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Adaptive search range by neighbouring 
depth intensity weighted sum for HEVC 
texture coding 

Tsz-Kwan Lee, Yui-Lam Chan and Wan-Chi Siu 

High efficiency video coding (HEVC) outperforms H.264/AVC by 
providing a bitrate reduction of about 50% while having almost the 
same perceptual quality. It adopts more flexible partitioning in motion 
estimation (ME) which gains higher coding efficiency at a cost of 
increased coding complexity. This letter exploits depth maps in the 
emerging multi-view plus depth (MVD) videos to adjust the search 
range in ME for HEVC complexity reduction. With the aid of depth 
intensity variation among neighbouring blocks, the proposed algorithm 
establishes an adaptive search range according to a weighted sum of the 
motion vectors from the neighbouring blocks.  The weights are then 
derived from their depth variations. Compared to the fast test zone 
search (TZS) in HEVC, the proposed algorithm saves 65% coding time 
in ME on average with insignificant rate-distortion degradation.  

Introduction: The latest High Efficiency Video Coding (HEVC) 
standard achieves about 50% bitrate reduction with similar perceptual 
quality compared to its predecessor H.264/AVC [1]. The coding gain is 
mainly from its more flexible block partitioning in motion estimation 
(ME), which is especially crucial for coding high resolution 3D videos 
in the multi-view plus depth (MVD) format [2]. However, the flexible 
block partitioning mechanism in HEVC induces more ME 
computations. In hybrid video coding, ME performs block-based search 
for every location within a pre-defined search range [2]. With the 
motion vector predictor MVP from a neighbouring block as the search 
centre, the optimal motion vector MV is selected by minimizing the 
rate-distortion cost within the pre-defined search range. The true motion 
vector TMV of the current block is then formed by 

𝑇𝑀𝑉 = 𝑀𝑉𝑃 +𝑀𝑉 (1) 

HEVC utilizes an advanced motion vector predictor (AMVP) for the 
determination of MVP to a block as an initial search centre. With a fixed 
search range of 64 pixels for both full-search (FS) and fast test zone 
search (TZS) integer-pixel ME, MV is obtained from a range of [-64, 
+64]. TZS is one of the fast ME algorithms adopted in the HEVC test
model [3] by restricting the number of search locations. In TZS, a
diamond or square search pattern with various sizes is used for its centre
search point initialization.  However, the multiple initial search point
selection is still a major burden on TZS. Other works focus on applying
specific search patterns or directional search to reduce search points
within a fixed search range [4]. Nevertheless, various search patterns
bring irregular data flow which is not preferable for hardware
implementation [5]. Besides, spatial neighbouring blocks contain highly
homogenous contents to the current block, AMVP is therefore selected
among their motion vectors (MV). It implies if MVP is very similar to
TMV, MV becomes very small as stated in (1). In this circumstance, the
search range can be reduced adaptively. Unnecessary search point
computations can therefore be avoided for saving coding time. An
adaptive search range (ASR) algorithm can then deliver both search
point reduction and regular data flow.

Adaptive search range: Some existing ASR algorithms correlate the 
search range of the current block with the motion characteristics of its 
neighboring blocks. In [5], Cauchy distribution is used to model the 
search range for one frame and MV differences in the neighboring 
blocks are used to adjust the search range for the block being encoded. 
In [6], the maximum difference of the estimated TMV and the optimal 
AMVP is used to give the ASR in HEVC. Such ASR, however, can 
only be determined from the results of AMVP selection. In [7], MV in 
the co-located block is used to define the ASR without considering 
whether the co-located block is within the same object. The most recent 
ASR algorithm in [8] adopts a linear adaptive search range model 
(LAM) with an overdetermined equation system. The parameters in the 
system can be solved if the size of prediction units (PU), MVs, and 
predictors are given. The ASR is then adjusted by a fixed scale factor. 

To the best of our knowledge, no work has noted so far to adopt the new 
features provided in MVD videos for defining an ASR. In this letter, we 
propose to make use of depth maps in MVD videos and MVs from 
neighbouring blocks to yield the ASR algorithm for HEVC. 

