
Multitasking via Alternate and Shared Processing:

Algorithms and Complexity

Nicholas G. Hall ∗

Joseph Y.-T. Leung †

Chung-Lun Li ‡

∗ Fisher College of Business, The Ohio State University, Columbus, Ohio 43210; hall.33@osu.edu

† Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey

07102; leung@cis.njit.edu

‡ Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong; chung-lun.li@polyu.edu.hk; corresponding author

September 30, 2014

Revised November 6, 2015

Revised February 20, 2016

Revised March 17, 2016

This is the Pre-Published Version.https://doi.org/10.1016/j.dam.2016.03.018

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract

This work is motivated by disruptions that occur when jobs are processed by humans,

rather than by machines. For example, humans may become tired, bored, or distracted.

This paper presents two scheduling models with multitasking features. These models aim to

mitigate the loss of productivity in such situations. The first model applies “alternate period

processing” and aims either to allow workers to take breaks or to increase workers’ job variety.

The second model applies “shared processing” and aims to allow workers to share a fixed

portion of their processing capacities between their primary tasks and routine activities. For

each model, we consider four of the most widely studied and practical classical scheduling

objectives. Our purpose is to study the complexity of the resulting scheduling problems.

For some problems, we describe a fast optimal algorithm, whereas for other problems an

intractability result suggests the probable nonexistence of such an algorithm.

Keywords: Scheduling, motivations for multitasking, efficient algorithm, intractability.

1 Introduction

When jobs are processed by humans rather than machines, different issues arise. For example,

humans may become tired, bored, or distracted. These issues disrupt work and often result in

a significant loss of productivity. Hence, companies look for system designs that can alleviate

this loss. In this paper, we study a simple scheduling system that faces such disruptions,

and we propose and analyze two system designs for two different types of disruptions.

The first type of disruption involves workers becoming tired by long work hours or bored

by the repetitive nature of their work. As a response, we divide the time horizon into

alternating work periods of lengths τo and τe. We refer to the work periods of length τo

as odd periods and to the work periods of length τe as even periods. We require each task

to be processed either completely within the odd periods or completely within the even

periods. For example, a task that is partly processed in period 1 cannot be further processed

in period 2 or any other even periods; however, it can be processed further in period 3

or any other odd periods. An application of this design is to operate a service center in

two shifts, e.g., a day shift and a night shift, where one worker (or one team of workers)

serves the first shift, and another worker (or team) serves the second shift. Each task

can only be served by one worker (or team), and therefore must stay within either shift.

This system design offers advantages where confidentiality or personal service considerations

are important. Example applications include tax preparation, financial audit, legal, medical,

counseling, and other professional services. Further, operating the service center in two shifts

enables the company to increase the utilization of office space and to provide longer service

hours without disrupting the operation or overloading the workers. In this application, the

service center is viewed as a processor, and the workers’ (or teams’) availability imposes

a constraint on the job schedule. Another application allows a worker to divide his/her

workday into two periods and work on two different sets of tasks at two different locations

(e.g., a work office and a home office) during the two periods, thus providing greater personal

convenience and job variety. In this application, the worker is viewed as a processor, and

the office location imposes a constraint on the job schedule.

The second type of disruption involves workers becoming distracted, for example, by the

need to undertake routine tasks such as system maintenance or intraoffice communications.

1

In response, we propose a system design that allows a worker (or team) to continue work

on its main, or primary tasks. However, it allocates a fixed percentage, say 100 × (1 − e)%,

of its processing capacity to process routine scheduled activities as they occur. This allows

the routine scheduled activities, for example, administrative meetings, maintenance work, or

meal breaks, to be completed promptly without stopping the primary tasks. An application

of this design designates a two-hour lunch period per day, letting one half of the working

team have a one hour lunch break during each hour. In this example, the working team

is viewed as a processor, and e = 0.5. One advantage of this arrangement is to keep the

office open continuously so that no incoming request is missed. Another application allows

rotating Saturday shifts, where the company only maintains a fraction, for example 33%, of

the workforce every Saturday.

Both of these designs make use of the concept of multitasking, even though they are

developed for two very different motivations. The first design allows the processor to put

an unfinished task on hold and switch to another task, while the second design allows the

processor to process two tasks simultaneously with shared capacity. These designs are devel-

oped for application to a wide variety of situations. We anticipate that they could be used

as simple workplace rules which workers would be expected to follow. They are not intended

to be robust against all possible instances.

The concept of multitasking is a familiar one in computer systems. It can be defined

as follows, “In computing, multitasking is a method where multiple tasks, also known as

processes, share common processing resources such as a CPU” [1]. An operational defini-

tion of multitasking is that more than one task can be partially executed at the same time.

Sachdeva and Panwar [19] review various scheduling algorithms that are needed for multi-

tasking. Multitasking algorithms for generic applications are discussed by [7]. Models and

algorithms for efficient computer multitasking in specific applications have been studied by

various researchers. These include Noguera and Badia [17] and Steiger et al. [21] for recon-

figurable architectures, and Wang et al. [24] for energy-sensitive dynamic slack allocation.

Scheduling systems with human multitasking are studied by Hall et al. [8]. They iden-

tify several principal motivations for multitasking, and provide supporting references from

the literature of behavioral psychology, operations management, cognitive engineering, and

2

project management. Those motivations include:

(i) a need to feel or appear productive;

(ii) a need to demonstrate progress on different tasks or treat task owners equitably;

(iii) anxiety about the processing requirements of waiting tasks;

(iv) a need for variety in work; and

(v) interruption by routine scheduled activities.

Since classical scheduling algorithms typically fail to achieve optimal efficiency in the pres-

ence of multitasking, the authors develop new solution procedures for those problems. They

also study the extent by which multitasking increases scheduling cost or value. However, the

models developed in that work do not distinguish between different motivations for multi-

tasking. Hence, when a primary task is being processed, it is interrupted by all the unfinished

tasks. By contrast, our first system design can be viewed as a possible solution to motivation

(iv), while our second system design can be viewed as a possible solution to motivation (v).

Our first design is similar to the classical two-parallel-machine scheduling problem, how-

ever the first machine is unavailable during periods [τo, τo + τe], [2τo + τe, 2(τo + τe)], [2(τo +

τe) + τo, 3(τo + τe)], . . ., and the second machine is unavailable during periods [0, τo], [τo +

τe, 2τo + τe], [2(τo + τe), 2(τo + τe)+ τo], . . . Our second design is related to scheduling a single

machine with machine unavailability. For example, if e = 0, the worker (or team) becomes

unavailable whenever he/she encounters a scheduled routine activity. Hence, both designs

are scheduling models with some machine unavailability. Ma et al. [15] provide a survey of 85

papers on scheduling with deterministic machine unavailability periods. Kaabi and Harrath

[13] provide a survey of parallel machine scheduling with machine availability constraints.

