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On the Relationship Between Conditional Jump

Intensity and Diffusive Volatility

Abstract

In standard options pricing models that include jump components to capture large

price changes, the conditional jump intensity is typically specified as an increasing function

of the diffusive volatility. We conduct model-free estimation and tests of the relationship

between jump intensity and diffusive volatility. Simulation analysis confirms that the tests

have power to reject the null hypothesis of no relationship if data are generated with the

relationship. Applying the method to a few stock indexes and individual stocks, however,

we find little evidence that jump intensity positively depends on diffusive volatility as

a general property of the jump intensity. The findings of the paper give impetus to

improving the specification of jump dynamics in options pricing models.



1. Introduction

It is now standard to include jump components in models of underlying asset prices in

order to evaluate options written on them. While jumps are rare, they have significant

impacts on the welfare of investors. And precisely because they are rare, their proper-

ties are difficult to analyze. As a result, there is no consensus on how jumps should be

modeled in terms of the conditional jump intensity and the conditional jump size. In this

paper, we address the issue of modeling conditional jump intensity. More specifically, we

focus on the relation between the conditional jump intensity and the diffusive volatility.

In the development of options pricing models, diffusive volatility, also known as stochastic

volatility, represents a major breakthrough after the Black-Scholes model of options pric-

ing with a constant volatility. Stochastic volatility has been treated as the most important

state variable, beside the price of the underlying asset, in determining options prices. It

is thus very natural to specify the conditional jump intensity as an increasing function

of the diffusive volatility of the underlying asset when jumps are added to the stochastic

volatility models. In popular affine jump diffusion models, for example, the conditional

jump intensity is specified as an affine function of the diffusive volatility of the underlying

asset with positive slope coefficients (in non-trivial cases). It also seems natural to think

that the probability of a jump is high when the diffusive volatility is also high. After

all, both diffusive volatility and jump intensity are measures of the magnitude of possible

future price changes.

In examining affine options pricing models, the relation between the conditional jump

intensity and the diffusive volatility is estimated as part of the model. For example, Pan

(2002) and Eraker (2004) find a significant increasing relation between the conditional

jump intensity and the diffusive volatility of the underlying asset, using options data.

Two issues involved with using options data make the results difficult to interpret. First,

jumps in options prices can result from jumps in state variables, rather than from those

in the underlying asset price. In potentially misspecified models, especially those that
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force the underlying asset price and other state variables to jump together, a relation be-

tween the jump intensity of the underlying asset price and diffusive volatility can be found

spuriously. Second, since options pricing is conducted under the risk-neutral probability

which involves risk premium, for models that implicitly assume no risk premium associ-

ated with jump intensity, a relation between the jump intensity and diffusive volatility

under the risk-neutral probability may be attributed to that under the actual probability

spuriously. Bates (2000) explicitly tests the difference in jump intensity-diffusive variance

relation under the actual and risk-neutral probabilities and finds no relation under the

former, but a positive relation under the latter. Using S&P 500 index return data only

without options prices, Andersen, Benzoni and Lund (2002) find an insignificant relation

between the conditional jump intensity and the diffusive volatility. In short, the issues of

whether there is a relation between jump intensity of the underlying asset price and its

diffusive volatility, whether the relation is positive, and whether the relation is monotonic

are unsettled.1

The results of parametric analysis of jump intensity can also be sensitive to the model

assumptions. Recent studies have shown that many standard options pricing models

are mis-specified. Jones (2003) finds that the square-root stochastic volatility model is

incapable of generating realistic return behavior and the data are better represented by

a stochastic volatility model in the constant-elasticity-of-variance class or a model with

a time-varying leverage effect. Christoffersen, Jacobs and Mimouni (2010) find that a

stochastic volatility model with a linear diffusion term is more consistent with the data

on the underlying asset and options than a stochastic volatility model with a square-

root diffusion term is. Li and Zhang (2013) show that the affine drift of the diffusive

volatility model is mis-specified because the mean reversion is particularly strong at the

1Eraker (2004) also has estimation results without using options data in his Table 4, in which he does
not report the relation between jump intensity and diffusive volatility and does not explain why not.
Andersen et al. (2002) attribute the insignificance result to the approximation used to calculate standard
errors, and a multicollinearity type problem. As shown by Andersen et al. (2002), when the conditional
jump intensity is specified as an affine function of diffusive variance, instead of a constant, the standard
errors of the parameters related to jump intensity are about 20 times larger.
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high end of volatility. These results suggest that the standard options pricing model with

the square-root volatility process falls short of generating sharp increases and decreases

in volatility when the level of volatility is high. As a result, when there are in fact spikes

in the volatility, the model with a square-root volatility process attributes large changes

in asset price to jumps and produces a spurious positive relation between the conditional

jump intensity and diffusive volatility.

In this paper, we address the issue of whether the conditional jump intensity is an in-

creasing function of the diffusive volatility under the actual probability. Since an exhaus-

tive analysis of all possible combinations of specifications of jumps and diffusive volatility

is impossible, we adopt nonparametric and semi-nonparametric approaches, which can

reduce the chances of making erroneous inferences from mis-specification of paramet-

ric models.2 We consider a simple method with many variations to identify jumps and

choose among these variations through simulation to reduce the potential bias in exam-

ining the jump intensity-diffusive volatility relation, caused by the error in the estimated

diffusive volatility. We then examine the relation between the conditional intensity of

detected jumps and the estimated diffusive volatility for several stock indexes and indi-

vidual stocks. Our results are based on intraday returns which enhance the powers of

the jump detection and the test of jump intensity-diffusive volatility relation, compared

with early studies based on daily returns. Using our more robust approaches, we arrive

at the conclusion that the conditional jump intensity of most individual stocks and stock

indexes we examine is unrelated to their diffusive volatility.

The finding that the conditional jump intensity is unrelated to the diffusive volatility

for many indexes and individual stocks, contrary to what the standard jump-diffusion

models assume, is important for understanding the dynamics governing underlying asset

prices and deriving corresponding options pricing models. It prompts the study of what

2Nonparametric methods are applied to options pricing in Hutchinson, Lo, and Poggio (1994), Aı̈t-
Sahalia (1996), Aı̈t-Sahalia and Lo (1998), Broadie, Detemple, Ghysels, and Torres (2000a, 2000b),
Aı̈t-Sahalia, Wang, and Yared (2001), Aı̈t-Sahalia and Duarte (2003), Li and Zhao (2009), and Li and
Zhang (2010), among others.
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state variables really determine the conditional jump intensity and how to better model

the relationship between these state variables and the jump intensity.3

The rest of the paper is organized as follows. Section 2 discusses the nonparametric

jump detection methods. Section 3 conducts simulation analysis to examine the per-

formance of the tests of the relation between conditional jump intensity and diffusive

volatility. Section 4 presents the empirical analysis based on stock indexes and individual

stocks. Section 5 concludes the paper.

2. The Jump Detection Test and Diffusive Volatility

Estimators

Consider the log price of an asset, Su, which follows a stochastic process,

dSu = µudu+
√
vudWu + ZudNu, (1)

where µu is the drift,
√
vu is the diffusive volatility, Nu is a counting process with time-

varying and finite intensity, Λu, and Zu is the jump size. (1) is a very general process

because no restrictions are imposed on the functional forms of µu, vu, Zu and Nu other

than standard regularity conditions that guarantee the solutions of the process. The issue

to be examined in this paper is the relation between Λu and
√
vu. In the popular affine

jump-diffusion models, the relation is specified as

Λu = λ0 + λ1vu, (2)

where λ1 ≥ 0 because both Λu and vu are nonnegative and vu is unbounded.

The methodology of our analysis can be summarized as follows. First, we use non-

parametric methods to estimate the diffusive variance, vu. Second, we detect jumps by

3There is a separate line of research which models the conditional jump intensity as a function of
realized past jumps and past conditional jump intensity, based on the observations that large price
changes occur in clusters. Prominent works include Chan and Maheu (2002), Maheu and McCurdy
(2004), Yu (2004), Santa-Clara and Yan (2010), Christoffersen, Jacobs and Ornthanalai (2012), Maheu,
McCurdy and Zhao (2013), and Aı̈t-Sahalia, Cacho-Diaz and Laeven (2015). These studies address issues
different from ours and use approaches different from ours.
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comparing the magnitude of returns with the estimate of the diffusive volatility. Third,

we examine the relation between Λu and vu by regressing the indicators of detected jumps

on the estimated diffusive variance. This three-step approach may be less efficient than

one-step tests under a specific model. However, the approach is largely model-free and

robust to the specification of the stochastic volatility process. The simulation analysis in

the next section shows that our approach is powerful enough to identify the true relation,

so the gain from robustness overweighs the loss of efficiency. In this section, we present

the nonparametric jump detection test, the potential bias issue, and various diffusive

volatility estimators.

2.1. The Jump Detection Test

We examine a class of test statistics as a detector of possible jumps in stock prices. The

test statistics we examine take the form of

Lt+1 =
rt+1√
v̂t
, (3)

where rt+1 = St+1 − St is the log return at an intraday time t + 1, v̂t is an estimate of

vt, using past returns on and before t. The rationale of the test statistics is that, on an

intraday time interval without jumps, rt+1 is driven by µt +
√
vt∆Wt+1 in discrete-time

approximation, where ∆Wt+1 ≡ Wt+1−Wt is normally distributed with mean equal to zero

and variance equal to one. The drift term over small intervals is known to be negligible.

