψtt describes the gain spectral profile. The terms
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iµ |ψ|2 ψ and iν |ψ|4 ψ on the right hand side of (1) repre-
sent the response of the mode-locker in the cavity, which
can be a saturable absorber or other equivalent effects
such as nonlinear polarization rotation. If a fourth-order
diffusion term κψtttt is added to the QCGLE, it becomes the
complex Swift–Hohenberg equation (CSHE), which can be
used tomodelmode-locked laserswithmore complex gain
profiles [39]. By setting the coefficients ε, and ν in (1) to
zero, the QCGLE is reduced to the well-known Haus’s mas-
ter equation [40].

2.1.1 The master equation

The master equation proposed by Haus in the 1970s is a
very successful model for mode-locked lasers including
KLM solid state lasers and mode-locked fiber lasers [41,
42]. The master equation is the cubic complex Ginzburg–
Landau equation (CCGLE), which is given by

iψz −
1
2β2ψtt + 𝛾 |ψ|2 ψ = i

2 g (ψ + ηψtt) (2)

− i2

(︁
α − µ |ψ|2

)︁
ψ.

The CCGLEwith constant parameters does not possess sta-
ble pulse solutions [43] because it does not include gain
saturation, which is necessary to avoid the unlimited in-
crease of the pulse energy. The saturation effect of the gain
can be determined by a separate equation such as

g = g0
1 + E/Esat

, (3)

where the pulse energy E =
∫︀
|ψ|2dt is integrated in the

whole time window.
Equations (2) and (3) can be solved numerically using

the split-step Fourier or Runge–Kutta methods [44]. More
importantly, the master equation has analytical solutions
of the form [40]

ψ(t) = x sech1+iy(t/τ), (4)

where x, y, and τ are real constants. Stable hyperbolic se-
cant pulse solutions can be obtained in both the anoma-
lous and normal dispersion regions [40, 42]. The typical
pulse formation mechanisms in the anomalous and nor-
mal dispersion regions, however, are quite different. To il-
lustrate the difference of the pulse dynamics in the twodis-
persion regions, we qualitatively show the effects of differ-
ent pulse shaping mechanisms in the two cavities by a se-
ries of time frequency maps (TFMs) and differential TFMs
in Figure 3. Such time frequency maps can be measured
by the frequency resolved optical gating (FROG) technique

in experiments or pulse gated time frequency analysis in
simulations [45]. In each row of Figure 3, the first figure is
the time frequency map of the initial pulse and the other
four figures from left to right are the variations induced
by self-phase modulation (SPM), GVD, temporal modula-
tion in the saturable absorber, and spectral filtering of the
bandwidth limited gain, respectively. The pulse shaping
effects on the optical electric field are calculated one by
one in the order above in a small fiber segment as the way
it would be done in the split-step Fourier simulation of
Eq. (2). Then the TFMs before and after the calculation of
each pulse shaping effect are compared to obtain the vari-
ations caused by each effect, which is shown in the four
differential TFMs at each row. In Figure 3, the warm col-
ors (red side) indicate high intensity or intensity increas-
ing and the cool colors (blue side) indicate low intensity
or intensity decreasing. Although Figure 3 is not a quanti-
tative representation of the pulse dynamics in any specific
laser cavity, the differential TFMs show intuitively the in-
teractions of the various pulse shaping effects in the two
dispersion regimes.

Figure 3: The time frequency map evolutions of the pulses in fiber
laser cavities with (A) anomalous dispersion and (B) normal dis-
persion. In each row, the first figure is the time frequency map of
the initial pulse and other four figures are the variations induced
by SPM, GVD, saturable absorption, and spectral filtering, respec-
tively. The warm colors (red side) indicate high intensity or intensity
increasing and the cool colors (blue side) indicate low intensity or
intensity decreasing.

In Figure 3A, the first figure shows the TFM of a chirp-
free soliton pulse. The symmetry of the TFM implies that
the pulse is chirp free. In the following differential TFMs,
SPM transfers energy from high frequency to low fre-
quency on the rising edge of the pulse, but from low fre-
quency to high frequency on the falling edge of the pulse.
Such energy transferwill induce a positive frequency chirp
on the pulse. Anomalous GVD introduces a negative chirp,
which can balance the chirp induced from SPM. Such bal-
ance is the basis of fundamental soliton formation in pas-
sive optical fibers [46]. Saturable absorption, a common
mode-locking mechanism, shortens the pulse width and
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simultaneously broadens the spectrum of the transform
limited pulse. The spectral broadening will then be bal-
anced by spectral filtering as shown in the last differential
TFM. The balance between the saturable absorption and
the spectral filtering can also be regarded as the balance
of the nonlinearity and dispersion of the gain [43]. Clearly,
there are two pairs of effects that are mutually balanced
to maintain the chirp-free pulse shape in the cavity with
anomalous dispersion.

The pulse formation process in normal dispersive cav-
ities is different since SPM and normal dispersion cannot
balance each other but jointly stretch the pulse as shown
in Figure 3B. SPM will expand the spectrum and normal
GVD will enlarge the pulse duration so the pulse trace
on the TFM will be stretched along the diagonal direc-
tion. In the mode-locking process, the stretching will be
compensated by saturable absorption and spectrum filter-
ing [40, 47]. Because the pulse is chirped, the saturable
absorption will chop the edges of the pulse in time do-
main and at the same time narrow the bandwidth. Simi-
larly, chopping the spectrum by spectral filtering will also
shorten the pulse in the time domain. The stretching by
SPMandGVD in the frequency and time domains balances
the compression by saturable absorption and spectral fil-
tering resulting in stable chirp pulse solution [40, 47]. The
main advantages of using chirped pulses in the cavity are
their lowpeakpower and longpulse duration,whichmake
it possible to support much higher single pulse energy
without triggering the wave breaking caused by excessive
nonlinear phase accumulation in each round trip [33, 47].
The pulse formation scheme shown in Figure 3B is the ba-
sis of most of the techniques that generate high-energy ul-
trashort pulses fromfiber laserswith normal or net-normal
dispersion [47].

Besides the balances qualitatively illustrated in Fig-
ure 3, the gain loss balance in the cavity is also an im-
portant condition for stable pulse lasing. The pulse peak
power determined by the gain loss interaction will further
affect the nonlinearity in the cavity.

2.1.2 QCGLE and dissipative solitons

Although the master equation can successfully model the
pulse formation dynamics in both normal and anomalous
dispersion regions, the parameter ranges for the existence
of stable pulses are relatively narrow [38, 40]. In themaster
equation, the saturable absorption is modeled by the term
µ |ψ|2 ψ, which leads to monotonic increase of the trans-
mittance with the increase of pulse intensity. However,
the transmittances of all saturable absorbers, including

NOLM,NPE, SESAM, CNT, and graphene,will reach amax-
imum if the signal intensity is sufficiently large and the
transmittance can never be larger than 1. The problem can
be solved by introducing high order terms into the CCGLE,
which leads to the QCGLE as (1) [48]. Recently, a method
was proposed by Ding et al. [49] to include sinusoidal and
even arbitrary nonlinear response functions into the CGLE
by using their logarithms, which has greatly enhanced the
types of lasers that can bemodeled by CGLE. An extra ben-
efit of introducing high-order effects is that stable soliton
solutions can be found even if the gain is constant [50, 51].
TheQCGLEhasbeendiscussed thoroughly andextensively
not only in optical systems but also many nonequilibrium
physical systems to investigate the instabilities [43, 52, 53].
The pulses described by (4) are no longer the analytical so-
lutions of QCGLE. An exact solution of (1) with ε = 0 and
β2 > 0 is in the form [54]

ψ (t, z) = P1/2
[︀
cosh(t/τ) +M

]︀(ik−1)/2 exp (︀i𝛾zP/M)︀ , (5)

where P,M, τ, and k are real constants as described in [54].
Comparedwith Eq. (4), Eq. (5) is amore general formof the
dissipative solitons (DSs) in laser cavities. Figure 4 shows
typical DSs with different values of M. All the spectra
shown in Figure 4 have been observed in experiments [54].