More recent works within this research stream include [2, 9, 11, 14, 25], which consider

various single and parallel machine models with machine unavailability periods.

The scheduling environment that we consider, under both system designs, is as follows.

Consistent with the classical scheduling terminology, we refer to the work center as a “ma-

chine” and the tasks as “jobs.” We let N = {1, . . . , n} denote a given set of jobs with integer

data. Job j has a processing requirement pj > 0, and we let P =
∑n

j=1 pj . If job j has to

share processing capacity with other jobs, the time during which it is being processed may

exceed pj . In some of the problems we consider, job j also has a due date dj ≥ 0 and/or a

3

weight wj > 0, for j = 1, . . . , n. A single machine is available for processing the jobs.

In any feasible schedule σ, we let Cj(σ) denote the completion time of job j. We define

the lateness of job j as Lj(σ) = Cj(σ)−dj, and we let Lmax = max1≤j≤n{Lj}, and Uj(σ) = 1

if Cj(σ) > dj and Uj(σ) = 0 otherwise. Whenever the schedule being considered is clear

from context, we omit the argument σ.

We consider the minimization of four objective functions: the total weighted comple-

tion time
∑n

j=1 wjCj, the total completion time
∑n

j=1 Cj, the maximum lateness Lmax =

max1≤j≤n{Lj}, and the number of late jobs
∑n

j=1 Uj. These objectives are among the most

widely studied and best practically motivated objectives within the scheduling literature

[18]. Using the three-field α | β | γ notation introduced by Graham et al. [6], the classical

versions of these scheduling problems are denoted by 1 ||
∑

wjCj, 1 ||
∑

Cj, 1 || Lmax, and

1 ||
∑

Uj, respectively. We use “alt” in the β field to denote our first system design, and use

“share(e)” in the β field to denote our second system design.

The following indexing rules from classical scheduling theory are useful in our work. A

shortest weighted processing time (SWPT) sequence schedules the jobs in index order, where

w1/p1 ≥ · · · ≥ wn/pn [20]. A shortest processing time (SPT) sequence schedules the jobs in

index order, where p1 ≤ · · · ≤ pn [20]. An earliest due date (EDD) sequence schedules the

jobs in index order, where d1 ≤ · · · ≤ dn [12].

The remainder of the paper is organized as follows. Sections 2 and 3 consider the two

system designs described above. Within each section, we discuss the solvability of scheduling

problems with the four objectives defined above. Section 4 provides a conclusion and some

suggestions for future research.

2 Alternate Period Processing

As discussed in Section 1, our first system design divides the time horizon into work periods

of lengths τo and τe, where the two work periods alternate. We require each job to be

processed completely in the odd periods or completely in the even periods. This constraint

is implemented by the construction of odd-period schedules in periods 1, 3, 5, . . ., and even-

period schedules in periods 2, 4, 6, Hence, [0, τo], [τo + τe, 2τo + τe], [2(τo + τe), 2(τo + τe)+

4

τo], . . . are the odd-period intervals, while [τo, τo + τe], [2τo + τe, 2(τo + τe)], [3τo + 2τe, 3(τo +

τe)], . . . are the even-period intervals. For example, a job that is partly processed in period 1

cannot be processed further in period 2 or any even periods; however, it can be processed

further in period 3 or any other odd periods. Job preemption is allowed in this model. This

model has some similarities with the classical two-parallel-machine scheduling model if we

view the odd periods and even periods as two different machines. However, its solvability

is different from the classical two-parallel-machine scheduling model. For example, we show

in Section 2.2 below that problem 1 | alt |
∑

Cj is binary NP-hard, whereas the classical

problem P2||
∑

Cj is solvable in polynomial time [10]. In the following subsections, we

analyze problems 1 | alt |
∑

wjCj, 1 | alt |
∑

Cj, 1 | alt | Lmax, and 1 | alt |
∑

Uj.

2.1 Total weighted completion time

We first illustrate problem 1 | alt |
∑

wjCj with the following example: τo = τe = 10, n = 5,

(w1, w2, w3, w4, w5) = (2, 2, 2, 1, 1), and (p1, p2, p3, p4, p5) = (4, 7, 11, 6, 9). A feasible schedule

is shown in Figure 1, where jobs 1, 4, and 5 are processed in the odd periods, and jobs 2 and

3 are processed in the even periods. The total weighted completion time is w1C1 + w2C2 +

w3C3 + w4C4 + w5C5 = (2)(4) + (2)(17) + (2)(38) + (1)(10) + (1)(29) = 157.

� � ��
� � �

� � 	
� � �
� �

� � �� � � ��
� � � �

� � �

! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; <

= > ? @ A B C

Figure 1: Example of Problem 1 | alt |
∑

wjCj.

In order to analyze the solvability of the problem with a total weighted completion time

objective, we need the following preliminary result.

Lemma 1 Let x1, . . . , xm, z be m + 1 nonnegative integers which satisfy (i) x1 + · · ·+ xm =

mz, (ii) x1 + · · ·+ xi ≤ iz for i = 1, . . . , m, and (iii) 1x1 + 2x2 + · · ·+ mxm ≤ 1

2
m(m + 1)z.

Then, x1 = x2 = · · · = xm = z.

Proof. We first prove that, under conditions (i) and (ii), the quantity “1x1+2x2+· · ·+mxm”

is minimized if and only if x1 = x2 = · · · = xm = z. Suppose, to the contrary, that

5

1x1 + 2x2 + · · · + mxm is minimized, but there exists i ∈ {1, . . . , m} such that xi 6= z. Let

g = min{i | xi 6= z}. Clearly, xg < z, otherwise (ii) is violated. Condition (i) implies that

there exists i ∈ {g + 1, . . . , m} such that xi > z. Let h = min{i | xi > z}. Increasing xg

by 1 and decreasing xh by 1 simultaneously decreases the value of 1x1 + 2x2 + · · · + mxm

without violating conditions (i) and (ii), a contradiction. Hence, 1x1 + 2x2 + · · · + mxm is

not minimized unless x1 = x2 = · · · = xm = z. This implies that the minimum possible

value of 1x1 +2x2 + · · ·+mxm is 1z +2z + · · ·+mz = 1

2
m(m +1)z, which is attainable only

when x1 = x2 = · · · = xm = z. Therefore, from (iii), we have x1 = x2 = · · · = xm = z.