See, for example, Merton (1980). As sampling interval (i.e., daily, hourly, every fifteen

minutes, every minute, etc.) used to estimate vt goes to zero, and v̂t converges to vt, Lt+1

follows asymptotically the standard normal distribution. A jump on t + 1 is detected if

Lt+1 exceeds a critical value determined by the standard normal distribution.4 A jump

indicator, Jt+1, takes the value of one in that case and zero otherwise. That the jump

4There are many other nonparametric jump detection tests proposed in the recent literature, such
as Barndorff-Nielsen and Shephard (2004, 2006), Jiang and Oomen (2008), and Aı̈t-Sahalia and Jacod
(2009), which can be applied to a period using higher frequency returns within the period to test whether
there is a jump during the period. These tests, however, do not suit our purpose of identifying intraday
jumps using intraday returns.
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detection test depends on the size of the return relative to its current diffusive volatility

makes sense. When the diffusive volatility is large, a return with a large absolute value

may not be due to a jump because the diffusive component may already be volatile

enough to generate such a return. Likewise, when the diffusive volatility is small, a return

with not-so-large an absolute value may indeed be due to a jump because the diffusive

component is unlikely to generate such a return.

A tricky issue is to estimate vt using past returns which may contain jumps. The

test statistics we examine in this paper differ in their way of estimating vt. They are all

nonparametric as no parametric assumptions on the dynamics of the diffusive volatility

and jumps are imposed.

A potential problem is that, since v̂t is based on a limited number of past returns, it

contains an estimation error, which causes the true distribution of Lt+1 to deviate from its

asymptotic one. Specifically, when vt is underestimated by v̂t, |Lt+1| tends to be greater

than what it should be and a jump may be detected when there is in fact none. On

the other hand, when vt is overestimated by v̂t, |Lt+1| tends to be smaller than what it

should be and a jump may not be detected when there is one. Therefore, beside the

usual type I and type II errors of the test when vt is perfectly known, the tests based

on an estimated diffusive volatility contains an additional small-sample error. This error

may not be serious for all applications involving jumps, but it is for the relation between

conditional jump intensity and diffusive volatility. It should be intuitively clear that this

error tends to cause a bias towards finding no relation when the true relation is positive

(i.e., increasing) and finding a negative (i.e., decreasing) relation when the true relation

is no relation.

Because of the potential bias, we will adopt econometric methods that deal with the

errors-in-variables problem and find estimators of vt that reduce the bias. In Section 3,

we use simulation to tackle these problems. The remainder of this section is devoted to

introducing some possible estimators of vt that have appeared in the literature.
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2.2. Diffusive Variance Estimators

The diffusive variance, i.e., the squared volatility, is the instantaneous variance of asset

returns at a particular point in time and does not include the variation due to jumps.

We consider three types of estimators. The first estimator of the diffusive variance is the

bipower variation proposed by Barndorff-Nielsen and Shephard (2004, 2006), BVt, defined

as

BVt =
π

2(K − 1)

K−1∑
i=1

|rt−i||rt−i+1|. (4)

This is a localized version of the jump-robust quadratic variation estimator where the

window-size is controlled by K. As K shrinks, BVt measures the diffusive variance at a

point in time. We will discuss the choice of K in the next subsection. This estimator

used to be the most popular one in the literature and is used by Andersen, Bollerslev,

and Dobrev (2007) and Lee and Mykland (2008) in the jump detection test in the same

setting.

The second estimator is the quantile-based realized variance proposed by Christensen,

Oomen and Podolskij (2010). The authors have shown that this measure is superior to the

bipower variation, the truncated realized variance of Jacob (2008) and Mancini (2009),

and the median truncated realized variance of Andersen, Dobrev and Schaumburg (2012)

as the estimator of the jump-robust quadratic variance. We consider a version of the

quantile-based realized variance which is more suitable for estimating the instantaneous

diffusive variance, by allowing more weights for more recent return observations. The

estimator is termed the exponentially weighted quantile realized variance, EQRVt, defined

as,

EQRVt =
d∑
j=1

aj

∑K−b
i=0 ψiqt−i(b, lj)

ν(b, lj)
∑K−b

i=0 ψi
, (5)

where qt(b, lj) = g2
blj

(Dt,br) + g2
b−blj+1(Dt,br), Dt,br = (rn)t−b+1≤n≤t, and gp(x) is the pth

order statistics of x = (x1, · · · , xm). ν(b, lj) is the normalizing constant that measures

the expectation of qt(b, lj) under the standard normal distribution, and aj is the optimal
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weight for lj quantile, both given in Christensen, Oomen and Podolskij (2010). When

the smoothing constant ψ = 1, this estimator reduces to the subsampling version of

the quantile-based realized variance, which is more efficient asymptotically and in finite

samples in many cases than the blocked version as shown in their paper. The estimator is

robust to jumps because for a given block of b return observations, those greater than the

highest quantile ld or less than the lowest quantile 1− ld are excluded from the diffusive

variance calculation. The choices of the number of quantiles, d, the quantiles, lj with

lj ∈ (0.5, 1) for j = 1, · · · , d, the block size, b, and the smoothing constant, ψ, will be

discussed in detail in the next subsection.

The third estimator, termed the exponentially weighted moving average with trunca-

tion, EMTt, is defined as,

EMTt =

∑K−1
i=0 ψir2

t−i1{β≤|rt−i|≤γ}∑K−1
i=0 ψi1{β≤|rt−i|≤γ}

. (6)

This estimator is similar to the commonly used exponentially weighted moving average

estimator of volatility except that both the high and low ends are truncated. The upper

truncation makes the estimator robust to infinite activity jumps and consecutive jumps,

whereas the lower truncation ensures that the expected diffusive variance is the same as

the one without truncations. The truncation levels will be discussed in detail in the next

subsection.5

An issue with using this type of jump detection test in intraday returns is the de-

terministic intraday volatility pattern, where the volatility tends to be higher just after

the market open and before the market close during a trading day. We need to adjust

intraday returns so that the detected intraday jumps are not driven by such a volatility

pattern. The intraday volatility level of a given intraday interval is estimated by the

average squared return in that intraday interval across the full sample. Then, the rela-

tive intraday volatility level is estimated as the intraday volatility level divided by the

5This approach can be regarded as a kernel-based nonparametric estimation of the diffusive volatility
of Kristensen (2010) with an exponential type of kernel.
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average of the intraday volatility levels across all intraday intervals. The volatility pattern-

adjusted intraday returns are calculated by dividing the raw returns by the square-root

of the relative intraday volatility levels for the corresponding intraday intervals. For the

results presented below, the diffusive volatility estimation and the jump detection are

performed on the adjusted returns.

2.3. Choices of Parameters in the Diffusive Volatility Estimators

For all the diffusive volatility estimators, the window-size K needs to be specified. On the

one hand, K should be large enough so that the distribution of the jump test statistic,

Lt+1, is close to the asymptotic distribution. On the other hand, the return observations

used to estimate the diffusive volatility need to be close to t to be able to capture the local

information. EQRVt and EMTt are not as sensitive to K as BVt is because the weights

of past return observations used to calculate EQRVt and EMTt mainly depend on ψ.

For EQRVt, the quantiles used to calculate the diffusive volatility, lj for j = 1, · · · , d,

need to be specified. On the one hand, the quantiles at tails, i.e., high lj and low 1−lj, are

more informative about the level of the diffusive volatility. On the other hand, too high

lj or too low 1− lj may include jumps and contaminate the diffusive volatility estimation.

The block size, b, should be small because the volatility within the block is assumed to

be constant. On the other hand, b should be large enough so that sufficient number of

returns with large values in magnitude in the block can be discarded to remove the effects

of jumps on the diffusive volatility estimation. To balance these, we choose b = 10, d = 2,

l1 = 0.7 and l2 = 0.8. The choice makes the diffusive volatility estimator robust to two

jumps in each tail within a relative small block of return observations.

For EMTt, the upper truncation level, γ, needs to be specified to remove the effects

of jumps on the estimation of the diffusive volatility. A too large value of γ may cause a

potential jump component included in the estimation, leading to a upward bias, while a too

small value of γ may cause relatively large diffusive components excluded in the estimation,
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leading to a downward bias. We consider several choices of γ written as multipliers of

estimated diffusive volatility, γ = c
√

BV, where BV is the bipower variation based on

the entire sample, which estimates the unconditional mean of the diffusive variance. The

lower truncation level, β, needs to be specified as well. For a given value of γ, β is set to be

such a value that E(X2) = E(X2|β2 ≤ X2 ≤ γ2), where X follows the normal distribution

with mean zero and variance BV. The lower truncation corrects for the downward bias

from the upper truncation which may otherwise throw out large return observations due

to the diffusive component in the return process.

Since the optimal values of K and c depend on actual stochastic processes of the stock

returns, we rely on the simulation analysis, which is explained in detail in Section 3. In

particular, we choose K for BVt and EQRVt or both K and c for EMTt by minimizing

the root-mean-square error (RMSE), defined as

RMSE =

√√√√ 1

T

T∑
t=1

(
√
vt −

√
v̂t)2, (7)

where T is the number of observations in the simulated data,
√
vt is the simulated dif-

fusive volatility and
√
v̂t is the estimated diffusive volatility from simulated returns. In

the simulation, we consider different parameter values of jump sizes and of the relation

between the conditional jump intensity and diffusive volatility. Larger jump sizes and

stronger positive relations between the conditional jump intensity and diffusive volatility

require lower values of c to counter the effects of the upward bias of the bipower variation

in the presence of jumps. Our simulation analysis indicates that for EMTt, the optimal

c across different parameter values is close to be 8 and, for various jump detection tests

and parameter values, the optimal K is close to 100. In Section 3 below, we report the

results for c = 8 and K = 100.6

The smoothing constant, ψ, is chosen such that the quasi-log-likelihood functions,

6Choosing these parameters by the simulation corresponds to the so-called plug-in method as developed
in the literature of the nonparametric estimation where a parametric model is used to guide the choice
of turning parameters.
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∑T
t=K+1(− log EQRVt−1 − r2t /EQRVt−1)1{|rt|≤γ} and

∑T
t=K+1(− log EMTt−1 − r2t /EMTt−1)1{|rt|≤γ}

are maximized for EQRVt and EMTt, respectively, where T is the number of return

observations in the sample.7

When the significance level of the jump detection tests, α, increases, both the power

and size of the tests increase. The choice of α also affects the results of testing the relation-

ship between the jump intensity and the diffusive volatility. Our unreported simulation

results show that the test results are not very sensitive to α for α between 0.001% and

0.1%, but, when α = 1%, tests tend to fail to find a significant positive relationship when

there is one in simulated data because many detected jumps are spurious. To be on the

conservative side, we use α = 0.01% for tests on the actual stock indexes and individual

stocks in Section 4, as well as in the reported simulation results in Section 3. Such a

choice is also in line with other studies in the literature.8

3. Simulation Analysis

In this section, we conduct a simulation analysis to examine the performance of jump

detection tests based on various diffusive volatility estimators and how accurately the

relation between the conditional jump intensity and diffusive volatility can be identified.