Figure 4: The temporal profiles (top) and spectra (bottom) of typ-
ical dissipative solitons categorized by the value of M. (Adapted
from [54]).

From Figure 4, the QCGLE has solutions that cannot
be observed in Haus’s master equation. A specific exam-
ple is the chirped bell shape pulse, which is significantly
different in shape when compared to the hyperbolic se-
cant pulse [54, 55]. In theory, the bell shape pulse shown
in Figure 4B can be infinitely long if the system oscillates
near the dissipative soliton resonance [55–57]. Although
the analytical solution (5) captures the main features of



Modeling Frequency Comb Sources | 297

the pulses in the cavity, in most cases the parameters
range that supports stable numerical solutions does not
agree with that from the analytical solution. The param-
eters range should be searched numerically the efficiency
of which can be boosted by using boundary tracking algo-
rithms [58]. Related experiments indicate that DS formed
in normal dispersive fiber cavity and compressed outside
the cavity is a good candidate of high-energy ultrashort
pulses [54]. By using the highly chirped dissipative soli-
tons, mode-locked fiber lasers based on NPE and NOLM
in all-normal dispersive (ANDi) single-mode fiber cavities
have successfully pushed the single-pulse energy to more
than 20nJ andpulse durations less than 80 fs [33, 55, 59]. A
further increase of the single-pulse energy in these single-
mode fiber cavities is, however, impeded by practical lim-
itations such as stimulated Raman scattering [60–63].

2.2 Discrete model of laser cavities

Distributedmodels, includingHaus’smaster equation and
QCGLE, are very useful in understanding the basic dy-
namics of pulse evolution inmode-locked lasers. But laser
models based on distributed parameters is too qualitative
and limited at best because of the assumption that the
pulse is near equilibriumwhen circulating inside the laser
cavity. Such models are not effective in describing dis-
persion managed cavities such as stretched pulse mode-
locking [64] and similariton mode-locked cavities [65, 66]
in which the laser pulse undergoes large breathing within
one round trip [38, 67]. Quantitative modeling of pulse
evolution in mode-locked lasers requires the discrete or
lump model. In the discrete model, each optical compo-
nent in the cavity is modeled separately. The optical pulse
is modified by each optical component successively when
the pulse goes through each round trip in the laser cavity.
While the discrete model gives amore realistic description
of pulse evolution in the laser cavity, the discrete change
in the optical pulse when it moves through the laser cav-
itymake it all but impossible to obtain analytical solutions
in such models. Numerical simulations are therefore used
almost exclusively to study pulse evolutions described by
discrete models.

This is the case even for an all-fibermode-locked laser.
The pulse propagation in a nonlinear, birefringent, and
dispersive medium or fibers in general can be modeled by
a pair of coupled nonlinear Schrödinger equations [46, 68,
69]:

iUz −
1
2β2Utt − KU + 𝛾

(︁
|U|2 U + X |V|2 U + FV2U*

)︁
(6)

= i
2RU,

iVz −
1
2β2Vtt + KV + 𝛾

(︁
|V|2 V + X |U|2 V + FU2V*

)︁
= i
2RV .

In (6), U and V respectively represent the slowly varying
envelopes of the electric fields in the fiber with orthogo-
nal polarizations along the fast and slow axes of the bire-
fringent fiber with birefringence K. The SPM, cross-phase
modulation (XPM) and four-wavemixing (FWM) effects are
included. In linearly birefringent fibers, the XPMand FWM
coefficients X =2/3 and F =1/3 [46]. The terms on the right
hand side of (6) model the dissipative effects including the
gain and loss with

R = g0
1 + E/Esat

(1 + η∂tt) − α, (7)

where the pulse energy is calculated by E =∫︀
(|U|2 + |V|2)dt. The parameter η models the gain band-

width and α is the linear loss of the fiber. Although (6)
and (7) apply to every components of the all-fiber laser,
the parameters in different fiber segments can vary sig-
nificantly. Other optical elements such as wave plates,
polarizers, and polarization controllers would bemodeled
by point functions using Jones matrices [70, 71]. Such a
model has been widely used to investigate the pulse so-
lutions in NPE-based mode-locked fiber lasers [70–75].
The stable pulse solutions and nonlinear dynamics of NPE
mode-locked lasers are better described by the discrete
model (6), when compared to the distributed model. How-
ever, exact characterization of fiber parameters, especially
random birefringence in experiments, is difficult render-
ing predictions from the discrete models still qualitative
in nature. However, it has been demonstrated that if the
random polarization evolution is circumvented by using
polarization maintaining fiber in the laser cavity [76–78],
the pulse dynamics and output can be accurately pre-
dicted by discrete models which include higher order dis-
persions, self-steepening, and stimulated Raman scatter-
ing [61, 79, 80].

2.2.1 Dispersion managed mode-locking

A conventional soliton based fiber laser suffers from wave
breaking, which is caused by excessive nonlinear phase
accumulation because of the high peak power of the ultra-
short pulse in the cavity. The single pulse energy is thus
limited to ~0.1 nJ [81, 82]. To enhance the pulse energy and
narrow the pulse duration from a fiber laser, several cavity
designs have been proposed. A dispersion-managed (DM)
cavity, which supports stretched pulse oscillation in the
cavity, cangreatly reduce the effective averagepower of the
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pulse in the cavity by reversing the chirp direction of the
pulse twice in each round trip using two segments of fiber
with opposite dispersion [64, 83, 84].

Figure 5 shows the typical pulse dynamics in a
stretched pulse mode-locked laser cavity obtained with
the discrete model [84]. The temporal evolution shown
in Figure 5A clearly indicates the pulse compression and
stretching in thenormal dispersionandanomalousdisper-
sion regions. The pulse duration TRMS has two minima in
the cavity as shown in Figure 5B. The chirp CRMS reverses
twice in the middle points of the normal and anomalous
dispersion regions separately.

Figure 5: The evolutions of the (A) temporal profile, (B) power and
chirp during one round trip in a stretched pulse fiber laser cavity.
(Adapted from [84]).

With the stretched pulse mode-locking, the single
pulse energy can be enhanced to more than 10 nJ [85]. The
minimum pulse durations of 25 [27] and 37 fs [86] were
obtained with single-mode Yb-doped fiber and Er-doped
fiber respectively. The minimum pulse durations are both
obtained with pulse energy less than 1 nJ. Wave break-
ing inside the anomalous dispersive fiber still set the limit
on the maximum pulse energy for Er-doped fiber lasers
because the peak power can be very large at the points
of chirp reversal [84]. This limit is relieved in Yd-doped
fiber lasers in which linear anomalous dispersive compo-
nents such as grating pairs are adopted [85, 87] because
no anomalous dispersive single-mode fiber is available at

1.0 µm region. In [85], a single pulse energy of 10 nJ was
obtained [47] but further enhancement is limited by the
response curve of NPE. We note that the pulse evolution
shown in Figure 5 will be different if the operation condi-
tion such as the pump power changes. The pulse evolu-
tions may become asymmetric along the fiber, which will
shift the CRMS curve in Figure 5 up or down [47, 85].