We now provide the main result of this subsection.

Theorem 1 The recognition version of problem 1 | alt |
∑

wjCj is unary NP-complete.

Proof. By reduction from the following problem, which is unary NP-complete [5]:

3-Partition: Given integers a1, . . . , a3m, where
∑

3m
j=1

aj = mb and b/4 < aj < b/2 for j =

1, . . . , 3m, does there exist a partition {S1, . . . , Sm} of {1, . . . , 3m} such that |Si| = 3 and
∑

j∈Si
aj = b, for i = 1, . . . , m?

Given an instance of 3-Partition, we construct an instance of problem 1 | alt |
∑

wjCj,

as follows:

n = 3m + 1;

pj = wj = M + aj, where M = 1

2
m(m + 1)b + 1, for j = 1, . . . , 3m;

p3m+1 = (m + 1)τ , where τ = 3M + b;

w3m+1 = 1

2
m(2m + 1)τ 2 + 1

2

∑

3m
j=1

(M + aj)
2 + 1;

τo = τe = τ ;

C = 1

2
m(2m + 1)τ 2 + 1

2

∑

3m
j=1

(M + aj)
2 + w3m+1(2m + 1)τ .

Clearly, this construction requires polynomial time. We show that there exists a solution

to this instance of problem 1 | alt |
∑

wjCj with
∑

wjCj ≤ C if and only if there exists a

solution to the given instance of 3-Partition.

(⇒) Let Si = {π3i−2, π3i−1, π3i}, i = 1, . . . , m, denote a solution to the given instance of

3-Partition, where (π1, . . . , π3m) is a permutation of (1, . . . , 3m). Consider the schedule

σ = (3m + 1, π1, π2, π3, 3m + 1, π4, π5, π6, 3m + 1, . . . , 3m + 1, π3m−2, π3m−1, π3m, 3m + 1),

where each portion of job 3m + 1 has length τ . In this schedule, job 3m + 1 is processed in

the odd periods, whereas the other jobs are processed in the even periods. The completion

6

times of jobs π3i−2, π3i−1, and π3i are iτ +
∑

3i−2

j=1
(M + aπj

), iτ +
∑

3i−1

j=1
(M + aπj

), and

iτ +
∑

3i
j=1(M +aπj

), respectively, for i = 1, . . . , m. Thus, the total weighted completion time

of jobs 1, . . . , 3m is

m
∑

i=1

{

(M+aπ3i−2
)

[

iτ+
3i−2
∑

j=1

(M+aπj
)

]

+(M+aπ3i−1
)

[

iτ +
3i−1
∑

j=1

(M+aπj
)

]

+(M+aπ3i
)

[

iτ+
3i
∑

j=1

(M+aπj
)

]}

=
m
∑

i=1

iτ (3M + aπ3i−2
+ aπ3i−1

+ aπ3i
) +

3m
∑

j=1

j
∑

r=1

(M + aj)(M + ar)

= τ 2

m
∑

i=1

i +
3m
∑

j=1

j
∑

r=1

(M + aj)(M + ar)

=
1

2
m(m + 1)τ 2 +

1

2

[

3m
∑

j=1

(M + aj)

]2

+
1

2

3m
∑

j=1

(M + aj)
2

=
1

2
m(2m + 1)τ 2 +

1

2

3m
∑

j=1

(M + aj)
2.

The weighted completion time of job 3m + 1 is w3m+1(2m + 1)τ . Hence,
∑

wjCj = C .

(⇐) Suppose that there exists a feasible schedule σ for the above instance of problem

1 | alt |
∑

wjCj with
∑

wjCj ≤ C . Since all job processing times are integer, there must exist

a feasible schedule σ′ with
∑

wjCj ≤ C where all job completion times are integer. Since

w3m+1[(2m + 1)τ + 1] > C, schedule σ′ must process job 3m + 1 consecutively in the odd-

period schedule; that is, job 3m+1 is processed in periods [0, τ], [2τ, 3τ], . . . , [2mτ, (2m+1)τ].

This leaves periods [τ, 2τ], [3τ, 4τ], . . . , [(2m− 1)τ, 2mτ] for the processing of jobs 1, . . . , 3m.

We observe that, for the
∑

wjCj objective, it is not possible to reduce cost by allowing

one job to preempt another. Consequently, there must also exist a feasible schedule σ′′ such

that (i)
∑

wjCj ≤ C , (ii) jobs 1, . . . , 3m are processed in periods [τ, 2τ], [3τ, 4τ], . . . , [(2m−

1)τ, 2mτ], and (iii) jobs 1, . . . , 3m do not preempt each other (i.e., they only preempt job

3m + 1). Let F (σ′′) denote the total weighted completion time of the jobs in schedule σ′′.

Consider jobs 1, . . . , 3m in schedule σ′′. For i = 1, . . . , m, let Si = {xi,1, . . . , xi,|Si|}

denote the subset of jobs that finish processing in the time interval [(2i−1)τ, 2iτ], where xi,l

is processed before xi,l+1 for l = 1, . . . , |Si| − 1. Note that

|S1| + |S2| + · · · + |Sm| = 3m. (1)

For i = 1, . . . , m, because M > ib, we have (3i + 1)M > iτ . Thus, since each job has a

processing time greater than M , it is impossible to finish processing more than 3i jobs in

7

total in the time intervals [τ, 2τ], [3τ, 4τ], . . . , [(2i− 1)τ, 2iτ]. Hence,

|S1| + |S2| + · · · + |Si| ≤ 3i for i = 1, . . . , m. (2)

For i = 1, . . . , m and l = 1, . . . , |Si|, the completion time of job xi,l is iτ +
∑i−1

r=1

∑|Sr|
s=1(M +

axr,s) +
∑l

s=1(M + axi,s
). Thus,

F (σ′′) =
m
∑

i=1

|Si|
∑

l=1

(M + axi,l
)

[

iτ +
i−1
∑

r=1

|Sr |
∑

s=1

(M + axr,s) +
l
∑

s=1

(M + axi,s
)

]

+ w3m+1(2m + 1)τ

=
m
∑

i=1

iτ
|Si|
∑

l=1

(M + axi,l
) +

3m
∑

j=1

j
∑

r=1

(M + aj)(M + ar) + w3m+1(2m + 1)τ

= τM
m
∑

i=1

i|Si| +
m
∑

i=1

iτ
|Si|
∑

l=1

axi,l
+

1

2

[3m
∑

j=1

(M + aj)
]2

+
1

2

3m
∑

j=1

(M + aj)
2 + w3m+1(2m + 1)τ

= τM
m
∑

i=1

i|Si| +
m
∑

i=1

iτ
|Si|
∑

l=1

axi,l
+

1

2
m2τ 2 +

1

2

3m
∑

j=1

(M + aj)
2 + w3m+1(2m + 1)τ.