Proposed algorithm: An object in a video frame always occupies a 
region covered by several blocks. It is obvious that spatial neighbouring 
blocks contain highly homogenous contents to the current block. 
Consequently, MVs of spatial neighbouring blocks can be utilized to 
estimate the motion range of the current block. In the proposed ASR 
algorithm, an adaptive search range is adjusted by determining whether 
the current block and its spatially neighbouring blocks belong to the 
same object.  The correlation among MVs in the same object can then 
be employed to specify the new search range adaptively. Depth maps 
associated with every pixel of the color textures in MVD videos capture 
the distances of the objects from the camera.  It implies that depth maps 
can be used to distinguish blocks within the same object. Therefore, in 
this letter, depth information is suggested to be a good feature to exploit 
the correlation between MVs of spatially neighbouring blocks for 
generating ASR. 

The ASR algorithm proposed in this letter takes a weighted sum of 
the neighbouring blocks’ MVs to predict the search range of the current 
block CB in order to reduce unnecessary computations in ME.  In Fig. 
1, MVi is the motion vector with two components (MVxi, MVyi) in the 
horizontal and vertical directions respectively from a neighbouring 
block NBi where i = 0, 1, 2, and 3.  The new ASR of the current block 
asrx(CB) and asry(CB) for the horizontal and vertical directions, 
respectively, can then be estimated from MVi in Fig. 1, and can be 
written as 
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In (2) and (3), a weighted factor βi of each NBi depends on how relevant 
its MVxi, and MVyi to asrx(CB) and asry(CB) of CB respectively, and it 
makes use of depth information in MVD videos. Here, βi can be 
formulated by  

𝛽" = 𝑒(|*!| (4) 

where 𝛽" is the output of the exponential decay function of which e is 
Euler’s number with the decay rate +

,
. The exponent |Di| is the absolute 

difference in average depth intensity values between the neighbouring 
block NBi and the current block CB. Values with small Di output an 
exponentially high	𝛽" and vice versa. Smaller depth intensity difference 
hints that the probability of NBi and CB comprising the same object is 
high, which reflects this NBi is more correlated to CB. The rationale is 

 

Fig. 2 Neighboring blocks with higher similarity in block depth intensity 
are very likely representing the same object 
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Fig. 1 Illustration of spatial neighboring blocks with high motion 
homogeneity to current block and their associated motion vectors  
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that a depth map can presumably reveal the object distance within a 3D 
space. Therefore, it is a piece of indicative information to decide which 
blocks belong to the same object as illustrated in Fig. 2. In the proposed 
algorithm, a higher weight 𝛽" will be issued to MV in which its 
associated block NBi represents higher similarity of the average depth 
value to CB (i.e. a smaller value of |Di|). From the example in Fig. 2, 
|D0| <|D2| <|D1| <|D3| is observed. It can be concluded that β0 > β 2 > β1 > 
β3. Therefore NB0 is closest to CB in terms of depth distance and 
contents. The ASR is then determined based on the amplitude of the 
weighted MVs of the neighbouring blocks (i.e. MV0 has a stronger 
influence than other MVs in this example). Finally, MV of CB, MVCB , 
can be obtained by ME with the horizontal and vertical search ranges as 
[-asrx(CB), +asrx(CB)] and [-asry(CB), +asry(CB)], respectively.  
 
Table 1: Performance evaluation of proposed NDIWS to conventional 
fixed search range FS and TZS, and existing fast algorithm LAM [8] in 
HM14.0. Resolution 720p (S1: Balloons, S2: Kendo, S3: Lovebird1, S4: 
Newspaper) and resolution 1080p (S5: Poznan_Hall2, S6: 
Undo_Dancer, S7: GT_Fly) 
 

Compared to Sequences  
S1 S2 S3 S4 S5 S6 S7 Avg. 

NDIWS 

FS
 u

sin
g 

Fi
xe

d 
SR

  BD-PSNR 
(dB) -0.01 -0.03 -0.01 -0.01 -0.01 -0.05 -0.02 -0.02 

BD-rate 
(%) +0.38 +0.85 +0.24 +0.43 +0.56 +1.43 +0.60 +0.64 

Δtime 
(%) -96.04 -98.50 -99.26 -98.47 -92.22 -91.06 -89.65 -95.03 

FS
 u

sin
g 

LA
M

 [ 8
] 