2.2.2 Self-similar mode-locking

In principle, broad spectrum, high pulse energy and low
peak power can be obtained simultaneously only with a
highly chirped pulse. As discussed in Section 2.1 with the
QCGLE, dissipative solitons are used to generate highly
chirped high-energy pulses, especially in normal disper-
sive fiber cavities. Besides modeling with QCGLE, DSs can
also be characterized by the discrete model [47, 88, 89].
With the discrete model, different types of DSs and even
noise like pulses are observed [88, 89]. In experiments,
DSs with 20 nJ single-pulse energy have been demon-
strated when a long segment of polarization-maintaining
fiber is used in the cavity to reduce the NPE response [60].
But DSs are difficult to be de-chirped especially with high-
energy pulses because of the nonlinearity of the chirp and
the complex spectral structure [59, 60, 90].

To obtain an ultrashort pulse, the optical spectrum
should be sufficiently broad and completely de-chirped to
attain a transform limited pulse. If the output pulse of a
laser is chirped, then it has to be de-chirped outside the
cavity by prisms or grating pairs. However, evenwith care-
ful design and fine tuning, these components can only
compensate the group velocity dispersion and the third or-
der dispersion (TOD) [91, 92]. It is very hard to compress a
pulsewith complex chirpprofile. It is therefore desirable to
generate linearly chirped high-energy pulses from mode-
locked lasers. Self-similar mode-locked lasers, which have
drawnmuchattention in recent years, are themost promis-
ing candidate to generate linearly chirped pulses.

Self-similar propagation of a parabolic pulse in nor-
mal dispersive fiber amplifiers [93] are the basis of self-
similar mode-locking. In such amplifiers with a constant
gain g, the parabolic pulses can be described by [93]

ψ(z, t) = xΓ(z)
√︂
1 − t2

τ2Γ2(z) exp
{︂
−i
[︂
φ(z) + gt2

6β2

]︂}︂
,

(8)

where Γ(z) = exp
(︀
gz/3

)︀
is the expanding factor, x is the

amplitude of the input pulse, and τ is the pulse duration.
In the propagation, the pulse amplitude, duration, and the
spectral bandwidth will increase simultaneously by the
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factor Γ(z). Most important, because of the synchronized
increase of the pulse duration, bandwidth, and power, the
chirp of the pulse is kept linear during propagation. At the
output of the amplifier, the spectrumwill be compressedor
filtered to narrower bandwidth for the next round trip. The
strong filtering by the narrow bandpass filter is the most
distinct feature of self-similar mode-locking compared to
other mode-locking schemes [94].

Figure 6: The (A) temporal profile, (B) power and chirp evolutions
during one round trip in a self-similar fiber laser cavity. (Adapted
from [84]).

Figure 6 shows a typical pulse evolution in a self-
similar laser. In the normal dispersive gain fiber, the pulse
duration TRMS and the chirp factor CRMS both scale expo-
nentially. At the end of the fiber, the spectral filter and sat-
urable absorber chop the pulse to much narrower band-
width and shorter pulse duration, respectively [95]. The
pulse is then injected into the gain fiber again for the next
round trip [95]. Self-similar amplification in the cavity en-
hances the pulse quality. Moreover, because of the large
breathing of the pulse power in the cavity, nonlinear phase
accumulation is also reduced effectively which in turn en-
hances the single pulse energy [47, 66]. By adopting self-
similar propagation in the gain fiber and using a nonlinear
fiber after the gain fiber to further extend the spectrum to
over the gain bandwidth limit, such lasers have generated
pulse duration about 20 fs, which is currently the record of
ultrashort pulse fiber lasers [19, 27, 66]. Detail characteri-

zations of such self-similar fiber lasers can be found in [47]
and [84].

Besides using self-similar propagation in the gain
fiber, another mode-locking scheme using self-similar
propagation in passive fiberswas also demonstrated to en-
hance the pulse energy [33]. In passive self-similar mode-
locking, a spectral filter is also adopted in the cavity to in-
crease the pulse bandwidth andduration of breathing. The
large breathing of the pulse duration reduced the nonlin-
ear phase accumulation and hence weakened the NPE re-
sponse limitation [47]. But the chirp profile of the pulse is
not controlled to be linear in the laser cavity so that the
high-energy pulses can only be compressed to a little less
than 200 fs after de-chirping outside the laser cavity [33].

Table 1 compares the characteristics of themodels and
laser cavities discussed above. The best pulse energy and
pulsewidth reported for each laser cavity configurationus-
ing single-mode optical fiber are also provided.

2.3 Beyond the slowly varying envelope
approximation

The shortest pulses generated by fiber lasers rapidly ap-
proach a few optical cycles and those from solid state
lasers reach single cycle or even subcycle. The validity
of the nonlinear Schrödinger (NLS) family of equations,
which are based on the slowly varying envelope approx-
imation (SVEA), comes into question [97–100]. When the
pulse contains only few or even less than one optical cy-
cle, the absolute phase and the detail of the wave packet
become important [101, 102]. Although it has been shown
that the SVEA can be used to describe single-cycle pulse
propagation and extreme spectral broadening processes
such as SC generation [97, 103], there are considerable
ongoing theoretical works on the correction of the SVEA
approach [97, 104, 105]. The models beyond the SVEA
derived from Maxwell’s equation, including the modified
Korteweg-de Vries (mKdV), sine-Gordon (sG), mKdV-sG,
and short pulse equation (SPE), which is recognized as a
reduction of the mKdV-sG [99], have been proven effective
in modeling ultrafast phenomena where the NLSE is no
longer valid [98, 100, 106, 107]. Here we only introduce the
SPE, which is the simplest among thosementioned above.
A detailed introduction of these equations can be found in
the well-organized review in [99].

Figure 7 illustrates the intrinsic differences between
the SVEA- and the SPE-basedmodels. In SVEA-basedmod-
els, the signal duration is assumed tobe longand thuswith
limited bandwidth located on both sides of the central fre-
quency. From the modeling aspect, the frequency window
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Table 1: Comparison of different theoretical models and fiber lasers.

Distributed models Discrete
model

Characteristics of cavity Pulse parameters

Haus’s (2) QCGLE (1) CVE (6)
Analytical solution

Soliton laser Anomalous dispersion <0.1 nJ, ~250 fs [96]

CS

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

CS Net-normal dispersion 20 nJ, 200 fs [60]
3.6 nJ, 80 fs [59]

DM Large pulse breathing 10 nJ, 85 fs [85]
Chirp reverses twice 2.3 nJ, 25 fs [27]

SS All normal dispersion and 26 nJ, 165 fs [33]
narrowband filter 1 nJ, 20 fs [19]

CVE: Coupled vector equations, CS: Chirped soliton, DM: Dispersion managed, SS: Self-similar

Figure 7: Comparison of the SVEA and SPE. (Adapted from [100]).

in SVEA model is limited to less than twice of the carrier
frequency or it will extend into the negative frequency and
overlap to the spectrum of the conjugate signal. In SPE
models, the signal is assumed to be a real delta function in
time, which has infinite bandwidth. The spectrum is sym-
metric and infinitely extendable to model the signal in a
very broad frequency window. The normalized SPE mas-
ter equation to describe the mode-locking can be written
as [98–100]

uzt − u −
1
6(u

3)tt =
{︁
gF−1

[︀
f (ω)ũ(ω)

]︀
− αu + µu3

}︁
z
, (9)

where u(z, t) represents the electric field of the optical sig-
nal, and z and t are the transformed length and time de-
fined in [100]. The left-hand side of (9) describes the dis-
persion and nonlinearity and the right-hand side of (9)
represents the saturable gain with the profile f (ω), linear
loss α and saturable absorption response µ of the mode-
locker. The function F−1[•] is the inverse Fourier trans-
form. The definition of g is the same as in (3). Furthermore,

the time-dependent response of the third-order suscepti-
bility, which is modeled by the delayed Raman scattering
term in the NLSE, can be modeled by replacing the (u3)tt
term as

1
6

(︁
u3
)︁
tt
→ 1

6

⎛⎝u ∞∫︁
0

R(ξ )u2(z, t − ξ )dξ

⎞⎠
tt

. (10)

Figure 8 shows the evolution from a noise seed to an ul-
trashort pulse governed by the SPE. The SPE captures the
phase dynamics of the electric field, which is important
in characterizations of few-cycle to attosecond pulses [99,
100, 102, 107] andmode-locked lasers down to few cycle or
subcycle regime [98, 108].