Since F (σ′′) ≤ C , we have

τM
m
∑

i=1

i|Si| +
m
∑

i=1

iτ
|Si|
∑

l=1

axi,l
+

1

2
m2τ 2 ≤

1

2
m(2m + 1)τ 2.

After simplification, we have

M
m
∑

i=1

i|Si| +
m
∑

i=1

i
|Si|
∑

l=1

axi,l
≤

1

2
m(m + 1)τ. (3)

Hence,

M
m
∑

i=1

i|Si| ≤
3

2
m(m + 1)M +

1

2
m(m + 1)b.

Since M ,
∑m

i=1 i|Si|, and 3

2
m(m + 1) are integers and M > 1

2
m(m + 1)b, we have

m
∑

i=1

i|Si| ≤
3

2
m(m + 1). (4)

From (1), (2), (4), and Lemma 1, we conclude that |S1| = · · · = |Sm| = 3. Thus, inequality

(3) can be rewritten as

M
m
∑

i=1

3i +
m
∑

i=1

i
3
∑

l=1

axi,l
≤

1

2
m(m + 1)τ,

which implies that
m
∑

i=1

i
3
∑

l=1

axi,l
≤

1

2
m(m + 1)b. (5)

8

Observe that the total processing time of the jobs in S1 ∪ · · · ∪Si is at most iτ , and that the

total processing time of the jobs in S1 ∪ · · · ∪ Sm is equal to mτ . Hence,

i
∑

r=1

3
∑

l=1

axr,l
≤ ib for i = 1, . . . , m (6)

and
m
∑

i=1

3
∑

l=1

axi,l
= mb. (7)

Then, from (5), (6), (7), and Lemma 1, we have

3
∑

l=1

axi,l
= b

for i = 1, . . . , m. Therefore, {S1, . . . , Sm} forms a 3-partition of {1, . . . , 3m}.

2.2 Total completion time

We first present a property of the problem with total completion time objective.

Lemma 2 In problem 1 | alt |
∑

Cj, there exists an optimal schedule in which the jobs within

each of the odd-period and even-period schedules are processed in SPT order with no inserted

idle time in that schedule.

Proof. Clearly, in any optimal schedule, there is no inserted idle time in the odd-period

schedule and in the even-period schedule. Suppose, in contradiction of the SPT order, that

there exists an optimal schedule σ in which there are two jobs i and j, such that (i) these two

jobs are in the same, either odd-period or even-period, schedule; (ii) pi < pj; and (iii) job j

immediately precedes job i. Then, consider an alternative schedule σ′, where jobs i and j are

interchanged but they both remain within the same schedule. Observe that Cj(σ
′) = Ci(σ),

where both completion times include the same number of interruptions of processing, during

the processing of the other schedule. Furthermore, since pi < pj , we have Ci(σ
′) < Cj(σ),

where the number of interruptions of processing before Ci(σ
′) is no larger than that before

Cj(σ). Hence,
∑

Cj(σ
′) <

∑

Cj(σ), which contradicts the optimality of schedule σ.

Based on Lemma 2, we propose the following dynamic programming algorithm for prob-

lem 1 | alt |
∑

Cj. In this dynamic program, we assign some jobs to the odd periods and

9

some jobs to the even periods. A job that cannot complete within an odd (respectively,

even) period is continued in the next odd (respectively, even) period.

Algorithm AltC

Preprocessing:

Index the jobs in SPT order, i.e., p1 ≤ · · · ≤ pn.

Optimal value function:

fj(to) = minimum total completion time of a schedule of jobs 1, . . . , j that schedules total

time to in the odd-period schedule, for j = 0, 1, . . . , n and to = 0, 1, . . . ,
∑j

i=1 pi.

Boundary conditions:

f0(0) = 0.

fj(to) = +∞ if to < 0 or to >
∑j

i=1 pi, for j = 0, 1, . . . , n.

Recurrence relation:

For j = 1, . . . , n and to = 0, 1, . . . ,
∑j

i=1 pi,

fj(to) = min

{

fj−1(to−pj)+
⌈

to − τo

τo

⌉

τe+to, fj−1(to)+

(

⌈

∑j
i=1 pi − to − τe

τe

⌉

+1

)

τo+
j
∑

i=1

pi−to

}

.

Optimal solution value:

min0≤to≤P{fn(to)}.

In the recurrence relation, the first term of the minimization is the cost of including job

j in the odd-period schedule, where “d(to − τo)/τoeτe + to” is the completion time of job j,

which includes the amount of time d(to − τo)/τoeτe in the even periods and the amount of

time to in the odd periods. The second term is the cost of including job j in the even-period

schedule, where “(d(
∑j

i=1 pi − to− τe)/τee+1)τo +
∑j

i=1 pi − to” is the completion time of job

j, which includes the amount of time (d(
∑j

i=1 pi − to − τe)/τee+ 1)τo in the odd periods and

the amount of time
∑j

i=1 pi − to in the even periods.

We now present the main result of this subsection.

Theorem 2 Algorithm AltC finds an optimal schedule for problem 1 | alt |
∑

Cj in O(nP)

time.

Proof. The sequencing of the jobs in SPT order in both the odd-period and even-period

schedules is justified by Lemma 2. The recurrence relation compares the cost of scheduling

10

the next shortest processing time job within either the odd-period or the even-period sched-

ule, and therefore compares the cost of all possible schedules. The optimal value function is

computed for j = 1, . . . , n and to = 0, 1, . . . , P . If we precompute the partial sums
∑j

i=1 pi,

for j = 1, . . . , n, then each application of the recurrence relation requires only constant time.

Therefore, the overall computational requirement of Algorithm AltC is O(nP) time.

The running time of Algorithm AltC is pseudopolynomial. The following result shows

that the existence of a polynomial time algorithm for problem 1 | alt |
∑

Cj is unlikely.

Theorem 3 The recognition version of problem 1|alt|
∑

Cj is binary NP-complete.