BD-PSNR 
(dB) -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

BD-rate 
(%) +0.25 +0.06 -0.07 +0.13 +0.02 -0.03 +0.05 +0.06 

Δtime 
(%) -68.18 -39.71 +5.13 -40.47 -21.56 -38.19 -20.17 -31.88 

TZS+NDIWS 

TZ
S 

us
in

g 
Fi

xe
d 

SR
  BD-PSNR 

(dB) -0.01 -0.03 -0.02 -0.02 0.00 -0.03 -0.01 -0.02 
BD-rate  

(%) +0.36 +1.09 +0.49 +0.54 +0.13 +0.90 +0.19 +0.53 
Δtime  
(%) -73.07 -67.89 -84.71 -82.83 -67.81 -43.30 -40.87 -65.78 

TZ
S 

us
in

g 
LA

M
 [ 8

] 

BD-PSNR 
(dB) 0.00 -0.01 -0.01 -0.01 0.00 +0.01 +0.01 0.00 

BD-rate  
(%) +0.07 +0.42 +0.37 +0.40 +0.12 -0.32 -0.19 +0.12 

Δtime  
(%) -37.86 -29.63 -54.29 -55.63 -33.45 -18.44 +40.69 -26.94 

 
Simulation Results: The proposed ASR algorithm using neighbouring 
depth intensity weighted sum has been integrated into the HM 14.0 
reference software, and is referred to as NDIWS. Its asymmetric ASR 
for FS was compared with the conventional FS using a fixed search 
range of [-64, +64] and the most recent LAM algorithm for ASR [8]. It 
is noted that TSZ is designed for squared search windows. Therefore, 
the search range using NDIWS was computed as 
max	(𝑎𝑠𝑟!(𝐶𝐵), 𝑎𝑠𝑟'(𝐶𝐵)) when TSZ with NDIWS (TSZ+NDIWS) 
was tested, where max( ) is the maximum function aiming at bounding 
all probable movement among the x and y directions. TSZ+NDIWS was 
further compared to the conventional TZS with the fixed search range 
and the adaptive search range determined by LAM [8]. All tested 
algorithms were evaluated with four QPs of 22, 27, 32, and 37 under the 
low-delay P configuration specified in the common test condition of 
HEVC [3]. Full quad-tree structure for all CU, PU, and TU was utilized.  
Bjontegaard (BD) measurement in terms of BD-rate (%) and BD-PSNR 
(dB) were used to measure the average coding efficiency, and Δtime 
(%) represents coding time change in percentage as compared with the 
benchmarking algorithms. Positive and negative values denote 
increments and decrements, respectively. The test platform used for 
simulations was a 64-bit MS Windows 8.1 OS running on an Intel Core 
i7-4770 CPU of 3.4 GHz and 16.0 GB RAM. 

The upper part of Table 1 lists the performance of NDIWS compared 
to FS with the fixed search range. It averagely saves 95% coding time 
over FS while its BD-PSNR drops 0.02dB and its BD-rate increases by 
0.64%. In comparison to LAM [8], NDIWS saves encoding time by 
31% while only introducing an insignificant BD-rate increase of 0.06%. 

The proposed NDIWS saves more time as its asymmetric search range 
considers movement in the horizontal and vertical directions separately.  
It is due to the fact that most of the objects do not move diagonally. By 
integrating the proposed ASR into TZS, TSZ+NDIWS reduces 65% 
time on average compared to the conventional fixed search range TZS. 
The corresponding BD-PSNR decreases by 0.02dB while the BD-rate 
increases by 0.53%. As compared with TZS using LAM [8], 
TSZ+NDIWS reduces averagely 26% of coding time while only 
introducing an insignificant BD-rate increase of 0.12%. The reason is 
that LAM [8] only formulates a fixed relationship of the motion 
information by offline trainings. Instead, TSZ+NDIWS utilizes the 
depth intensity correlation for the current block from its neighbouring 
blocks adaptively in order to reduce unnecessary computations with 
insignificant BD loss. 
 
Conclusion: In this letter, an adaptive search range selection algorithm 
was proposed by considering depth information in MVD videos. The 
ASR is determined by a weighted sum of the neighbouring blocks’ MVs 
in which their weights depend on the absolute difference in average 
depth intensity values between the neighbouring blocks and the current 
block. It results in a complexity reduction in ME. The proposed ASR is 
compatible with FS and other fast search algorithms such as TZS in 
HEVC. Simulation results demonstrated that it is able to reduce 65% of 
coding time on average among various sequences in the fast TZS 
algorithm with negligible loss on BD performance. 
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