Figure 8:Modeling the self-starting of a mode-locked laser with
SPE. (Adapted from [100]).
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2.4 Heuristic models to enhance the
performance of mode-locked lasers

Accurate modeling the pulse dynamics and determination
of the steady state solutions of a laser cavity provide the
understanding, characterization, and possibly a route to
enhance the performance ofmode-locked lasers. However,
it is easy to get lost in the details. Instead of building mod-
els that try to mimic the experiments as much as possi-
ble, sometimes it is worthwhile to pursue highly simplified
heuristicmodels built from intuition such that thephysical
mechanisms can be delineated clearly. The lesson learnt
can then be used to guide the laser design to enhance the
performance, of course only after verification of the results
by simulation using more sophisticated models.

High peak power is of critical importance to initi-
ate high-order soliton propagation in a nonlinear fiber
for supercontinuum generation [20]. The pulse energy of
the laser output determines the peak power of the ultra-
short pulse obtained after compression outside the laser
cavity. In lasers adopting NPE or NOLM as the mode-
lockers, when wave breaking caused by soliton dynamics
is avoided, the periodic nonlinear response of the mode-
locker becomes the major bottleneck for further increase
of the single pulse energy [33, 60, 85, 109].

Figure 9A shows a geometrical description of the mul-
tipulsing criterion that includes only the interaction of
the gain (red solid lines) and the nonlinear response of
NPE/NOLM (blue solid line) [110]. The labels 1, 2, and 3
correspond to gain curves assuming one, two, and three
pulses in the cavity, respectively. The operation point of
the laser is given by the intersection of the gain and loss
curves. When the pump power increases, the gain curve
will shift toward the right hand side, thus the pulse en-
ergy increases. However, if the laser operation point drops
below the small signal response of the nonlinear loss
(dashed curves), the pulse will have lower transmittance
or higher loss than the small signal in the cavity. The small
signal will then be amplified and multipulse lasing will
start. After a transition period, the cavity is assumed to
support one more pulse. The heuristic model does not de-
scribe the dynamics of the transition period, and assume
the laser will switch to operating at the gain curve with an
additional pulse in the cavity. The highly simplifiedmodel
provides an intuitive understanding of the multipulsing
caused by the gain-loss dynamics, and a guideline to in-
crease the single pulse energy. Different methods to engi-
neer the response curve have been proposed, for exam-
ple by cascading multiple NPEs or NOLMs [70, 111, 112].
Figure 9B shows the nonlinear loss curve (blue solid line)
based on cascading two NPEs. Themultipulsing threshold

is increased by more than four times. Simulations using
the full model (6) and (7) demonstrated nearly thrice en-
hancement in cavities with cascaded two NPEs [70] or two
NOLMs [112].

Figure 9: (A) Geometrical description of the multipulsing process
in mode-locked lasers with saturable gain and nonlinear loss. (B)
Enhancement of single-pulse energy by engineering the nonlinear
loss curve using two NPEs. (Adapted from [70]).

The multipulsing threshold can also be increased by
reducing the fiber cavity length because the oscillation pe-
riod of the NPE response curve increases when the cav-
ity length decreases. However, short cavity lengths limit
themaximum energy that can be acquired from the pump.
Inserting a segment of polarization maintained (PM) fiber
in the cavity can “freeze” the polarization state in part of
the cavity and weaken the NPE response. This method is
shown to increase the single pulse energy to 20 nJ, which
is comparable to the results of passive self-similar mode-
locking [33, 60].

2.5 Toward few cycle fiber lasers

Unlike Ti:sapphire, other gain media, especially the rare-
earth doped silica optical fibers in the near infrared low
loss spectral window, have much narrower gain band-
widths, which are typically only several tens of nanome-
ters. This limitation of the gain bandwidth has to be over-
come for the generation of few cycle pulses and octave
spanning spectra in fiber lasers.

One possible method is to expand the pulse spectrum
by nonlinear effects after the gain fiber. Preliminary ex-
periments demonstrates the feasibility by generating 25
and 20 fs pulses directly from stretched pulse [27] and self-
similar [19] fiber laser cavities respectively. It is expected
that the spectral bandwidth can be further enhanced by
improved cavity designs. However, if the expanded spec-
trum is too broad, the narrowband spectral filter will in-
duce large loss in the cavity, which will upset the gain loss
balance. Nonlinear spectral compression adopted in the
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cavity to reduce the filtering loss and enhance the power
efficiency was proposed theoretically in [113] and experi-
mentally demonstrated in [27]. Spectrum compression in
fibers has been discussed for more than two decades [114–
116]. The spectrum can be greatly compressed in passive
fiber, especiallywithdispersion increasingfiber to support
self-similar spectral compression, which is the inversion
of self-similar pulse compression [116–118]. But the fiber
length required for large compression ratio is too long for
a laser cavity. Recently, we have demonstrated a practical
short nonlinearity increasing PCF design for self-similar
pulse compression [119], which could be used in laser cavi-
ties for both spectral expansion and spectral compression.
Figure 10 shows the schematic of such a self-similarmode-
locked fiber laser. Laser cavities with high degree of non-
linear spectral expansion and compression are potential
candidates for direct generation of few cycle pulses and
even octave spanning spectrum in fiber lasers.

Figure 10: Illustration of a self-similar few cycle fiber laser. NSE:
Nonlinear spectral expansion, NSC: Nonlinear spectral compres-
sion, SA: Saturable absorber, SF: Spectral filter.

3 Supercontinuum generation
Optical frequency comb generation, which was cited in
the 2005 Nobel Prize in Physics, is only one of the many
applications of supercontinuum generation, albeit an im-
portant one [2, 120]. SC spectra, which can range from ul-
traviolet to mid-infrared wavelengths, has many other ap-
plications including optical coherence tomography, spec-
troscopy, microscopy, gas sensing, etc. SC generation has
been around since 1970 [121–124]. Herewe focus onSCgen-
eration since the experiments by J. Ranka et al. in 2000
using a PCF [125]. SC generation in PCFs remains an ac-
tive research area in the past 15 years. Recently SC genera-

tion in high-performance nonlinear waveguides has also
attracted much attention [126–129]. Generation of SC is
straightforward but its dynamics is rather complex. Nu-
merical modeling of SC generation is instrumental in the
understanding of the physics behind the nonlinear dy-
namics of SC generation. Compared with mode-locked
lasers, modeling of SC generation is simpler. Both SC gen-
eration in PCF and nonlinear waveguides are well de-
scribed by the generalized nonlinear Schrödinger equa-
tion (GNLSE) with different physical effects included [20,
127, 128], although there has been much discussion on
the physical validity of the SVEA used in deriving the
GNLSE [97, 104, 105, 130].