Proof. By reduction from the following problem, which is binary NP-complete [5]:

Even-Odd Partition: Given integers a2i−1 and a2i for i = 1, . . . , m, where a1 < · · · < a2m

and
∑

2m
i=1 ai = 2b, does there exist a partition {S1, S2} of {1, . . . , 2m} such that a2i−1 and a2i

are in different sides of the partition for i = 1, . . . , m and that
∑

j∈S1
aj =

∑

j∈S2
aj = b?

For a given instance of the Even-Odd Partition problem, let ∆ = 1

2

∑m
j=1

(a2j − a2j−1).

Without loss of generality, we may assume that the given instance satisfies the constraints

that a2 > a1 > ∆ and a2i > a2i−1 >
∑

2i−2
j=1 aj for each 2 ≤ i ≤ m. If the instance

does not satisfy the constraints, then we construct another instance {a′
1, a

′
2, . . . , a

′
2m} that

satisfies the constraints. The construction is performed as follows (see [4] for a similar

construction): a′
1 = a1 + ∆, a′

2 = a2 + ∆, and for each i = 2, . . . , m, a′
2i−1 = a2i−1 +

∑

2i−2
j=1 a′

j

and a′
2i = a2i +

∑

2i−2
j=1 a′

j. Clearly, the construction can be performed in polynomial time,

and the two instances have the same answer. In the following, we assume that the given

instance of Even-Odd Partition satisfies the constraints.

Given an instance of Even-Odd Partition which satisfies the above constraints, we con-

sider the following instance of problem 1|alt|
∑

Cj, where M =
∑m

i=1(m− i + 1)(a2i−1 + a2i):

n = 2m;

pj = M + aj, for j = 1, . . . , 2m;

τo = τe = τ , where τ = mM + b;

C = mτ + m(m + 1)M + M .

Clearly, this construction requires polynomial time. We show that there exists a solution to

this instance of problem 1|alt|
∑

Cj with
∑

Cj ≤ C if and only if there exists a solution to

the given instance of Even-Odd Partition.

11

(⇒) Let S1 = {s′
1
, . . . , s′m} and S2 = {s′′

1
, . . . , s′′m} denote a solution to the given instance of

Even-Odd Partition, where {s′i, s
′′
i } = {2i − 1, 2i} for i = 1, . . . , m. Consider the schedule

σ = (s′
1
, . . . , s′m, s′′

1
, . . . , s′′m)

with no idle time between the jobs. Note that
∑m

i=1 ps′
i
= mM +

∑m
i=1 as′

i
= mM +

∑

j∈S1
aj =

τ and
∑m

i=1 ps′′
i

= mM +
∑m

i=1 as′′
i

= mM +
∑

j∈S2
aj = τ . Thus, jobs s′1, . . . , s

′
m are processed

within the odd period [0, τo], and jobs s′′
1
, . . . , s′′m are processed within the even period [τo, τo+

τe]. Furthermore,

n
∑

j=1

Cj =
∑

j∈S1

Cj +
∑

j∈S2

Cj

=

[

m
∑

i=1

(m − i + 1)ps′i

]

+

[

mτ +
m
∑

i=1

(m− i + 1)ps′′i

]

= mτ +
m
∑

i=1

(m − i + 1)(M + as′i
) +

m
∑

i=1

(m − i + 1)(M + as′′i
)

= mτ + m(m + 1)M +
m
∑

i=1

(m − i + 1)(as′
i
+ as′′

i
) = C.

(⇐) Suppose that there exists a feasible schedule for the above instance of problem 1|alt|
∑

Cj

with
∑

Cj ≤ C . Since τ < (m + 1)M and pj > M for j = 1, . . . , 2m, at most m jobs can

start and end within a period. If m jobs are processed within the period [0, τ] and m jobs

are processed within the period [τ, 2τ], then the total completion time of jobs is greater than
∑m

i=1 iM +
∑m

i=1(τ + iM) = mτ +m(m+1)M , regardless of which jobs are processed in each

period. Further, if any job completes after time 2τ , this increases the total completion time

by at least τ > M . Thus, if there is a job completed after time 2τ , the total completion time

of jobs is greater than mτ + m(m + 1)M + M = C . Hence, exactly m jobs are processed

within the time period [0, τ], and exactly m jobs are processed within the time period [τ, 2τ].

Let S1 and S2 denote the set of jobs scheduled in the first and second period, respectively.

Therefore,
∑

j∈S1
pj =

∑

j∈S2
pj = mM + b, which implies that

∑

j∈S1
aj =

∑

j∈S2
aj = b.

Finally, we show that, for each i = 1, . . . , m, the jobs 2i − 1 and 2i cannot both be

processed within the same period. Assume to the contrary that k denotes the largest index

such that the jobs 2k − 1 and 2k are both scheduled in the same period. Thus, for i =

k + 1, . . . , m, jobs 2i− 1 and 2i are scheduled in different periods. In the period where both

jobs are processed, there are k − 2 jobs processed before jobs 2k − 1 and 2k, and each of

12

these k − 2 jobs has a processing time greater than M , where k ≥ 2. Between jobs 2i − 1

and 2i, let si denote the job that is scheduled in the same period as jobs 2k − 1 and 2k, for

i = k + 1, . . . , m. Then, the total processing time of jobs scheduled in this period is at least

(k − 2)M + p2k−1 + p2k +
m
∑

i=k+1

psi
= mM + a2k−1 + a2k +

m
∑

i=k+1

asi

≥ mM + a2k +
m
∑

i=k

a2i−1

> mM +
2k−2
∑

j=1

aj +
m
∑

i=k

a2i−1

≥ mM + a2 +
m
∑

i=1

a2i−1

= mM + a2 +
1

2

m
∑

i=1

(a2i−1 + a2i) − ∆

> mM +
1

2

m
∑

i=1

(a2i−1 + a2i)

= mM + b,

where the second inequality follows from the constraint “a2i >
∑

2i−2
j=1 aj,” and the fourth

inequality follows from the constraint “a2 > ∆.” This implies that the m jobs cannot com-

plete their processing within this period, a contradiction. Therefore, {S1, S2} constitutes a

solution to the Even-Odd Partition problem.

2.3 Maximum lateness

We first present a property of the problem with maximum lateness objective.

Lemma 3 In problem 1 | alt | Lmax, there exists an optimal schedule in which the jobs within

each of the odd-period and even-period schedules are processed in EDD order with no inserted

idle time in that schedule.