7From the model (1) assumption, when jumps are removed, rt follows a normal distribution approx-
imately, its mean is close to zero, its variance is vt, and it is serially independent. 1{|rt|≤γ} removes
observations that likely contain jumps. The distribution is approximately normal because of the time-
varying vt. In the actual returns of stocks and stock indexes with jumps removed, there are only 6.9%
and 6.8% of days for which the normality is rejected at 1% level for EQRVt and EMTt, respectively,
based on the Kolmogorov-Smirnov test, suggesting that the approximate normality is justified.

8Methods have been proposed in the literature to reduce the spurious jump detections by controlling
the size of multiple jump detection tests. Lee and Mykland (2008) suggest a rejection region based on
the distribution of the maximum of N i.i.d. |Lt+1| statistics using the extreme value theory. In the case
of 26 intraday returns a day, i.e., N = 26, the rejection threshold for a significance level of 1% based on
this approach is 3.899, very close to 3.891 used in this paper, which is based on the significance level of
0.01% without using the maximum. Andersen, Bollerslev, and Dobrev (2007) use a S̆idák correction to
control for the number of spurious jumps detected per day. Under this approach, the rejection threshold
is given by the 1− [1− (1−α∗)(1/N)]/2 quantile of the standard normal distribution, where α∗ is the size
of the jump detection test at the daily level. They suggest α∗ = 10−5, which gives the rejection threshold
of 5.076 for N = 26.
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The data are simulated from the discretized version of the model

dSu =

(
µ− 1

2
vu

)
du+

√
vudW1,u + ZudNu (8)

d ln vu = (θ − κ ln vu)du+ ηdW2,u, (9)

where Su is the log asset price, vu is the diffusive variance, W1,u and W2,u are standard

Brownian motions with correlation ρ, Nu is a counting process, and Zu is the jump size.9

For notational convenience, the unit of time is chosen to be consistent with the frequency

of the data used. The simulation results reported in the section are based on 15-minute

returns.

3.1. Parameters Selection

The parameters used in the simulation are estimated based on the intraday return data

of the S&P500 index from 1986 to 2012 by matching the realized Laplace transform of

volatility, proposed by Todorov and Tauchen (2012), with the counterpart implied by the

model. Specifically, for any s ≥ 0, the realized Laplace transform of volatility for year j

is defined as

TVj(s) =
1

Td

Tdj∑
t=Td(j−1)+1

cos(
√

2sTdrt), (10)

where Td is the number of intraday returns in a year. For s1 ≥ 0, s2 ≥ 0, and any positive

integer l, define

M̂V(s) =
1

Ty

Ty∑
j=1

TVj(s) (11)

ĈV(s1, s2; l) =
1

Ty − l

Ty∑
j=l+1

TVj(s1)TVj−l(s2), (12)

where Ty is the number of years. Todorov and Tauchen (2012) show that as Ty/Td → 0,

M̂V(s) and ĈV(s1, s2; l) converge to MV(s) and CV(s1, s2; l) in probability, respectively,

9We also examine data simulated from other popular models in the literature, for example, affine jump-
diffusion models. Our results are fairly robust to the model chosen and are, therefore, not repeatedly
reported.
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where

MV(s) = E
(
e−sv̄ū

)
(13)

CV(s1, s2; l) = E

(∫ l+1

l

e−s1v̄ūdū

∫ 1

0

e−s2v̄ūdū

)
, (14)

and ū = u/Td and v̄ū = vuTd correspond to the one-year time unit adopted by Todorov

and Tauchen (2012). We estimate the parameters in (9) by matching the quantities (11)

and (12) calculated from the actual data with (13) and (14) inferred from the model. Since

there is no closed-form expression for (13) and (14) under model (9), they are evaluated

via simulations. For a given set of parameters, we simulate 5000 samples where each

sample contains 30 year’s worth of data with 252 days per year. 26 steps are simulated

for each day so that each step corresponds to a 15-minute interval for 6.5 trading hours.

For each simulated sample, we remove data for the first 3 years to minimize the effects of

the initial values. Then, the averages across the 5000 samples are used to calculate (13)

and (14). Like Todorov, Tauchen and Grynkiv (2011) and Todorov and Tauchen (2012),

we calculate (11) and (13) for s = 0.1, 4, 8, a low, median, and high value, respectively. To

calculate (12) and (14), we set l = 1 and s1 = s2 which takes the same value as s mentioned

above. Then, parameters θ, κ, and η are estimated by minimizing (L̂V
′
−LV′)(L̂V−LV),

where

L̂V = (M̂V(0.1), M̂V(4), M̂V(8), ĈV(0.1, 0.1; 1), ĈV(4, 4; 1), ĈV(8, 8; 1))′,

LV = (MV(0.1),MV(4),MV(8),CV(0.1, 0.1; 1),CV(4, 4; 1),CV(8, 8; 1))′.

The parameter estimates are θ = −0.00855, κ = 0.00103, and η = 0.0607. Using other

values of s, s1, s2 and l gives similar parameter estimates, and does not alter our con-

clusion. Since our results are not sensitive to the values of µ and ρ, we simply set

µ = 0.05/(252× 26) and ρ = −0.5 in the simulation.10

The merit of using this approach is that parameters in (9) can be estimated without

making assumptions on the dynamics in (8). A misspecified model of jumps in the process

10Note that the unit of time of the simulated data and the parameters is for 15-minute intraday intervals
assuming that each trading day has 26 15-minute intraday intervals and each year has 252 trading days.
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of underlying asset returns can affect the estimation of the volatility process. This is

particularly important in our application. Since the purpose of our study is to identify

the relation between the conditional jump intensity and diffusive volatility, no assumptions

should be made on this relation, nor the other properties of jumps when estimating the

volatility process.

For the jump component, we fix the jump size at m
√
vu, where m = 4 or 6. Jumps

of too small sizes are meaningless as they cannot be distinguished from diffusive returns.

The conditional jump intensity, Λu, is specified as λ0 + λ1vu, as suggested by the pop-

ular affine jump-diffusion models in options pricing. For the first set of parameters,

λ0 = 20/Td, λ1 = 0, the conditional jump intensity is unrelated to the diffusive variance,

where Td = 252 × 26, the number of intraday returns in a year. For the second set of

parameters, λ0 = 10/Td, λ1 = 400, the conditional jump intensity is specified as an affine

function of the diffusive variance. The empirical analysis in the next section suggests that

for some stocks and stock indexes we consider, the relation between conditional jump

intensity and diffusive variance is negative. Because the diffusive variance is unbounded,

the decreasing and affine relation is impossible. Therefore, we consider another specifica-

tion, the exponential affine conditional jump intensity, taking the form of exp(λe0 +λe1vu),

where λe0 = 3.5 − ln(Td), λ
e
1 = −35. 11 In addition to the typical Poisson type of jumps,

we also consider the case of consecutive jumps, where two jumps occur in the adjacent

15-minutes returns. This case highlights the important differences among the diffusive

variance estimators we consider as shown below.

3.2. Simulation Results

For the results reported below, 20-year worth of 15-minute intraday returns are simulated

to match with the sample periods of most stocks and stock indexes in the empirical analysis

11The three sets of parameters are chosen to give about 20 jumps per year on average with an average
of annualized vt equal to 0.0265 in the simulated data. This is in line with the empirical results in Section
4 for a set of stocks and stock indexes.
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of Section 4. To examine the performance of various diffusive volatility estimators, we

first calculate the RMSE, defined as

RMSE =

√√√√ 1

T

T∑
t=1

(
√
vt −

√
v̂t)2, (15)

where T is the number of observations. Table 1 reports the median and interquartile

range of the RMSE of the diffusive volatility estimated from the 5000 simulated samples.

For the ease of interpretation, the numbers are annualized and in percentage. The median

RMSE can be compared with the actual average annualized diffusive volatility of 13.06%.

The RMSE of BVt increases with the jump size, because BVt has an upward bias when

jumps are present and the magnitude of the bias increases with the size of jumps. The

RMSE of BVt is higher for the case of the positive relation between the conditional jump

intensity and diffusive variance than for the case of the negative relation. This is so

because jumps of larger sizes are more likely to occur when the relation is positive in

the simulation. In Panel B, for the consecutive jumps, the RMSE for BVt is larger and

patterns of RMSE across jump sizes and conditional intensity specifications are stronger.

These suggest that the upward bias in BVt is stronger for the case of consecutive jumps.

The RMSE of EQRVt is smaller than that of BVt for all the cases, especially for the

case of consecutive jumps. The RMSE of EQRVt is not sensitive to the jump size or the

specification of the conditional jump intensity. EQRVt performs equally well for the case

of consecutive jumps because EQRVt is robust to two positive and two negative jumps.