3.1 SC generation in optical fibers

SC generation in optical fibers can be modeled by the
GNLSE [20]

ψ(z, T)z +
1
2αψ −

∑︁
k≥2

ik+1 1k!βkψ
(k)
T = (11)

i𝛾 (1 + iτs∂T)

⎡⎣ψ (z, T)
∞∫︁
0

R (ξ ) ||ψ (z, T − ξ )| |2dξ

⎤⎦ ,
where the left-hand side of (11) models linear propagation
effects and the right-hand side of (11) models nonlinear ef-
fects. Here ψ(z,T) is the envelope of the electric field of the
optical signal, α is the linear loss, βk is k-th order disper-
sion coefficient associated with the Taylor series expan-
sion of the propagation constant β(ω) at ω0 where ω0 is
the center frequency. 𝛾 is the nonlinear coefficient of the
fiber, and the self-steepening effect is characterized by a
time scale τs = 1/ω0. R(ξ ) is the Raman response func-
tion [46].

SC generation is intrinsically a noise sensitive pro-
cess. Fluctuations of the input pulse significantly affect the
stability of the intensity and phase of the SC generated.
Numerically, it is common to simulate noise semiclassi-
cally by adding a random electric field on each numeri-
cal grid point in the frequency domain, i.e., the so-called
one-photon-per-mode model [131]. Recently, new models
of the input shot noise have been proposed, which take
into account the finite linewidth of the pump laser by us-
ing a phase-diffusion model [132, 133]. It has been shown
that the common one-photon-per-mode model agrees rea-
sonably well with experiments for narrow pump linewidth
(< 0.04 nm). On the other hand, the effect of the finite
pump linewidth in the noise model should be taken into
account if the pump linewidth is broad (> 0.7 nm) [132]. A
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combination of the both models gives the best results for
pump linewidths in between the two limits.

3.2 Dynamics of SC generation

SC has been generated in optical fibers using various opti-
cal pump sources through the interaction of fiber nonlin-
earity and dispersion near the zero dispersion wavelength
(ZDW). If the pump is launched in the anomalous disper-
sion region, the SC generation dynamics can be classified
into the soliton fission regime and modulation instability
regime.

The first demonstration of SC generation in a PCF op-
erated in the soliton fission regime [125]. In this regime,
a high-power ultrashort femtosecond pulse, which can
be considered as a higher order soliton of the underly-
ing NLSE, is launched into a PCF or other highly nonlin-
ear fibers. Figure 11 shows the typical evolutions of the
spectrum and waveform in SC generation. A 50 fs pulse
with 80 kW peak power is injected into a 20 cm nonlin-
ear fiber with a ZDW near 1500 nm. Under the influence
of higher order dispersion and nonlinear effects, the high-
order soliton undergoes an initial period of spectral broad-
ening and temporal compression, and then breaks up into
its constituent distinct fundamental solitons. Soliton fis-
sion generated SC has a high degree of temporal coher-
ence [20, 125], and the SC can be generated in a few cen-
timeters of PCF. However, the average power of the SC gen-
erated is limited by the availability of high-power pump
sources. Also typically, the SC spectrum is not smooth be-
cause the fundamental soliton components of the injected
femtosecond pulses are distinct and localized.

Figure 11: Typical spectrum and waveform evolutions in SC genera-
tion. A 50 fs pulse with 80 kW peak power is injected into a 20 cm
nonlinear fiber with a ZDW near 1500 nm.

The SC can also be generated by launching continu-
ous waves (CW) or quasi-continuous waves into a PCF or
highly nonlinear fiber. The injected light is unstable be-
cause ofmodulation instability (MI) and quickly breaks up
into a series of fundamental solitons with different ener-
gies as MI is a noise-driven process. Similar to the soliton
fission regime, these fundamental solitons subsequently
shift to longer wavelengths through Raman self-frequency
shift when propagating along the fiber. Dispersive waves
are also generated on the shorter wavelength side of the
ZDW in the process. In general, the long wavelength side
of the SC spectra in the MI regime is spectrally smoother
when compared to that generated in the fission regime.

Finally, SC can also be generated by launching the
pump light into the normal dispersion region. In fact, be-
fore the demonstrations of SC generation with pump light
in the anomalous dispersion region by Beaud [122] and Is-
lam [123, 124], smooth SC generations in bulk glass [121],
or optical fibers [134] are pumped in normal dispersion re-
gion because of the lack of pump sources in the anoma-
lous dispersion region then [20, 135]. With pumping in
normal dispersion region, themutual interactions of SPM,
XPM, FWM, andRaman scattering jointly expand the spec-
trumand smooth it bymerging thediscrete frequency com-
ponents generated [135–138]. In recent years, SC gener-
ations in all normal dispersive fibers without ZDW have
been demonstrated. Highly coherent supercontinua with
flat spectra are generated in such fibers [139–143]. How-
ever, without the tremendous spectral broadening of soli-
ton fission, much higher peak power is required to gener-
ate SC with bandwidth comparable to that generated with
the anomalous dispersion pump scheme [139–143].

3.3 SC as frequency comb sources

The development of low-noise low-cost stable SC-based
frequency comb sources requires broadband, flat, and
highly coherent SC sources. Numerical simulations of (11)
have been used to provide general guidelines in terms of
the types of pump source, pump wavelengths, and fiber
parameters to generate SC as frequency comb sources.

Frequency comb sources covering as wide a wave-
length range as possible is always desirable. SC spectra
spanning visible to near-infrared wavelengths in silica-
based fibers have been successfully demonstrated. The
current focus is to extend into the mid-infrared and the
ultraviolet wavelength regions. Here again, modeling of
the PCF design optimized for SC generation is playing an
important role. However, on the infrared side, the mate-
rial absorption in fused-silica glass limits the wavelengths
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to < 2.5 µm. On the ultraviolet side, solarization-resistant
fibers are needed to avoid damage to the silica fibers oper-
ating with wavelengths less than ~380 nm.

Spectral flatness can be achieved through engineering
of the PCFdispersion and/or nonlinearity properties for SC
generation. For example, PCF with longitudinally varying
dispersion profile [144, 145] can generate highly coherent
flat SC spectra in the picosecond regime.

Figure 12 shows the SC spectra and corresponding
moduli of the complex degree of first-order coherence [146]
of the SC generated with picosecond pump pulses (Fig-
ures 12A and 12C) andwith femtosecond pumppulses (Fig-
ures 12B and 12D), respectively [119]. Although the SC gen-
erated using femtosecond laser pulses are stable and co-
herent, high-power femtosecond laser sources typically
are costly and require careful handling and thus limit the
wide applications of these frequency comb sources out-
side the laboratories. SC generation using picosecond or
nanosecond laser pulses are easier to manipulate but the
SC generated are unstable and incoherent because of the
MI process involved in the generation of the SC. Various
methods have been proposed to control the properties of
the SC spectra like modification of input laser light and
novel design of the PCF. In 2008 Solli et al. first demon-
strated that an active scheme using a 200 fs probe pulse
with 0.01% of the pump intensity amplitude can greatly
enhance the coherence property [147]. Dudley et al. sug-
gested either to add a small 5.8 THz modulation of in-
put pulse or a frequency sliding filter [131]. For SC gen-
eration with picosecond pulses, it has been shown both
experimentally [148] and numerically [149] that a minute
CW trigger enables active control of the SC bandwidth
and coherence. The SC coherence property can also be
greatly improved by modulating the input pulse with a
seed [150]. Various fiber designs have also been proposed
to enhance SC coherence. Lu and Knox used dispersion
micromanaged holey fiber to shift wavelengths with up
to 20 dB lower broadband noise [151]. Optimized solid-
core photonic bandgap fibers were also reported to lead
to significant reduction of power fluctuations at the long-
wavelength edge [152]. Recently, large mode area (LMA)
PCF tapers for coherent SC generation was also numeri-
cally demonstrated [119].