Proof. Clearly, in any optimal schedule, there is no inserted idle time in the odd-period

schedule and in the even-period schedule. Suppose that there exists an optimal schedule

σ in which there are two jobs i and j, such that (i) these two jobs are in the same, either

odd-period or even-period, schedule; (ii) di < dj ; and (iii) job j immediately precedes job

i. Then, consider an alternative schedule σ′, where jobs i and j are interchanged but both

remain within the same schedule. Observe that Cj(σ
′) = Ci(σ), where both completion

13

times include the same number of interruptions of processing, during the processing of the

other schedule. Furthermore, since di < dj, we have Lj(σ
′) < Li(σ). Clearly, Li(σ

′) < Li(σ).

Thus, Lmax(σ
′) ≤ Lmax(σ). Hence, σ′ is also optimal. Repeating this process, we obtain an

optimal schedule in which the jobs within each of the odd-period and even-period schedules

are arranged in EDD order.

Based on Lemma 3, we propose the following dynamic programming algorithm for prob-

lem 1 | alt | Lmax.

Algorithm AltL

Preprocessing:

Index the jobs in EDD order, i.e., d1 ≤ · · · ≤ dn.

Optimal value function:

fj(t) = minimal maximum lateness of a schedule of jobs 1, . . . , j that schedules total time

t in the odd-period schedule, for j = 0, 1, . . . , n and t = 0, 1, . . . ,
∑j

i=1 pi.

Boundary conditions:

f0(0) = −∞.

fj(t) = +∞ if t < 0 or t >
∑j

i=1 pi, for j = 0, 1, . . . , n.

Recurrence relation:

For j = 1, . . . , n and t = 0, 1, . . . ,
∑j

i=1 pi,

fj(t) = min
{

max {fj−1(t − pj), d(t − τo)/τoeτe + t − dj},

max {fj−1(t), (d(
∑j

i=1 pi − t− τe)/τee + 1)τo +
∑j

i=1 pi − t− dj}
}

.

Optimal solution value:

min0≤t≤P {fn(t)}.

In the recurrence relation, the quantity “max {fj−1(t−pj), d(t−τo)/τoeτe + t−dj}” is the

cost of including job j in the odd-period schedule. In this expression, “d(t − τo)/τoeτe + t”

is the completion time of job j, which includes the amount of time “d(t − τo)/τoeτe” in the

even periods and the amount of time t in the odd periods. Thus, “d(t− τo)/τoeτe + t− dj” is

the lateness of job j. Similarly, the quantity “max {fj−1(t), (d(
∑j

i=1 pi − t− τe)/τee + 1)τo +
∑j

i=1 pi − t− dj}” is the lateness cost of including job j in the even-period schedule.

We now present the main result of this subsection.

14

Theorem 4 Algorithm AltL finds an optimal schedule for problem 1 | alt | Lmax in O(nP)

time.

Proof. Similar to the proof of Theorem 2.

The running time of Algorithm AltL is pseudo-polynomial. The following result shows

that the existence of a polynomial time algorithm for problem 1 | alt | Lmax is unlikely.

Theorem 5 The recognition version of problem 1 | alt | Lmax is binary NP-complete.

Proof. By reduction from the following problem, which is binary NP-complete [5].

Partition: Given integers a1, . . . , am where
∑m

i=1
ai = 2b, does there exist a partition {S1, S2}

of {1, . . . , m} where
∑

j∈S1
aj =

∑

i∈S2
aj = b?

Given an instance of Partition, we consider an instance of problem 1 | alt | Lmax defined

as follows:

n = m;

pj = aj, for j = 1, . . . , n;

dj = 2b, for j = 1, . . . , n;

τo = τe = b;

L = 0.

There exists a solution to this instance of problem 1 | alt | Lmax with Lmax ≤ L if and

only if all n jobs are processed within the time interval [0, τo + τe], i.e., if and only if each

job is processed either in the interval [0, τo] or in the interval [τo, τo + τe]. Hence, there exists

a solution to this instance of problem 1 | alt | Lmax with Lmax ≤ L if and only if there exists

a solution to the given instance of Partition.

2.4 Number of late jobs

To solve problem 1 | alt |
∑

Uj, we place the late jobs at the end of the schedule. The on-time

jobs need to be completed by their due dates. Some of the on-time jobs are assigned to the

odd periods, and some of them are assigned to the even periods. We propose the following

dynamic programming algorithm:

Algorithm AltU

15

Preprocessing:

Index the jobs in EDD order, i.e., d1 ≤ · · · ≤ dn.

Optimal value function:

fj(k, to) = minimum total processing time of on-time jobs in the even periods of a schedule

from jobs 1, . . . , j, such that exactly k of those jobs are late and the total processing time

of on-time jobs in the odd periods is to, where fj(k, to) = +∞ if no such schedule exists,

for j = 0, 1, . . . , n; k = 0, 1, . . . , j; to = 0, 1, . . . ,
∑j

i=1 pi.

Boundary conditions:

f0(0, 0) = 0.

f0(0, to) = +∞ if to 6= 0.

fj(k, to) = +∞ if k > j or to < 0 or to + (d to
τo
e − 1)τe > dj .

Recurrence relation:

For j = 1, . . . , n, k = 0, 1, . . . , j, and to = 0, 1, . . . ,
∑j

i=1 pi such that to +(d to
τo
e−1)τe ≤ dj,

fj(k, to) = min{fj−1(k − 1, to), fj−1(k, to − pj), ej(k, to)},

where

ej(k, to) =

{

fj−1(k, to) + pj , if fj−1(k, to) + pj + d(fj−1(k, to) + pj)/τeeτo ≤ dj;

+∞, otherwise.

Optimal solution value:

min{k | to + fn(k, to) ≤ P for some to = 0, 1, . . .}.

In the recurrence relation, the condition “to + (d to
τo
e − 1)τe ≤ dj” ensures that the com-

pletion of the last on-time job in the odd-period schedule does not exceed dj . The first term

of the minimization is for the case where job j is a late job. The second (respectively, third)

term is for the case where job j is an on-time job and scheduled in an odd (respectively,

even) period. The last case is only available if job j completes on time when it is scheduled

in an even period, i.e., if fj−1(k, to) + pj + d(fj−1(k, to) + pj)/τeeτo ≤ dj .

We now present the main result of this subsection.

Theorem 6 Algorithm AltU finds an optimal schedule for problem 1 | alt |
∑

Uj in O(n2P)

time.

16

Proof. The sequencing of the on-time jobs in EDD order in both the odd-period and even-

period schedules is justified by Lemma 3. The recurrence relation compares the cost of

scheduling the next job to be a late job, or to be an on-time job scheduled in an odd period,

or to be an on-time job scheduled in an even period. Therefore, it compares the cost of all

possible schedules. The optimal value function is computed for j = 1, . . . , n, k = 0, 1, . . . , j,

and to = 0, 1, . . . ,
∑j

i=1 pi, and each computation requires constant time. Therefore, the

overall computational requirement of Algorithm AltU is O(n2P) time.