EMTt tends to have even smaller errors than EQRVt does. However, the RMSE of EMTt

is more sensitive to the jump size, and the RMSE of EMTt is larger than that of EQRVt

in some cases of consecutive jumps and large jump size. The superior performance of

EQRVt and EMTt relative to BVt is due to higher weights applied to more recent return

observations to capture local information.

Table 1 here

We then examine the size and power properties of the jump detection tests based on
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these diffusive volatility estimators. Table 2 reports the sizes. Since jumps are infrequent

in reality, the oversize problem can be a serious issue for jump detection tests. Suppose

that the actual jump intensity is 20 per year, i.e., about 0.3% of 15-minute intraday

returns contain jumps. An oversize of 0.03% means that an additional 10% of identified

jumps are false. Thus, a good size property is important for jump detection tests. The

results show that all the jump detection tests are oversized because of the errors in the

estimation of diffusive volatility from finite samples. However, there are large variations

in the size properties across these volatility estimators. The jump detection test based

on EMTt has the best size property for all the specifications of jump size and conditional

jump intensity. The BVt is ranked the second, and EQRVt has a slightly larger size than

BVt does. For a given diffusive variance estimator, the size property is not sensitive to

the specifications of jump size and conditional jump intensity, or the cases of Poisson or

consecutive jumps.

Table 2 here

Table 3 reports the powers of the jump detections tests. As expected, the power

increases with the jump size for all the diffusive volatility estimators. In Panel A, for

Poisson jumps, BVt has the lowest power among the diffusive volatility estimators except

for the case of exponential affine conditional jump intensity and large jump size. The

power of BVt is even lower for the case of consecutive jumps in Panel B, consistent with

its performance measured by the RMSE. EQRVt has the highest power among the three

diffusive variance estimators, and works equally well for both cases of Poisson jumps and

consecutive jumps. EMTt is generally more powerful than BVt for the case of Poisson

jumps. Combining with a better size property as shown in Table 2, the result suggests

that EMTt has a better size-and-power tradeoff than BVt does. However, for the case

of consecutive jumps, the power of EMTt is the lowest because the second jump in the

consecutive jumps is less likely to be detected when the first jump return observation

is included in the diffusive volatility estimation with the highest weight, leading to an
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upward bias.

Table 3 here

Many studies use daily returns rather than intraday returns to detect jumps because

daily returns are available for a longer time span. Therefore, we also report the powers and

sizes of these jump detection tests based on daily returns in Table 4. The specifications of

the conditional jump intensity are the same as for the case of intraday returns except that

the parameters are different to match the annual jump intensity of 3, typically observed

from the daily data. The jump sizes are fixed at 4 and 6 times of the daily diffusive

volatility for the small jump and large jump, respectively. For the case of consecutive

jumps, jumps occur in two adjacent daily returns. The significance level of the jump

detection tests is 0.01%, same as the one for the case of intraday returns. The results

suggest that all the tests are oversized, and the problem is more serious than for the case

of intraday returns. EMTt still has the best size property, followed by BVt and EQRVt.

The powers are also lower than those for the case of intraday returns. EQRVt is still the

most powerful. The powers of EMTt and BVt are comparable for the case of Poisson

jumps, but EMTt is less powerful than BVt for the case of consecutive jumps for the same

reason discussed before.

Table 4 here

Positive errors in the estimated diffusive volatility lead to failure of identifying true

jumps, whereas negative errors lead to false identification of jumps. These errors also

lead to a downward bias in the estimated relation between the conditional jump intensity

and diffusive volatility. The degree of bias depends on the magnitude of the errors in

the diffusive volatility estimators, as well as the size and power properties of the jump

detection tests based on these estimators.
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We examine the magnitude of the bias in the estimated relation between the con-

ditional jump intensity and diffusive volatility in regressions. Let Jt = 1 if there is a

jump detected at t, and Jt = 0 otherwise. We examine the relation between v̂t and the

conditional jump intensity by running the following regressions,

Jt+1 = λ0 + λ1v̂t + εt+1, (16)

for the cases of constant and affine conditional jump intensity, and

Jt+1 = exp(λe0 + λe1v̂t) + εet+1, (17)

for the case of the exponential affine conditional jump intensity. The affine specification is

motivated by the affine jump-diffusion model in the options pricing literature, whereas the

exponential affine specification is motivated by the empirical results in the next section.

To mitigate the problem arising from the negative correlation between Jt+1 and v̂t, we use

a constant and v̂t−K as instrumental variables to estimate (16) and (17), where K = 100.

To investigate how well v̂t−K serves as a instrumental variable in the regression models

(16) and (17), we report the median and the interquartile range of correlations between

v̂t and v̂t−K across the 5000 simulated samples in Panel A1 and A2 of Table 5. The

correlations are above 70% except for one case. The result suggests that for these diffusive

volatility estimators, v̂t−K is a good instrumental variable for v̂t.

Table 5 here

The median and the interquartile range of the estimated λ1, denoted as λ̂1, across the

5000 simulated samples, are reported in Panel B1 and B2 of Table 5. The magnitude

of bias varies substantially across these measures of diffusive volatility. For the case of

constant jump intensity, i.e., λ1 = 0, EQRVt causes a negative bias to some degree, and

the negative bias for BVt is greater, evidenced by λ̂1 < 0. For the case of Poisson jumps

and EMTt, λ̂1 is close to zero, which suggests that using EMTt does not cause a bias
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towards finding a negative relation between the conditional jump intensity and diffusive

volatility when there is in fact no relation. This is consistent with the results in Table

1 and Table 2 that EMTt has small errors and good size properties. However, for the

case of consecutive jumps, there is an upward bias. Since the truncation parameters in

EMTt are fixed and the jump size is proportion to the diffusive volatility, EMTt tends

to fail to detect small jumps when the diffusive volatility is low, and the loss of power is

more serious for the case of consecutive jumps as discussed in Table 3. This explains the

upward bias in the estimated jump intensity-diffusive variance relation. For the case of

affine conditional jump intensity, the negative bias is apparent in all the diffusive volatility

estimators, evidenced by λ̂1 < λ1. However, the magnitude of bias in λ̂1 tends to be lower

when the jump size is larger because larger jumps are easier to detect. EMTt still has

the lowest biases. For the case of exponential affine conditional jump intensity, where the

jump intensity-diffusive variance relation is negative, all the diffusive variance estimators

cause a positive bias, evidenced by λ̂e1 > λe1. This is mainly due to the errors-in-variables

problem with v̂t causing a bias toward finding no relation when there is one. Because of

the relative low power of EMTt to detect small jumps, the positive bias is the highest for

EMTt, especially for the case of consecutive jumps. The bias caused by EQRVt is slightly

greater than that caused by BVt for the case of small jumps. BVt performs slightly worse

for the case of consecutive jumps than for the case of Poisson jumps, but the difference

does not exist for EQRVt.

The median t-statistic for λ̂1 and λ̂e1, adjusted for heteroscedasticity and serial correla-

tion based on the procedure of Newey and West (1987) with 500 lags, and the interquartile

range are reported in Panel C1 and C2 of Table 4. For the case of constant jump intensity,

the median t-statistic for EMTt is close to zero, suggesting that the bias caused by EMTt

is statistically insignificant. The negative bias caused by BVt tends to be significant on

average, but becomes insignificant as the jump size increases. For both cases of positive

and negative jump intensity-diffusive variance relations, the tests based on these three

diffusive volatility estimators can identify the relations on average. EMTt has the highest
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power of detecting the positive relation, followed by EQRVt, whereas BVt has the highest

power of detecting the negative relation, followed by EQRVt. The powers of detecting the

jump intensity-diffusive relation are generally lower for the case of consecutive jumps, but

EQRVt is more robust to consecutive jumps than the other two. The results also show

that the interquartile ranges of these t-statistics are large, suggesting a large variation

in the t-statistics across the 5000 simulated samples. This indicates that these diffu-

sive volatility estimators that do not cause bias on average may cause bias in individual

samples.

To further investigate the bias in the diffusive volatility estimators, in Panel D1 and

D2 of Table 5, we report, out of the 5000 simulated samples, the proportion of t-statistics

less than -2.326, which corresponds to the 1st percentile of the standard normal distribu-

tion. For the case of constant jump intensity, the proportion is the smallest for EMTt,

followed by EQRVt. The proportion for this case can also be regarded as the size for

testing no relation against the negative relation between the conditional jump intensity

and diffusive volatility. The test based on EMTt has the best size property, and the test

based on BVt is the most oversized. The size property improves with the jump size. The

proportion for the case of exponential affine jump intensity can be regarded as the power

for testing no relation against the negative relation. The tests based on BVt and EQRVt

are more powerful than that based on EMTt. Since BVt is much more oversized than

EQRVt, but they have comparable powers, EQRVt is preferred for testing the negative

relation. For completeness, the proportion for the case of affine jump intensity is also

reported. Panel E1 and E2 of Table 5 report the proportion of t-statistics greater than

2.326, which corresponds to the 99th percentile of the standard normal distribution. The

numbers reported in the columns of constant and affine jump intensities can be regarded

as the size and power of testing no relation against the positive jump intensity-diffusive

volatility relation, respectively. The results suggest that EMTt is the most powerful in

detecting the positive relation, followed by EQRVt. The test based on EMTt is slightly

oversized in some cases, whereas tests based on the other diffusive variance estimators
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are undersized in all the cases. The test based on EMTt performs the best for identifying

the positive relation. For completeness, the proportion for the case of exponential affine

jump intensity is also reported. Overall, the simulation analysis suggests that among the

three diffusive variance estimators we consider, EQRVt works the best for identifying the

negative jump intensity-diffusive volatility relation, whereas EMTt works the best at iden-

tifying the positive relation. Therefore, we use both EQRVt and EMTt as complements

in the empirical analysis that follows.