3.4 SC generation in waveguides

Nonlinear waveguides have a number of advantages over
optical fibers as compact, on-chip integratable, low-cost,
and octave spanning SC-based frequency comb sources.
Waveguides formed by highly nonlinear materials, e.g.,

Figure 12: (A) and (C) are SC spectra (gray curves are the SCs of
individual shots and blue curves are the shot average). (B) and
(D) are the corresponding moduli of the complex degree of first-
order coherence of the SC. The left column is for the picosecond
pump pulse and right column is for the femtosecond pump pulse.
(Adapted from [119]).

chalcogenide glasses (As2S3, As2Se3, etc.) [153, 154],
Group IV semiconductors (silicon, germanium, silicon ni-
tride, silicon nanocrystal, etc.) [155–157], and organics
(PTS, etc.) [158], generally show much higher nonlinear
refractive indices and larger core-cladding refractive in-
dex contrast than silica-based fibers. Thus, strong non-
linear interaction can occur in a small geometrical size
(nanoscale) and a short waveguide length (millimeters to
centimeters). In a typical silicon-on-insulator (SOI) waveg-
uide, the linear and nonlinear refractive indices of sili-
con core at 1550 nm are 3.47 and 6 × 10−18 m2/W [159],
which are about 2 and 200 times larger than that of the
silicon oxide substrate (1.45 and 2.6 × 10−20 m2/W). Also,
the waveguide dispersion dominates the total dispersion
because of the strong mode confinement in the nonlin-
ear waveguides. Thus, flexible dispersion engineering can
be achieved by changing the geometrical parameters of
the waveguides. The fabrication of most mainstream non-
linear waveguides is compatible with the complementary
metal oxide semiconductor (CMOS) process, which allows
low-cost on-chip mass manufacturing. The materials of
nonlinear waveguides also have larger transparent fre-
quency windows than silica. Thus, the SC generated in
the nonlinear waveguides can be extended deeply into
the mid-infrared region, which is hard to be achieved by
using silica-based fibers. However, some of the materi-
als of nonlinear waveguides have nonlinear absorptions
such as multiphoton absorption and free carrier absorp-
tion [160, 161]. The nonlinear absorption can degrade the
nonlinear performance and should be taken into account
when modeling the SC-based comb generation in nonlin-
ear waveguides.

Similar to optical fibers, evolution of the optical pulse
train in nonlinear waveguides is governed by the GNLSE
but the effects includingmultiphoton absorption, and free
carrier induced absorption and dispersion should be in-
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cluded as [162]

ψ(z, T)z = −
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2(α + αFCA)ψ (12)
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where βnPA is the n-photon absorption coefficients, αFCA =
σNc and nFCD = ζNc are the free-carrier absorption (FCA)
and free-carrier dispersion (FCD) induced index change re-
spectively [162]. Ae� is the effective mode area. σ and ζ are
the free carrier coefficients related to the waveguide mate-
rials. Nc is the free carrier density which is given by

Nc (z, T)T =
1
}f0

4∑︁
n=2

βnPA
nAne�

|ψ (z, T)|2n − 1
τ Nc (z, T) , (13)

where } is the reduced Planck constant, f0 = ω0/2π is the
center frequency, and τ is the free carrier lifetime.

Figure 13: Second-order dispersion and effective mode area as
a function of the wavelength. Inset: the cross-section of the SOI
waveguide and the transverse profiles of the electric field for quasi-
TE polarization calculated at 2160 nm.

Figure 13 shows an SOI strip waveguide, which can
generate octave-spanning SC combs in mid-infrared re-
gion. Thewaveguide has a 1600 × 430 nm silicon core layer
deposited on a 4 × 4 µm buried silicon oxide layer. The
20 nm over etched oxide layer is used to engineer the dis-
persion of thewaveguide. The ZDW is found to be 2038nm.
Since silicon exhibits negligible two- and four-photon ab-
sorption in the mid-infrared region, only the three-photon
absorption is included in the simulation [163–165].

Since the typical carrier lifetime of silicon is τ = 1 ns
and the pulse width is far less than τ, the free carriers do

not have enough time to recombine in the pulse duration.
Thus, (13) can be solved analytically by neglecting the τ
term.

Figure 14: (A) The spectral profiles of the pulse train after propa-
gation inside the 1 cm long SOI waveguide, (B) zoom-in view of the
spectral component centered at 2520 nm with 200 GHz bandwidth,
and (C) the SC coherence as a function of the wavelength. The pa-
rameters α = 0.1 dB/cm, 𝛾 = 45W−1/m, β3PA = 2.5 × 10−26 m3/W2,
σ = 2.77 × 10−21 m2, and ζ = −2.7 × 10−27 m3.

Figure 14A shows the spectral profiles of the pulse
train after propagation inside 1 cm of the SOI strip waveg-
uide. The pulse train is centered at 2160 nm and assumed
to contain 100 pulses with a repetition rate of 9.6 GHz. The
peak power and the full width at half maximum (FWHM)
of the pulses are 225 W and 50 fs, respectively. The corre-
sponding average power is only 61.3 mW. From Figure 14A,
the spectra are greatly broadened from mid-infrared to
the telecommunication bands. The −30 dB bandwidth of
the generated SC combs cover 1464–3102 nm. The spectral
broadening is mainly caused by a combination of the Kerr
effect, soliton self-frequency shift, and dispersive wave
generation. The dispersive wave is at around 1580 nm,
which helps the spectra to spread deeply into the normal
dispersion region. Figure 14B shows a zoom-in view of the
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comb line structure of the spectra in a 200 GHz frequency
range centered at 2520 nm. Figure 14C shows the degree of
coherence of the frequency comb versus wavelength. The
coherence is close to unity in almost the whole range of
the combexcept a small degradation around 1696nm. This
degradation is causedby thedeepgapof the SC combspec-
tra at the same wavelength region.

Figure 15: The spectral profiles of a single-pulse after propagation
inside the 1 cm long SOI waveguide with (dashed line) and without
(solid line) 3PA.

Figure 15 shows the spectral profiles of a single pulse
at the output of the waveguide with and without three-
photon absorption (3PA). It is evident that the effect of
3PA is important particularly in the Stokes-side of the SC.
Therefore 3PA should be included in modeling of SC gen-
eration in these waveguides.

4 Kerr combs
Kerr combs are an important class of optical frequency
combs discovered in 2007 [21]. The third-order Kerr effect
plays a key role in the generation of both the SC combs
and Kerr combs, but the formation mechanisms of them
are quite different. Currently, SC-based comb formation re-
quires a high-power ultrashort mode-locked laser as the
pump source. A mode-locked laser naturally has a comb
feature in frequency domain because the pulses are peri-
odic and discrete in time domain. The function of the SC
generator is to further broaden the spectrum to obtain a
coherent and octave-spanning comb. In contrast, the Kerr
combs exploit parametric frequency conversion in high-Q
microresonators [4, 21]. When a CW pump source is cou-

pled into a high-finesse microresonator, the CW light in-
teracts with the modes of the microresonator through the
Kerr nonlinearity, and forms the hyperparametric oscilla-
tion [22–24, 166]. The mechanism of Kerr comb formation
will be further discussed in the next section.

The structures of microresonators are typically mi-
crorings with silicon nitride [167–170] or high-index sil-
ica [24], micro-disks and micro-spheres with crystalline
materials, e.g., fused silica [171, 172], calcium or magne-
sium fluoride [173–175]. The latter two structures support
ultrahigh-Q (106) whispering gallery modes, which lead
to low threshold and more efficient nonlinear interactions
inside the microresonators. Resonator-based Kerr comb
generators are potential compact, low-cost, and octave-
spanning optical frequency comb sources. However, the
thermal noise of the CW cavity-stabilized lasers was found
to degrade the frequency stability of the combs [176],
which limits the applications of the combs and should be
resolved with efficient noise suppression techniques.