The running time of Algorithm AltU is pseudo-polynomial. The following result shows

that the existence of a polynomial time algorithm for problem 1 | alt |
∑

Uj is unlikely.

Corollary 1 The recognition version of problem 1 | alt |
∑

Uj is binary NP-complete.

Proof. Follows from Theorem 5.

3 Shared Processing with Routine Activities

In our second system design, we are given a set of n primary jobs N = {1, . . . , n} and a set

of n̄ routine jobs N̄ = {n + 1, . . . , n + n̄}. If a primary job is in progress when a time period

is reached at which a routine job is required, then processing is shared between the two jobs.

The share of processing given to the continuation of the primary job is denoted by e, and

the remaining share 1− e is used for the routine job, where e is a rational number such that

0 ≤ e ≤ 1. We let rj denote the time at which routine job j becomes due for processing.

The primary jobs are all available for processing at time t = 0, but the routine jobs have

different release times. For the applications mentioned in Section 1, their release times are

known in advance. If the primary job completes before the routine job, then we immediately

start the next primary job so that it will share the processor with the routine job. On

the other hand, if the routine job completes before the primary job, the primary job will

have access to a full processor unless there is another routine job waiting for processing.

No primary job can preempt another primary job, and no routine job can preempt another

routine job. Without loss of generality, we assume that the routine jobs are serviced according

to a first-come-first-serve rule. That is, if two routine jobs arrive at almost the same time,

17

then the job that arrives first is processed first. When it completes, the second routine job

is processed. The primary jobs follow some sequence which we discuss below.

In many practical situations, the relative priority given to routine activities is determined

by established rule. This is because those activities are essential to the maintenance of

the processing system, and also because the value of e > 0 represents the urgency of the

primary jobs. For example, in systems where the on-time performance of routine jobs is

critical, a relatively low value of e is appropriate. Hence, we model the value of e as a

constant, independent of the set of primary jobs that define an instance. This assumption

is generally used when modeling interruption by routine work as a vacation in a queueing

system [3, 22]. The requirement of processor sharing ensures the processing of the routine

jobs with reasonable promptness. We observe that the completion times of the routine jobs

are independent of the sequencing decision of the primary jobs. Hence, we do not include

the completion time cost of the routine jobs in our objective.

3.1 Total weighted completion time

We consider the solvability of problem 1 | share(e) |
∑

wjCj, for any given e ∈ [0, 1]. We

begin with comments about two special cases of the problem. First, when e = 0, the

problem becomes a scheduling problem with machine availability constraints and a total

weighted completion time objective. Wang et al. [23] show that this problem is unary NP-

hard. However, their proof does not apply here when e > 0. Second, when e = 1, the

problem is easily solved. All the primary jobs are scheduled without interruption according

to the SWPT rule, and then following their completion, the routine jobs are scheduled.

It is somewhat intuitive that the SWPT rule may sequence the primary jobs optimally for

1 | share(e) |
∑

wjCj. However, the following example shows that this is not the case.

Example 1: Consider two primary jobs (jobs 1 and 2) and one routine job (job 3). The

sharing proportion is e = 0.5. Job 1 has w1 = 1 and p1 = 1. Job 2 has w2 = 2.1 and p2 = 2.

Job 3’s release time is 1 and its processing requirement is 1. The SWPT rule schedules job 2

before job 1, with
∑

wjCj = (2.1)(3) + (1)(4) = 10.3 (see Figure 2(a)). An optimal solution

schedules job 1 before job 2, with
∑

wjCj = (1)(1)+(2.1)(4) = 9.4 (see Figure 2(b)). Hence,

the SWPT schedule is not optimal.

18

D E F G H I J K L M N O P Q N D R F S T U V W E Q K L M N O P Q N

X Y Z [
\] ^ _

` a b c d e f g

h i j k l m n o p q r s o n t u v w x y w z { w | } ~� �

� � � �
� � � �

� � � � � � � �

� ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª ¦ ¥ « ¬ ® ¯ ° ® ± ² ® ³ ´ µ¶ · ¸ ¹ · º ¶ » ¼ ½ ¾ · ¿ À » Á ½ Á Â Ã · ¿ Ä Å

Figure 2: Example of Problem 1 | share(0.5) |
∑

wjCj.

Theorem 7 For any rational number e ∈ (0, 1), the recognition version of problem

1 | share(e) |
∑

wjCj is unary NP-complete.

Proof. We show the NP-completeness of 1 | share(e) |
∑

wjCj by reduction from 3-Partition,

as defined in the proof of Theorem 1. Given an arbitrary instance of 3-Partition, we con-

struct an instance of problem 1 | share(e) |
∑

wjCj as follows:

n = 4m;

n̄ = m;

wj = pj = eâj, where âj = M + aj and M = (2 + e)mb, for j = 1, . . . , 3m;

wj = pj = e(L − b̂) + L, where b̂ = 3M + b and L = mb̂ + 1, for j = 3m + 1, . . . , 4m;

pj = (1 − e)L, for j = 4m + 1, . . . , 5m;

rj = 2(j − 4m − 1)L, for j = 4m + 1, . . . , 5m;

C = e
2
[
∑

3m
j=1

â2
j + m2b̂2 + m(m − 1)b̂(2L − b̂) + 2m(m + 1)(L − b̂)L] + m(m + 1)L2.

Clearly, this construction requires polynomial time. Note that the wj and pj values in this

constructed instance are rational numbers. They can be converted into integers through

multiplying all these values by an appropriate integer. For simplicity, we ignore this conver-

sion. We show that there exists a solution to this instance of problem 1 | share(e) |
∑

wjCj

with
∑

wjCj ≤ C if and only if there exists a solution to the given instance of 3-Partition. In

this construction, jobs 1, . . . , 4m are primary jobs, whereas jobs 4m + 1, . . . , 5m are routine

jobs. We refer to jobs 1, . . . , 3m as “small jobs” and jobs 3m + 1, . . . , 4m as “large jobs.”