4. Empirical Analysis

In this section, we analyze the relation between the conditional jump intensity and dif-

fusive volatility of actual stock indexes and individual stocks. Since the relation is most

relevant to options pricing, we choose 30 stocks with the highest dollar options trading

volumes from 1996 to 2012, the S&P 500 index (SPX), and the NASDAQ composite index

(NDX). The intraday levels of SPX and NDX are from the Thomson Reuters Tick History

and Pi Trading Inc. For stocks, we use the average of bid and ask quotes from the pri-

mary exchange of each stock from the Trade and Quote database (TAQ). We sample the

index/stock prices every 15-minute from 9:00am to 16:00pm, from which we calculate 26

intraday returns and one overnight return for each day. The previous studies suggest that

15-minute frequency is high enough to achieve a sufficient power in the jump detection

and results are not greatly affected by the microstructure noise. The overnight returns

of stocks are adjusted for dividends, which are from the Center for Research in Security

Prices (CRSP). The diffusive volatility estimation and the jump detection are performed

on the returns adjusted for the intraday volatility pattern as described in Section 2. The

selected stocks and stock indexes and sample periods are shown in Table 6.

Table 6 here
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4.1. Parametric Regression Analysis

We adopt the same regression specifications with instrumental variables in the actual

indexes and stocks as those used in the simulated data. We use EQRVt and EMTt as

the estimators of the diffusive volatility to test the negative and positive jump intensity-

diffusive variance relations, respectively, because they work the best in different situations,

as shown in the simulation analysis.

The results based on EQRVt and EMTt are reported in Panel A and B of Table 6,

respectively. The third column shows the time-series average of the estimated diffusive

volatility. SPX has a lower diffusive volatility than NDX does, and the diffusive volatilities

of individual stocks are higher than those of indexes in general. The diffusive volatility

estimated based on EQRVt is slightly lower than that based on EMTt in general. There is

a large cross-sectional variation in volatility in the selected sample of stocks and indexes.

The average annualized diffusive volatilities range from 13% to 56% based on EQRVt, and

from 14% to 62% based on EMTt. The fourth column shows the standard deviation of

the estimated diffusive volatility. The standard deviation of diffusive volatility tends to

be higher for the stock or index with a higher average diffusive volatility. The next three

columns show the annual jump intensities. On average, there are about 44 and 23 jumps

per year in our sample of stock indexes and individual stocks based on EQRVt and EMTt,

respectively. The higher number of jumps identified based on EQRVt is due to the higher

power and larger size of the jump detection test based on it. For indexes, the majority

of jumps are negative, and for individual stocks, positive jumps and negative jumps are

equally likely on average. The next column reports the correlation between v̂t and v̂t−K .

The average correlation is about 62% and 65%, for EQRVt and EMTt, respectively, which

is lower than those reported in the simulation analysis. Nevertheless, the correlations are

quite high, suggesting that v̂t−K is a good instrument for v̂t. The instrumental variable

regression is expected to be able to identify the relation between the conditional jump

intensity and diffusive volatility if there is one. The next two columns show the coefficient
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estimate λ̂1 and the p-value for testing λ̂1 = 0 against λ̂1 > 0. Based on EQRVt, 2 stocks

are identified with a significant positive relation at 1% level, and based on EMTt, 4 stocks

are significant at 1% level. As indicated in the simulation analysis, the test based on

EQRVt is not as powerful as that based on EMTt in identifying the positive relation. The

results suggest that the conditional jump intensity as an increasing and affine function

of diffusive variance is not supported by the data in general. The last two columns show

the coefficient estimate λ̂e1 and the p-value for testing λ̂e1 = 0 against λ̂e1 < 0. The test

based on EQRVt identifies 8 stocks and stock indexes with significant negative relations

at 1% level, whereas the test based on EMTt identifies only 3. The difference is due to

the higher power of the test based on EQRVt in identifying the negative relation than

that based on EMTt, as indicated in the simulation analysis. Most stocks do not show

significant relations.

Table 7 here

4.2. Nonparametric Regression Analysis

The analysis based on the parametric regressions in the previous subsection suggests that

for a few stocks or stock indexes, there is a significant relation between the conditional

jump intensity and diffusive volatility. While these parametric regressions can be used to

test for a simple increasing or decreasing relation, the affine or exponential affine relation

may be mis-specified. In this subsection, we investigate the functional form of the relation

using nonparametric regressions.

We apply the Nadaraya-Watson kernel regression to estimate the conditional jump

intensity Λ(v̂t) in

Jt+1 = Λ(v̂t) + ηt+1. (18)

Specifically, the function Λ(v) is estimated by

Λ̂(v) =

∑T−1
t=1 φ( v̂t−v

h(v)
)Jt+1∑T−1

t=1 φ( v̂t−v
h(v)

)
, (19)
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where φ(·) is a kernel function, h(·) is the bandwidth, and T is the number of observations.

We choose the second-order Gaussian kernel φ(z) = (1/
√

2π)e−z
2/2. The bandwidth

takes the form h(v) = bσ[f(v)T ]−1/5, where σ is the standard deviation of v̂t, and f(v)

is the density of v̂t. Since the distribution of v̂t is extremely skewed to the right, a

bandwidth varying with the value of the density function allows a smoother function

to be estimated than would a constant bandwidth. The density function f(v) is also

estimated nonparametrically by a kernel density estimator. The constant b is determined

by the cross-validation method to minimize the following objective function,

CV(b) =
1

T − 1

T−1∑
t=1

[Jt+1 − Λ̂−(t+1),b(v̂t)]
2, (20)

where Λ̂−(t+1),b(v̂t) is the kernel estimator of Λ̂(v̂t) without using the observation Jt+1.

The top two panels in Figure 1 show the nonparametric estimation of the conditional

jump intensity of SPX and APPL, which are among the most significant negative relations

in Panel A of Table 7. The solid line is the mean estimate, and the dashed lines show the

90 percent confidence interval.12 For SPX, the significant negative relation comes from

the low level of diffusive variance, where the confidence interval is narrow. The relation

becomes flat at the medium to high levels of diffusive variance. For APPL, the relation

is generally negative, and the negative relation is stronger at the low level of diffusive

variance. The bottom two panels show the nonparametric estimation of the conditional

jump intensity of TWX and GM, the two stocks with the most significant positive linear

relations in Panel A of Table 7. The positive relation is the strongest at the low level of

the diffusive variance. At the high level of diffusive variance, the confidence interval is

wide. There is also a region where the relation is negative. These results suggest that the

positive relation between the conditional jump intensity and diffusive variance is rather

weak.

Figure 1 here

12The confidence interval is calculated based on the block bootstrap method of Kunsch (1989) to
account for the time-series dependence of the observations.
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The results based on EMTt are shown in Figure 2. The top two panels show the

nonparametric estimation for NDX and GOOG, which have the most significant negative

relations in Panel B of Table 7. For NDX, the significant negative relation comes from the

low to medium levels of diffusive variance with a narrow confidence interval. The relation

becomes positive at the high level of diffusive variance, showing a convex shape. However,

the positive relation is weak evidenced by the wide confidence interval. The pattern of

the jump intensity-diffusive variance relation for GOOG resembles that for NDX. The

bottom two panels show the nonparametric estimation of stocks with the most significant

positive relations in Panel B of Table 7. For C, the significant positive relation is at the

medium to high levels of diffusive variance, and the relation is slightly negative for the

low level of diffusive variance. GM shows up in both Figure 1 and Figure 2 as the one

with a significant positive relation, however, the positive relation is weak as suggested by

the wide confidence interval.

Figure 2 here

5. Conclusion

Jumps are essential components in asset price dynamics. The jump intensity is typically

assumed to be positively related to the diffusive variance, as in the standard options

pricing models. We examine this relation empirically using nonparametric and semi-

nonparametric approaches. Simulation analysis shows that various nonparametric jump

detection tests are powerful enough to detect the relation between the conditional jump

intensity and diffusive variance if the relation exists. However, the empirical results show

that, for most of the stocks and stock indexes we examine, the conditional jump intensity

is unrelated to the diffusive variance. When there is a relation for some stocks, the relation

tends to be nonlinear and non-monotonic. The results presented in this paper suggest

that normal changes in asset prices, i.e. the diffusive component of asset returns, and

extreme changes, i.e. jumps, are driven by separate state variables. In particular, this
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finding is at odds with the affine jump-diffusion models of options pricing in which the

relation between the conditional jump intensity and diffusive variance is assumed to be

increasing and linear.