4.1 Formation of Kerr combs

The Kerr comb formation in a nonlinear microresonator is
dominated by the hyperparametric oscillation [175, 177],
i.e., the combination of modulation instability (MI) and
cascaded FWM. Figure 16 illustrates the dynamics of Kerr
comb formation. Here, we assume the pump is launched
in the anomalous dispersion region, which enables stable
and broad comb formation.

Figure 16: The dynamics of Kerr comb formation. (A) Stage 1: pri-
mary comb line formation by MI, (B) stage 2: multiprimary comb
line formation by cascaded FWM, (C) stage 3: minicomb line forma-
tion by combination of MI and cascaded FWM, and (D) stage 4: final
comb line formation.
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The formation of the Kerr comb can be divided into
four main stages as shown in Figure 16 [173, 177, 178]. In
stage 1, the energy of the intracavity pump field accumu-
lateswith the continuous injectionof theCWpumpsource.
When the energy reaches a threshold, the MI gain will
overcome the loss of the cavity. Figure 16A shows two pri-
mary comb lines symmetrically located on both sides of
the pump,which are generated through energy conversion
from the pump. The frequencies of the two comb lines fol-
low the phase-matching condition, which are determined
by the dispersion of the resonator and the pump power.
In contrast to single-pass fiber systems, MI is also found
to arise in the normal dispersion region of passive cavi-
ties [179, 180]. With further increase of the pump power,
the process moves to stage 2 in which cascaded FWM oc-
curs. Figure 16B shows that cascaded FWM drives power
conversion among the pump and MI peaks to generate
more equally spaced primary comb lines. Such cascaded
comb expansion will continue until the nonuniformity of
the cavitymodes caused by the dispersion of the resonator
disrupts it. In stage 3, further combinations of MI and cas-
caded FWM lead to the formation of minicomb lines in the
gaps of the primary comb lines and the pump. Finally, in
stage 4, the pump, the primary and mini-comb lines expe-
rience further hyper-FWM, and mirror the comb lines into
the normal dispersion region to form thewhole Kerr comb.
Meanwhile, the temporal profiles of the intracavity field
evolve from the CW pump to complex pulse waveforms.
The waveforms in the cavity can experience modulation,
chaotic, multiple pulse, or single pulse states when the
frequency detuning of the CW pump from the target reso-
nant mode of the microresonator is varied [181–187]. With
properly chosen frequency detuning, a single stable cav-
ity soliton can be obtained when the generated Kerr comb
lines are phase synchronized [183] after complex dynam-
ics of collision and merging of the multiple pulses in the
cavity [187–189]. More details of Kerr comb formation can
be found in [173, 178].

4.2 Modeling Kerr combs

Figure 17 shows a typicalmicro-ring resonator. ACWpump
fieldψin at frequencyω0 is coherently injected into the res-
onator cavity via a coupler with a power coupling coeffi-
cient θ. When circulating inside the cavity, the envelope of
the intracavity electric field at the beginning of the (m+1)-
th roundtrip can be related to the field at the end of the
m-th roundtrip with the boundary condition,

ψm+1 (0, T) = θ1/2ψin + (1 − θ)1/2ψm (L, T) eiϕ0 , (14)

Figure 17: Schematic of Kerr comb formation in a micro-ring res-
onator.

where m is the roundtrip number, T is the temporal time
scale of the intracavity field, L is the roundtrip lengthof the
cavity, and ϕ0 is the linear phase accumulation of the in-
tracavity field per roundtripwith respect to the pumpfield.
The evolution of ψ(z, T)

⃒⃒L
z=0 in each round trip of the cav-

ity is governed by the NLSE with higher order dispersions
and self-steepening,

ψ(z, T)z = −
1
2αψ (15)

+ i
∑︁
k≥2

ik 1k!βkψ
(k)
T + i𝛾 (1 + iτs∂T) |ψ|2 ψ,

where z is the propagation distance. τs is the optical shock
time and defined as τs = 1/ω0 + (dn2/dω)ω=ω0/n2 −
(dAe�/dω)ω=ω0/Ae� [20], which has included the fre-
quency dependence of n2 and Ae� for broadband simula-
tions.

Equations (14) and (15) form an infinite-dimensional
Ikeda map [190]. The dynamics of Kerr comb formation
inside the resonator can be obtained by directly solving
the NLSE (15) with the split-step Fourier method and it-
erating the results in the boundary condition (14). How-
ever, for high finesse resonators, the intracavity field
varies very slightly in a single roundtrip because of the
ultra-low coupling loss and very short propagation dis-
tance. In such cases, (14) and (15) can be averaged to a
drivendampedNLS-like equationknownas themean-field
Lugiato-Lefever equation (LLE) [178, 191]:

tRψ (t, T)t = θ
1/2ψin −

1
2(αL + θ)ψ (16)

+ i
[︃
L
∑︁
k≥2

ik 1k!βk∂
(k)
T + 𝛾L (1 + iτs∂T) |ψ|2 − δ0

]︃
ψ,

where tR =1/FSR is the roundtrip time, FSR is the free
spectral range of the resonator, and t is a defined contin-
uous time variable, which measures the slow time of the
intra-cavity field evolution. In the strict sense, t hasmean-
ing only when it equals to an integer multiple of tR, i.e.
ψ(t = mtR,T) = ψm(L,T). In this equation, the fast time
T describes the temporal waveform duration localized in
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the resonator. The cavity phase detuning δ0 =2πl − ϕ0 is
the phase detuning of the pump field with respect to the
closest resonance peak with order l.

The LLE was initially used to describe the evolution of
spatial structures in passive optical systems [192]. The LLE
can be used to describe the dynamics of the signal in mi-
croresonators because time can be split to slow time t and
fast time T to describe the evolution and the temporal pro-
file of the signal [171, 178, 191, 193–195]. It should be noted
that the mean-field LLE is valid only when the follow-
ing conditions are satisfied. First, the resonator must have
high finesse, which is typically 104–109 for ultrahigh-Q
resonators, to keep the intracavity loss low. Secondly, the
power coupling coefficient should satisfy θ ≪ 1. Finally,
the nonlinear length 1/𝛾 |ψ|2 and the dispersion length
π/(Σk≥2βk∆ωk/k!), where ∆ω is the angular spectral band-
width of the generated comb, should be much larger than
L, i.e., the nonlinearity anddispersion inside the cavity are
weak. The illustrated model is not limited to the micror-
ing resonator, but applies to different resonators structures
such as toroid, racetrack, etc.

The steady-state solution of (16) can be obtained by
finding the roots of the right-hand side of (16) with the
multi-dimensional Newton–Raphson method [191]. Nu-
merical simulations of (16) will capture the dynamics of
Kerr comb formation. Figure 18 shows a series of results
of the waveforms and spectra in amicroresonator pumped
by a CW light with different detuning, which are numer-
ically modeled by the LLE in (16). As discussed in Sec-
tion 4.1, the waveform evolves from quasi-periodic multi-
ple pulses to chaotic quasi-pulses, aperiodic multiple cav-
ity solitons, and finally a single cavity soliton as the pump
detuning increases. Besides the variation of waveforms,
the spectra of the Kerr comb also vary significantly par-
ticularly on the details. When the quasi-periodic multiple
pulses are observed in the cavity, the primary comb lines
on the spectrum dominate and the mini-comb lines are
weak. When the chaotic quasi-pulses and aperiodic soli-
tons are observed, the strengths of themini-comb lines are
comparable to the primary comb lines. To achieve a stable
single cavity soliton in the microresonator, the generated
Kerr comb lines should be coherent and phase locked as
shown by the bottom two plots of Figure 18.