The findings in this paper contribute to the literature in the following sense. Existing

tests based on specific models and options data suffer from two problems. First, jumps

in options prices can result from jumps in other state variables rather than those in the

underlying asset price. In this case, the positive relation obtained using options data

does not have a clear interpretation of the relation between the jump intensity of under-

lying asset price and diffusive variance. Second, models that do not clearly differentiate

relations under the actual probability and the risk-neutral probability may mistaken a

relation under the risk-neutral probability as a relation under the actual probability. Our

methodology is model-free, robust, and powerful enough to detect the relation if it indeed

exists. Our results indicate that a commonly assumed positive relation between the jump

intensity and the diffusive volatility is not bourn out by data and that the actual rela-

tion can be nonlinear and non-monotonic. These findings suggest that identifying state

variables governing the dynamics of jump intensity is important for understanding the

evolution of asset prices and for improving models of options pricing.
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Table 1
Errors in the Estimated Diffusive Volatility: Simulation Results
This table reports the root-mean-square error (RMSE) of the estimated diffusive volatility,

defined as RMSE =
√

1
T

∑T
t=1(
√
vt −
√
v̂t)2, multiplied by 100

√
Td, where Td = 252× 26

is the number of intraday returns in a year, vt is the actual diffusive variance from the
simulation, v̂t is its estimate, and T is the total number of observations. Median and
interquartile range (in parentheses) from 5000 simulated samples are shown. The RMSE
can be compared with the mean of actual annualized diffusive volatility 13.06%. In the
simulation, the jump intensity is specified as Λt = λ0 +λ1vt, where λ0 = 20/Td, λ1 = 0 for
the constant jump intensity case and λ0 = 10/Td, λ1 = 400 for the affine jump intensity
case, and Λt = exp(λe0 + λe1vt) with λe0 = 3.5− ln(Td), λ

e
1 = −35 for the exponential affine

jump intensity case. The jump size is fixed at 4
√
vt for small jumps (SJ) and 6

√
vt for large

jumps (LJ). The diffusive variance estimators include: the bipower variation, BVt, the
exponentially weighted quantile realized variance, EQRVt, and the exponentially weighted
moving average with truncation, EMTt. Panel A is for the case of normal jumps, and
Panel B is for the case of consecutive jumps.

A. Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt 3.109 3.168 3.292 3.549 3.074 3.091
( 0.43) ( 0.44) ( 0.64) ( 0.89) ( 0.43) ( 0.42)

EQRVt 2.817 2.818 2.903 2.946 2.812 2.813
( 0.38) ( 0.38) ( 0.50) ( 0.69) ( 0.37) ( 0.37)

EMTt 2.569 2.739 2.591 2.742 2.531 2.702
( 0.45) ( 0.46) ( 0.47) ( 0.48) ( 0.43) ( 0.43)

B. Consecutive Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt 3.255 3.690 3.739 4.999 3.127 3.296
( 0.45) ( 0.53) ( 0.94) ( 1.77) ( 0.42) ( 0.40)

EQRVt 2.827 2.827 2.879 2.888 2.817 2.817
( 0.38) ( 0.38) ( 0.44) ( 0.47) ( 0.37) ( 0.37)

EMTt 2.626 2.867 2.666 2.902 2.573 2.815
( 0.45) ( 0.46) ( 0.47) ( 0.51) ( 0.43) ( 0.41)
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Table 2
Sizes of the Jump Detection Tests: Simulation Results
This table reports the sizes of the jump detection tests, multiplied by 100. Median
and interquartile range (in parentheses) from 5000 simulated samples are shown. The
significance level of the jump detection tests is 0.01%. In the simulation, the jump intensity
is specified as Λt = λ0+λ1vt, where λ0 = 20/Td, λ1 = 0 for the constant jump intensity case
and λ0 = 10/Td, λ1 = 400 for the affine jump intensity case, and Λt = exp(λe0 +λe1vt) with
λe0 = 3.5− ln(Td), λ

e
1 = −35 for the exponential affine jump intensity case. Td = 252× 26

is the number of intraday returns in a year. The jump size is fixed at 4
√
vt for small

jumps (SJ) and 6
√
vt for large jumps (LJ). The diffusive variance estimators include: the

bipower variation, BVt, the exponentially weighted quantile realized variance, EQRVt,
and the exponentially weighted moving average with truncation, EMTt. Panel A is for
the case of normal jumps, and Panel B is for the case of consecutive jumps.

A. Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt 0.074 0.071 0.074 0.072 0.074 0.071
( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01)

EQRVt 0.078 0.078 0.078 0.078 0.078 0.078
( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01)

EMTt 0.047 0.045 0.047 0.046 0.046 0.044
( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01)

B. Consecutive Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt 0.073 0.071 0.074 0.071 0.073 0.070
( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01)

EQRVt 0.080 0.080 0.080 0.080 0.080 0.080
( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01)

EMTt 0.048 0.047 0.048 0.048 0.048 0.047
( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01)
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Table 3
Powers of the Jump Dectection Tests: Simulation Results
This table reports the powers of the jump detection tests, multiplied by 100. Median
and interquartile range (in parentheses) from 5000 simulated samples are shown. The
significance level of the jump detection tests is 0.01%. In the simulation, the jump intensity
is specified as Λt = λ0+λ1vt, where λ0 = 20/Td, λ1 = 0 for the constant jump intensity case
and λ0 = 10/Td, λ1 = 400 for the affine jump intensity case, and Λt = exp(λe0 +λe1vt) with
λe0 = 3.5− ln(Td), λ

e
1 = −35 for the exponential affine jump intensity case. Td = 252× 26

is the number of intraday returns in a year. The jump size is fixed at 4
√
vt for small

jumps (SJ) and 6
√
vt for large jumps (LJ). The diffusive variance estimators include: the

bipower variation, BVt, the exponentially weighted quantile realized variance, EQRVt,
and the exponentially weighted moving average with truncation, EMTt. Panel A is for
the case of normal jumps, and Panel B is for the case of consecutive jumps.

A. Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt 49.648 92.803 50.969 92.716 47.294 91.865
( 3.60) ( 1.76) ( 3.48) ( 2.17) ( 3.36) ( 1.94)

EQRVt 52.244 95.012 53.110 95.028 50.822 94.559
( 3.51) ( 1.40) ( 3.72) ( 1.67) ( 3.63) ( 1.47)

EMTt 49.757 93.399 52.778 95.053 47.678 91.797
( 3.39) ( 1.76) ( 3.72) ( 1.45) ( 3.28) ( 1.76)

B. Consecutive Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt 47.469 90.051 47.962 88.315 45.046 88.679
( 3.75) ( 2.36) ( 4.10) ( 3.60) ( 3.51) ( 2.60)

EQRVt 52.000 94.977 52.877 95.182 50.948 94.560
( 3.99) ( 1.62) ( 4.05) ( 1.63) ( 3.61) ( 1.60)

EMTt 36.692 75.056 41.304 80.440 34.224 70.940
( 3.39) ( 2.67) ( 3.66) ( 2.56) ( 2.97) ( 2.76)
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Table 4
Sizes and Powers of the Jump Dectection Tests: Simulation Results (Daily
Frequency)
This table reports the sizes and powers of the jump detection tests, multiplied by 100,
based on daily returns. Median and interquartile range (in parentheses) from 5000 simu-
lated samples are shown. The significance level of the jump detection tests is 0.01%. In
the simulation, the jump intensity is specified as Λt = λ0 + λ1vt, where λ0 = 3/Td, λ1 = 0
for the constant jump intensity case and λ0 = 1.5/Td, λ1 = 60 for the affine jump intensity
case, and Λt = exp(λe0 + λe1vt) with λe0 = 1.5− ln(Td), λ

e
1 = −25 for the exponential affine

jump intensity case. Td = 252 is the number of daily returns in a year. The jump size is
fixed at 4

√
vt for small jumps (SJ) and 6

√
vt for large jumps (LJ). The diffusive variance

estimators include: the bipower variation, BVt, the exponentially weighted quantile real-
ized variance, EQRVt, and the exponentially weighted moving average with truncation,
EMTt. Panel A1 and B1 report the sizes and powers for the case of normal jumps, re-
spectively, and Panel A2 and B2 report the sizes and powers for the case of consecutive
jumps, respectively.

A1. Sizes for Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt 0.707 0.668 0.706 0.686 0.708 0.686
( 0.16) ( 0.18) ( 0.16) ( 0.18) ( 0.18) ( 0.18)

EQRVt 1.092 1.092 1.091 1.091 1.108 1.094
( 0.23) ( 0.23) ( 0.24) ( 0.24) ( 0.24) ( 0.25)

EMTt 0.504 0.485 0.485 0.484 0.485 0.484
( 0.14) ( 0.14) ( 0.13) ( 0.12) ( 0.14) ( 0.14)

A2. Sizes for Consecutive Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt 0.708 0.690 0.724 0.707 0.708 0.688
( 0.16) ( 0.18) ( 0.18) ( 0.18) ( 0.16) ( 0.16)

EQRVt 1.113 1.113 1.111 1.111 1.112 1.112
( 0.22) ( 0.22) ( 0.24) ( 0.24) ( 0.23) ( 0.23)

EMTt 0.506 0.504 0.504 0.485 0.506 0.504
( 0.14) ( 0.12) ( 0.12) ( 0.12) ( 0.14) ( 0.14)
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B1. Powers for Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt 43.478 72.059 51.667 76.517 36.667 66.071
( 8.74) ( 8.00) ( 8.39) ( 7.90) ( 8.37) ( 8.52)

EQRVt 48.181 77.193 56.431 81.678 41.935 72.414
( 8.57) ( 7.38) ( 8.49) ( 7.11) ( 8.65) ( 8.26)

EMTt 42.857 73.611 55.000 82.692 35.185 66.000
( 8.40) ( 8.09) ( 8.71) ( 7.15) ( 8.81) ( 8.53)

B2. Powers for Consecutive Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt 39.639 68.086 46.571 71.212 33.784 62.121
( 10.25) ( 10.70) ( 10.45) ( 9.86) ( 9.99) ( 10.35)

EQRVt 48.214 77.778 56.343 82.813 42.308 73.333
( 11.32) ( 10.13) ( 10.47) ( 7.99) ( 11.11) ( 9.81)

EMTt 32.353 58.000 44.643 68.182 25.000 50.000
( 9.46) ( 9.96) ( 10.53) ( 8.85) ( 8.29) ( 9.82)
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Table 5
Relation Between Conditional Jump Intensity and Diffusive Variance: Simu-
lation Results
This table reports the results of the following regressions from the simulated data,

Jt+1 = λ0 + λ1v̂t + εt+1,

for the cases of constant and affine jump intensity, and

Jt+1 = exp(λe0 + λe1v̂t) + εet+1,

for the case of exponential affine jump intensity, with the constant and v̂t−K as instrumen-
tal variables, where K = 100, Jt = 1 indicates a detected jump at t, zero otherwise, and
v̂t is the estimate of the diffusive variance. The significance level of the jump detection
tests is 0.01%. In the simulation, the jump intensity is specified as Λt = λ0 + λ1vt, where
λ0 = 20/Td, λ1 = 0 for the constant jump intensity case and λ0 = 10/Td, λ1 = 400 for
the affine jump intensity case, and Λt = exp(λe0 + λe1vt) with λe0 = 3.5− ln(Td), λ

e
1 = −35

for the exponential affine jump intensity case. Td = 252 × 26 is the number of intraday
returns in a year. The jump size is fixed at 4

√
vt for small jumps (SJ) and 6

√
vt for large

jumps (LJ). The diffusive variance estimators include: the bipower variation, BVt, the
exponentially weighted quantile realized variance, EQRVt, and the exponentially weighted
moving average with truncation, EMTt. Panel A1 and A2 report the correlation between
v̂t and v̂t−K . Panel B1 and B2 report the coefficient estimate of λ1 or λe1, λ̂1 or λ̂e1. Panel
C1 and C2 report the heteroscedasticity and serial correlation consistent t-statistic based
on the Newey-West procedure with 500 lags, t(λ̂1) or t(λ̂e1). Median and interquartile
range (in parentheses) from 5000 simulated samples are shown. Panels D1 and D2 (E1
and E2) report the proportions of t(λ̂1) < −2.326 or t(λ̂e1) < −2.326 (t(λ̂1) > 2.326 or
t(λ̂e1) > 2.326), from the 5000 simulated samples.

A1. Correlation Between v̂t and v̂t−K for Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt 0.834 0.831 0.810 0.787 0.836 0.836
( 0.04) ( 0.04) ( 0.05) ( 0.06) ( 0.04) ( 0.04)

EQRVt 0.783 0.783 0.758 0.744 0.784 0.784
( 0.04) ( 0.04) ( 0.06) ( 0.12) ( 0.04) ( 0.04)

EMTt 0.831 0.825 0.829 0.823 0.832 0.827
( 0.04) ( 0.04) ( 0.04) ( 0.04) ( 0.04) ( 0.04)
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A2. Correlation Between v̂t and v̂t−K for Consecutive Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt 0.823 0.782 0.767 0.683 0.835 0.829
( 0.04) ( 0.06) ( 0.06) ( 0.08) ( 0.04) ( 0.04)

EQRVt 0.783 0.783 0.769 0.767 0.784 0.784
( 0.04) ( 0.04) ( 0.05) ( 0.05) ( 0.04) ( 0.04)

EMTt 0.827 0.817 0.822 0.809 0.830 0.822
( 0.04) ( 0.04) ( 0.04) ( 0.04) ( 0.04) ( 0.04)

B1. λ̂1 or λ̂e1 for Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt -34.543 -25.613 84.552 201.049 -23.581 -23.334
( 35.28) ( 35.95) ( 42.28) ( 68.87) ( 11.00) ( 7.39)

EQRVt -24.479 -17.224 130.745 281.621 -20.893 -22.789
( 33.41) ( 37.64) ( 55.87) ( 86.67) ( 9.90) ( 7.54)

EMTt -1.883 4.634 234.099 409.457 -18.010 -20.951
( 42.12) ( 46.95) (105.16) ( 99.28) ( 13.02) ( 9.44)

B2. λ̂1 or λ̂e1 for Consecutive Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt -32.407 -26.092 54.263 114.358 -22.909 -22.650
( 35.41) ( 42.42) ( 38.42) ( 72.99) ( 11.79) ( 8.44)

EQRVt -24.636 -18.972 137.122 297.999 -20.862 -22.804
( 36.62) ( 48.43) ( 65.92) (100.52) ( 10.42) ( 8.77)

EMTt 8.555 24.263 219.912 395.943 -14.894 -18.325
( 41.74) ( 56.37) (103.60) (112.75) ( 12.84) ( 10.57)

C1. t(λ̂1) or t(λ̂e1) for Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt -1.957 -1.218 3.329 5.897 -3.682 -5.075
( 1.56) ( 1.56) ( 1.96) ( 2.89) ( 1.56) ( 1.67)

EQRVt -1.376 -0.789 4.145 6.477 -3.444 -4.662
( 1.69) ( 1.68) ( 2.23) ( 3.32) ( 1.48) ( 1.62)

EMTt -0.075 0.162 4.452 7.003 -2.815 -4.152
( 1.74) ( 1.56) ( 1.85) ( 2.93) ( 2.02) ( 2.39)
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C2. t(λ̂1) or t(λ̂e1) for Consecutive Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt -1.772 -1.043 2.482 3.716 -3.386 -4.091
( 1.75) ( 1.70) ( 1.59) ( 2.15) ( 1.35) ( 1.24)

EQRVt -1.268 -0.675 3.550 5.286 -3.208 -3.964
( 1.85) ( 1.67) ( 1.91) ( 2.95) ( 1.24) ( 1.23)

EMTt 0.314 0.676 3.813 5.638 -2.217 -3.014
( 1.54) ( 1.39) ( 1.53) ( 2.37) ( 1.65) ( 1.59)

D1. Proportion of t(λ̂1) < −2.326 or t(λ̂e1) < −2.326 for Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt 0.393 0.185 0.000 0.000 0.864 0.962
EQRVt 0.227 0.123 0.000 0.000 0.836 0.957
EMTt 0.064 0.019 0.000 0.000 0.620 0.808

D2. Proportion of t(λ̂1) < −2.326 or t(λ̂e1) < −2.326 for Consecutive Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt 0.354 0.182 0.000 0.000 0.833 0.946
EQRVt 0.228 0.120 0.000 0.000 0.814 0.937
EMTt 0.037 0.009 0.000 0.000 0.467 0.712

E1. Proportion of t(λ̂1) > 2.326 or t(λ̂e1) > 2.326 for Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt 0.000 0.001 0.785 0.967 0.000 0.000
EQRVt 0.000 0.004 0.900 0.976 0.000 0.000
EMTt 0.010 0.027 0.985 1.000 0.008 0.004

E2. Proportion of t(λ̂1) > 2.326 or t(λ̂e1) > 2.326 for Consecutive Jumps
Constant Affine Exponential Affine

SJ LJ SJ LJ SJ LJ

BVt 0.000 0.000 0.555 0.839 0.000 0.000
EQRVt 0.000 0.002 0.849 0.979 0.000 0.000
EMTt 0.019 0.057 0.953 0.997 0.017 0.007
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Table 6
List of Stock Indexes and Individual Stocks
This table lists two stock indexes and 30 individual stocks used in the empirical analysis.
The ticker, full name, start and end dates of the sample data of each index/stock are
shown.

No. Ticker Name Start Date End Date
1 SPX S&P 500 19860102 20121231
2 NDX Nasdaq Composite 19960102 20121231
3 AAPL Apple Inc 19940308 20121231
4 GOOG Google Inc 20040819 20121231
5 MSFT Microsoft Corp 19940308 20121231
6 YHOO Yahoo Inc 19960412 20121231
7 C Citigroup Inc 19930104 20121231
8 INTC Intel Corp 19940308 20121231
9 MO Altria Group Inc 19930104 20121231
10 GS Goldman Sachs Group Inc 19990504 20121231
11 IBM International Business Machs Co 19930104 20121231
12 RIMM Research In Motion Ltd 19990204 20121231
13 AMZN Amazon Com Inc 19970515 20121231
14 CSCO Cisco Systems Inc 19940308 20121231
15 BAC Bank Of America Corp 19930104 20121231
16 JPM JPMorgan Chase & Co 19930104 20121231
17 QCOM Qualcomm Inc 19940308 20121231
18 TWX Time Warner Inc 19940308 20121231
19 FCX Freeport McMoRan Copper & Gold 19951113 20121231
20 GE General Electric Co 19930104 20121231
21 XOM Exxon Mobil Corp 19991201 20121231
22 DELL Dell Inc 19940308 20121231
23 WMT Wal Mart Stores Inc 19930104 20121231
24 AIG American International Group Inc 19930104 20121231
25 CAT Caterpillar Inc 19930104 20121231
26 PFE Prizer Inc 19930104 20121231
27 T AT&T Inc 19930104 20121231
28 VZ Verizon Communications Inc 19930104 20121231
29 GM General Motors Corp 19930104 20090601
30 PG Procter & Gamble Co 19930104 20121231
31 MER Merrill Lynch & Co Inc 19930104 20081231
32 OXY Occidental Petroleum Corp 19930104 20121231
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Table 7
Testing the Relation Between Conditional Jump Intensity and Diffusive Vari-
ance
This table reports the results of testing a linear and a nonlinear relation between condi-
tional jump intensity and diffusive variance for the sample of stock indexes and individual
stocks. For the linear specification, the regression specification is

Jt+1 = λ0 + λ1v̂t + εt+1,

and for the nonlinear specification, it is

Jt+1 = exp(λe0 + λe1v̂t) + εet+1,

with the constant and v̂t−K as instrumental variables, where K = 100, Jt = 1 indicates a
detected jump at t, zero otherwise, and v̂t is the estimated diffusive variance. In Panel A,
v̂t is the exponentially weighted quantile realized variance, EQRVt, and in Panel B, v̂t is
the exponentially weighted moving average with truncation, EMTt. The significance level
of the jump detection tests is 0.01%. The estimate of λ1 multiplied by 0.01 or λe1, λ̂1 or
λ̂e1, and the heteroscedasticity and serial correlation consistent p-value for testing λ̂1 = 0
against λ̂1 > 0 or testing λ̂e1 = 0 against λ̂e1 < 0 based on the Newey-West procedure with
500 lags, p+(λ̂1) or p−(λ̂e1), are shown. The table also reports the time-series average of the
estimated diffusive volatility multiplied by 100