The Kerr comb evolutions shown in Figure 18 demon-
strated the ability of LLE tomodel the dynamics of the tem-
poral profile in microresonators, which helps the under-
standing of the Kerr comb formation. The accuracy of the
LLE shown in (16) can be further improved by including
higher order effects such as the Raman scattering when
broad spectrum is modeled. Additionally, if the microres-
onator is fabricated with materials such as silicon, effects

Figure 18: The waveforms and spectra of the Kerr comb generated
in an Si3N4 microresonator with a quality factor Q = 5 × 105. The
round trip time tR = 4.425 ps. Pin = 1.5W, αL = 0.012, θ = 0.0025,
𝛾 = 1W−1/m and β2 = −61 ps2/km. The phase detuning δ increases
from 0 to 0.0518 from top to bottom.

such as multiphoton absorption, free-carrier absorption,
and dispersion should also be included in the generalized
LLE as [196–198]

tRψ(t, T)t = θ1/2ψin − (
1
2αL +

1
2 θ + iδ0)ψ (17)

+
[︃
iL
∑︁
k≥2

ik 1k!βk∂
(k)
T − 1

2αFCA +
i
c ω0nFCD

]︃
ψ

+
(︃
i𝛾L − L

4∑︁
n=2

1
n A

−(n−1)
e� βnPA |ψ|2(n−2)

)︃

× (1 + iτs∂T)

⎡⎣ψ(t, T) ∞∫︁
0

R (ξ ) |ψ (t, T − ξ )|2 dξ

⎤⎦ .
The definitions of the parameters in (17) are the same as
those in (12), (13) and (16) by a change in variable z → t.

Besides the LLE which models the evolution of the
temporal profile of all the cavity modes as a whole by a
single differential equation, the Kerr comb generation in
microresonators can also bemodeled by a set of nonlinear
coupled mode equations (NCMEs) in which the evolution
of each cavity mode is governed by an individual equation
as [199, 200]

ψ′
η = −

1
2∆ωηψη +

1
2∆ωηδη0F0e

iσt (18)

− ig0
∑︁
α,β,µ

Λαβµη ψαψ*βψµe
iϖαβµη t ,

where the three terms on the right-hand side of (18) rep-
resent the linear loss, injected light, and intermodal cou-
pling between different cavity modes, respectively. In (18),
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the modal bandwidth ∆ωη is inversely proportional to the
photon lifetime and describes the decay rate of the pho-
tons in mode η. The Kronecker delta δη0 indicates the tar-
get mode of the external pump light F0 with detuning fre-
quency σ. g0 is the FWM reference gain and proportional
to the nonlinear coefficient. The intermodal coupling fac-
tor Λαβµη defines the coupling strength between the modes
α, β, µ, and η. The frequency detuning ϖαβµη = ωα − ωβ +
ωµ − ωη will determine the phase matching of the FWMs.
The NCMEs have also been broadly used in modeling of
the spectral evolutions in microresonators [180, 195, 201].
It has been shown that the NCMEs are equivalent to a dis-
crete Fourier expansion of the driven damped NLS equa-
tion. Simulation results from the two models agree with
each other [183, 195, 202]. The advantage of the NCMEs is
the straightforward frequency domain representation and
the direct power tracking for each mode. But it is difficult
for the NCMEs to include the higher order effects such as
self-steepening, Raman scattering, multiphoton absorp-
tions, and free carrier effects, which can be easilymodeled
using the generalized LLE (17) [202].

5 Summary and discussion
In this review, it is difficult not to notice the ubiquitous
presence of the nonlinear Schrödinger equation based
family of equations. The equations are used to model
mode-locked lasers, supercontinuum generation in opti-
cal fibers and waveguides, and Kerr comb formation in
microresonators. In fact, the NLSE is one of the universal
equations that describe the evolution of slowly varying en-
velope of quasi-monochromatic waves in dispersive weak
nonlinearmedia. Besides nonlinear optics, NLSE serves as
a model for nonlinear waves in fluid dynamics from wa-
ter waves [203] to superfluids [204], Bose–Einstein con-
densations [205], plasma physics [206], and many oth-
ers. NLSE is attractive because mathematically it is com-
pletely integrable using the inverse scattering transform.
Its rich mathematical structure has inspired theoretical
studies for many years. Analytical solutions of variants of
the NLSE, when available, elucidate the physical phenom-
ena modeled by the equations. When analytical solutions
are not available or too complex for practical applications,
numerical simulation of theNLS-family of equations using
the split-step Fourier method is straight forward allowing
detail study of the evolution dynamics. The accessibility
of NLS-family of equations by both analytical means and
numerical simulation make for fruitful exploration of the
physical phenomena modeled by them.

In mode-locked lasers, a variety of laser models have
been developed. There are different approaches to mod-
eling serving different purposes. Some researchers treat
modeling tools as virtual experiments and try to include
as many physical effects as possible in their models. Their
goal is to develop as realistic a representation of the real
experiments in the models as possible so that predictions
from the models will be quantitatively close to the exper-
imental results. Some use modeling to delineate the con-
tribution of various physical effects on an observed phe-
nomenon. Although the results from these typically sim-
plified or reduced models are qualitative, they could pro-
vide guidelines anddirection in the design of experiments.
There are yet others who choose to work in the regime of
physical parameters such that the resulting models admit
analytical solutions. Despite the limitation of the applica-
bility of the analytical solutions arisen from the compro-
misesmade in arriving at suchmodels, these analytical so-
lutions provide understandings and insights that are not
possible through numerical simulation of limited regions
of the parameter space of the model. No one single mod-
eling approach is superior to the others. Which approach
to adopt depends on what one wants to get out from the
model.

Rare-earth doped fiber lasers are an attractive candi-
date of stable, low-cost, and high-quality frequency comb
sources either directly as few cycle mode-locked lasers or
indirectly as input for SC generation in PCFs or nonlinear
waveguides. However, the performance of mode-locked
fiber lasers is still inferior to that of their solid state coun-
terpart in terms of peak power and pulse width. Here the-
ory and modeling could play an important role. A combi-
nation of the various models would facilitate the devel-
opment of laser design heuristics, understanding the dy-
namics of novel laser designs, and assessment of the laser
performance. The design freedom of PCFs andwaveguides
can be used to tailor the dispersion and nonlinear proper-
ties for the realization of special pulse evolution character-
istics predicted from the models.

Despite the success of the slowly varying envelope ap-
proximation in modeling the evolution of few cycle pulses
or extreme spectral broadening in supercontinuum gener-
ation so far, it is necessary to adopt models that are ca-
pable of describing the absolute phase and the detail of
thewave packetswhen the pulses contain only few or even
less than one optical cycle. It is of particular interest to de-
velop a unified model that could transform smoothly from
the slowly varying envelop approximation to the short
pulse limit when an optical pulse is compressed fromhun-
dreds of optical cycles down to few or even one cycle either
inside a laser cavity or in a specially made fiber.
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Finally, the CMOS compatibility of mainstream non-
linear waveguides provides design flexibility and control
of fabrication that is not accessible to even photonic crys-
tal fibers. Using microresonators to generate Kerr combs
as optical frequency comb sources is surely just the begin-
ning. Other ingenious nonlinear waveguide based meth-
ods exploiting other physical mechanisms are likely to be
invented in future. Theory andmodelingwill be indispens-
able in the development of stable, low-cost, high-quality,
on-chip frequency comb sources too.
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