√
Td, m(

√
v̂t), and the standard deviation

of the estimated diffusive volatility multiplied by 100
√
Td, s(

√
v̂t), where Td = 252 × 26

is the number of intraday returns in a year. J̄ , J̄−, and J̄+ are annual intensities of all
jumps, negative jumps, and positive jumps, respectively. corr is the correlation between
v̂t and v̂t−K .
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A. EQRV

No. Ticker m(
√
v̂t) s(

√
v̂t) J̄ J̄− J̄+ corr λ̂1 p+(λ̂1) λ̂e1 p−(λ̂e1)

1 SPX 13.27 8.78 57.39 34.55 22.84 0.55 -2.78 1.00 -20.12 0.00
2 NDX 20.19 12.80 30.86 20.02 10.84 0.59 -1.19 1.00 -9.41 0.00
3 AAPL 42.24 21.21 56.85 28.34 28.51 0.56 -0.40 1.00 -0.90 0.00
4 GOOG 27.90 15.32 53.04 26.70 26.34 0.77 -0.94 1.00 -4.81 0.00
5 MSFT 28.18 14.05 33.62 16.51 17.11 0.68 -0.55 1.00 -2.37 0.00
6 YHOO 48.96 30.43 50.03 22.94 27.10 0.61 0.02 0.42 0.04 0.58
7 C 38.11 29.80 48.07 24.09 23.99 0.62 -0.07 0.97 -0.23 0.10
8 INTC 35.92 18.15 28.66 15.12 13.55 0.67 -0.34 1.00 -1.67 0.00
9 MO 23.77 12.04 51.24 28.11 23.13 0.53 -0.14 0.65 -0.28 0.36
10 GS 32.53 22.29 35.07 17.83 17.24 0.42 0.01 0.46 0.03 0.54
11 IBM 25.06 12.65 42.38 20.97 21.42 0.69 -0.38 0.96 -1.09 0.07
12 RIMM 56.49 33.14 60.85 28.10 32.75 0.65 0.00 0.48 0.01 0.52
13 AMZN 52.17 32.95 53.25 23.67 29.58 0.63 -0.05 0.80 -0.10 0.21
14 CSCO 37.59 20.60 32.83 16.74 16.09 0.58 -0.27 1.00 -1.08 0.01
15 BAC 32.46 26.72 38.82 20.97 17.85 0.72 -0.08 1.00 -0.34 0.04
16 JPM 32.53 19.99 40.07 20.61 19.46 0.66 -0.15 0.97 -0.47 0.06
17 QCOM 43.21 25.14 54.02 26.74 27.28 0.68 -0.19 0.99 -0.44 0.02
18 TWX 38.54 23.30 47.35 21.92 25.42 0.54 0.38 0.01 0.61 1.00
19 FCX 41.49 20.11 44.47 21.03 23.44 0.79 -0.12 0.99 -0.39 0.07
20 GE 26.45 15.98 37.96 19.11 18.85 0.75 -0.20 0.93 -0.73 0.14
21 XOM 22.31 12.69 32.18 18.09 14.09 0.65 -0.08 0.68 -0.29 0.34
22 DELL 39.85 20.59 39.74 19.98 19.76 0.57 0.05 0.37 0.11 0.63
23 WMT 26.35 13.42 32.94 17.00 15.94 0.62 -0.50 0.95 -1.80 0.07
24 AIG 39.24 44.36 63.36 28.96 34.39 0.27 -0.01 0.86 -0.03 0.19
25 CAT 29.41 14.02 42.48 20.41 22.07 0.70 -0.39 0.99 -1.33 0.04
26 PFE 25.46 10.79 39.47 20.86 18.60 0.58 -0.16 0.67 -0.41 0.34
27 T 24.78 12.59 37.41 20.01 17.40 0.73 -0.10 0.72 -0.30 0.29
28 VZ 24.35 12.23 42.89 21.82 21.07 0.66 -0.49 0.99 -1.53 0.02
29 GM 38.55 32.86 61.96 30.71 31.26 0.55 0.11 0.00 0.09 1.00
30 PG 21.30 10.40 39.97 19.41 20.56 0.60 0.11 0.38 0.27 0.62
31 MER 36.32 23.53 40.67 19.36 21.31 0.58 -0.08 0.89 -0.26 0.18
32 OXY 31.10 15.04 31.43 17.15 14.28 0.78 -0.39 1.00 -4.44 0.00
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Table 7 (Cont’d)

B. EMT

No. Ticker m(
√
v̂t) s(

√
v̂t) J̄ J̄− J̄+ corr λ̂1 p+(λ̂1) λ̂e1 p−(λ̂e1)

1 SPX 13.88 7.64 34.48 20.60 13.87 0.73 -1.28 0.97 -5.51 0.07
2 NDX 20.18 11.81 22.22 14.66 7.57 0.72 -0.83 1.00 -6.49 0.00
3 AAPL 47.08 23.69 30.03 15.67 14.36 0.54 -0.20 0.99 -0.83 0.02
4 GOOG 29.52 14.98 34.76 16.84 17.92 0.73 -0.40 1.00 -1.68 0.01
5 MSFT 30.49 14.60 18.95 9.37 9.58 0.64 -0.21 0.98 -1.34 0.04
6 YHOO 53.63 32.34 25.26 11.19 14.07 0.62 0.04 0.18 0.13 0.83
7 C 41.72 26.88 21.62 10.86 10.76 0.69 0.23 0.00 0.53 1.00
8 INTC 38.07 18.15 15.12 8.07 7.04 0.66 -0.15 1.00 -1.33 0.02
9 MO 26.26 12.73 26.60 15.09 11.52 0.53 0.56 0.04 1.68 0.99
10 GS 33.58 19.79 23.14 11.27 11.86 0.73 0.12 0.21 0.43 0.85
11 IBM 27.01 13.05 23.78 11.51 12.27 0.65 0.10 0.29 0.41 0.73
12 RIMM 61.76 34.71 35.00 16.12 18.88 0.64 0.03 0.22 0.08 0.79
13 AMZN 56.36 34.82 29.58 13.10 16.47 0.66 0.01 0.38 0.04 0.62
14 CSCO 40.33 21.09 16.96 9.75 7.21 0.61 -0.16 1.00 -1.24 0.01
15 BAC 34.73 23.41 21.02 11.71 9.30 0.79 0.19 0.00 0.53 1.00
16 JPM 34.86 19.47 23.18 12.32 10.86 0.67 0.04 0.32 0.15 0.69
17 QCOM 48.10 27.35 25.27 12.39 12.88 0.64 -0.03 0.78 -0.14 0.23
18 TWX 42.45 25.11 22.95 11.10 11.85 0.60 0.32 0.00 1.00 1.00
19 FCX 46.29 20.89 20.27 9.75 10.52 0.68 0.02 0.41 0.08 0.60
20 GE 29.03 16.37 19.86 9.85 10.01 0.58 0.11 0.17 0.48 0.88
21 XOM 23.93 11.69 16.70 9.85 6.85 0.74 0.23 0.05 1.04 0.98
22 DELL 43.73 21.80 19.60 10.94 8.66 0.62 -0.07 0.85 -0.38 0.18
23 WMT 29.40 14.57 18.15 9.86 8.30 0.70 -0.24 0.92 -1.46 0.10
24 AIG 42.00 33.74 32.43 15.34 17.10 0.83 0.17 0.06 0.25 1.00
25 CAT 31.99 14.20 21.42 11.06 10.36 0.65 0.09 0.26 0.39 0.76
26 PFE 27.98 11.56 21.12 11.56 9.55 0.52 0.08 0.35 0.36 0.65
27 T 27.23 13.02 18.20 9.65 8.55 0.67 0.31 0.02 1.32 0.99
28 VZ 27.46 14.43 22.07 11.92 10.16 0.47 0.13 0.16 0.47 0.89
29 GM 41.82 27.67 32.97 16.43 16.55 0.70 0.46 0.00 0.58 1.00
30 PG 23.64 11.44 19.81 9.85 9.95 0.58 0.00 0.50 0.01 0.50
31 MER 39.63 23.30 22.75 10.18 12.57 0.52 0.15 0.09 0.40 0.99
32 OXY 34.90 14.98 14.38 7.79 6.59 0.72 -0.19 0.89 -2.01 0.16
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Figure 1. Conditional Jump Intensity and Diffusive Variance (EQRVt)

This figure shows the nonparametric estimation of the annual jump intensity conditional

on the diffusive variance, TdE[Jt+1|v̂t], for a few stocks and the S&P 500 index, where

Jt = 1 indicates a detected jump at t, zero otherwise, v̂t is the estimated diffusive variance,

and Td is the number of intraday returns in a year. The solid line is the fitted curve. The

dashed lines cover the 90% confidence interval. The diffusive variance is estimated by the

exponentially weighted quantile realized variance, EQRVt.
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Figure 2. Conditional Jump Intensity and Diffusive Variance (EMTt)

This figure shows the nonparametric estimation of the annual jump intensity conditional

on the diffusive variance, TdE[Jt+1|v̂t], for a few stocks and the NASDAQ index, where

Jt = 1 indicates a detected jump at t, zero otherwise, v̂t is the estimated diffusive variance,

and Td is the number of intraday returns in a year. The solid line is the fitted curve. The

dashed lines cover the 90% confidence interval. The diffusive variance is estimated by the

exponentially weighted moving average with truncation, EMTt.
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