(⇒) Let Si = {π3i−2, π3i−1, π3i}, i = 1, . . . , m, denote a solution to the given instance of

3-Partition, where (π1, . . . , π3m) is a permutation of (1, . . . , 3m). Then, aπ3i−2
+aπ3i−1

+aπ3i
=

b, âπ3i−2
+ âπ3i−1

+ âπ3i
= b̂, and pπ3i−2

+ pπ3i−1
+ pπ3i

= eb̂, for i = 1, . . . , m. Consider the

schedule depicted in Figure 3. In this schedule, the processing of jobs 1, . . . , 3m is shared

19

Æ Ç ÈÉ
Ê Ë Ì Í Î Ï

Ð Ñ Ò Ó

Ô Õ Ö ×
Ø Ù Ú Û Ü Ý

Þ ß à á
ââ ã ä å æ

ç è é êê ë ì í îï ð ñ ò ó
ô õ ö ÷ ø÷ øù ú û ü ýü ýþ ÿ � �

� �

Figure 3: Schedule for the Given Instance of 3-Partition.

with the routine jobs. Thus, for j = 1, . . . , 3m, job j requires pj/e = âj units of time to

process. The processing of jobs 3m+1, . . . , 4m is partially shared with the routine jobs. For

j = 3m + 1, . . . , 4m, job j shares the processing capacity with a routine job during the time

period [2(j − 1)L + b̂, 2(j − 1)L + L]. During this period, e(L − b̂) processing units of job

j are completed. The remainder of job j is processed during the time period [2(j − 1)L +

L, 2jL]. Hence, for i = 1, . . . , m, the completion times of small jobs π3i−2, π3i−1, and π3i are

2(i−1)L+ âπ3i−2
, 2(i−1)L+ âπ3i−2

+ âπ3i−1
, and 2(i−1)L+ âπ3i−2

+ âπ3i−1
+ âπ3i

, respectively,

and the completion time of large job 3m + i is 2iL. The total weighted completion time of

jobs 1, . . . , 4m is

m
∑

i=1

{

eâπ3i−2
[2(i − 1)L + âπ3i−2

] + eâπ3i−1
[2(i − 1)L + âπ3i−2

+ âπ3i−1
]

+ eâπ3i
[2(i − 1)L + âπ3i−2

+ âπ3i−1
+ âπ3i

] + [e(L − b̂) + L] · 2iL
}

= e
m
∑

i=1

{

âπ3i−2
[(i − 1)b̂ + âπ3i−2

] + âπ3i−1
[(i − 1)b̂ + âπ3i−2

+ âπ3i−1
]

+ âπ3i
[(i− 1)b̂ + âπ3i−2

+ âπ3i−1
+ âπ3i

]
}

+ e
m
∑

i=1

(âπ3i−2
+ âπ3i−1

+ âπ3i
)[2(i − 1)L − (i − 1)b̂] + [e(L − b̂) + L]

m
∑

i=1

2iL

= e
m
∑

i=1

[

âπ3i−2
(âπ1

+ · · · + âπ3i−2
) + âπ3i−1

(âπ1
+ · · · + âπ3i−1

) + âπ3i
(âπ1

+ · · · + âπ3i
)
]

+ e
m
∑

i=1

b̂[2(i − 1)L − (i− 1)b̂] + [e(L − b̂) + L]
m
∑

i=1

2iL

=
e

2

3m
∑

j=1

â2

j +
e

2

(3m
∑

j=1

âj

)2

+
eb̂(2L − b̂)m(m− 1)

2
+ [e(L − b̂) + L]Lm(m + 1) = C.

(⇐) Suppose that there exists a feasible schedule for the above instance of problem

1 | share(e) |
∑

wjCj with
∑

wjCj ≤ C . Then, there must exist a feasible schedule σ with

20

� � � � � 	
 � �

� � � � � � � � � � � � � � � � � � � �

� � ! " � # $ % � & ' () * + , - .

/ 0 1 2 3 4 5 6 7 8 9: ; < = >

? @ A B C D E F @ G

H I J

K L M N O P Q R S TU
V W X Y Z [\] W ^

_ ` a

b c d e f g h i j k lm n o p q

r s t u v w x y s z
{ | } ~ � � � � � ��

� � � � � � � � � �

� � �

� � � � � � � � � � �� � � ¡

¢ £ ¤ ¥ ¦ § ¨ © £ ª
« ¬ ® ¯ ° ± ² ³ ´µ

¶ · ¸ ¹ º » ¼ ½ · ¾

Figure 4: More Than 3k′ Small Jobs Are Processed Before the k′th Large Job.

no inserted idle time for this instance such that
∑

wjCj ≤ C .

We first show that there exists a schedule σ′ with no inserted idle time such that
∑

wjCj ≤

C and that there are exactly 3k small jobs processed before the kth large job, for k =

1, . . . , m; that is, there are three small jobs processed before the first large job and between

any two consecutive large jobs. If there are exactly 3k small jobs processed before the kth

large job for k = 1, . . . , m in schedule σ, then σ is the desired schedule σ′. Otherwise, let k′

be the smallest value of k such that there are either more than or less than 3k small jobs

processed before the kth large job. Let l denote the k′th large job in the schedule.

Case 1: More than 3k′ small jobs are processed before job l. Then, job l must be completed

after time 2k′L and before time (2k′ + 1)L. Let s be the small job processed immediately

before job l (see Figure 4(a)). Denote the sum of weighted completion time of jobs s and l

in this schedule as X1. Then,

21

X1 = eâsCs(σ) + [e(L − b̂) + L][Cs(σ) + 2L − b̂],

where “Cs(σ) + 2L − b̂” is the completion time of job l, since job l starts at time Cs(σ),

occupies 100% of the machine capacity for a period of length L, and occupies e × 100% of

the machine capacity for a period of length L − b̂. Consider an alternative schedule σ1 that

is obtained by interchanging jobs s and l. Denote the sum of weighted completion time of

jobs s and l in schedule σ1 as X2. We consider two different cases.

Case 1.1: After the job interchange, job l completes after time 2k′L (see Figure 4(b)). In

this case, the completion times of jobs l and s are Cs(σ) + 2L − b̂− âs and Cs(σ) + 2L − b̂,

respectively, after the job interchange. Then,

X2 = eâs[Cs(σ) + 2L − b̂] + [e(L − b̂) + L][Cs(σ) + 2L − b̂ − âs].

It is easy to verify that X2 < X1.

Case 1.2: After the job interchange, job l completes at or before time 2k′L (see Figure 4(c)).

Let 2k′L − x be the completion time of job l after the job interchange, where x ≥ 0. Since

there are at least 3k′ small jobs processed before job l and each of them has a processing time

greater than eM , the total processing time of the small jobs, large jobs, and routine jobs

completed by time 2k′L−x is greater than 3k′(eM)+k′[e(L−b̂)+L]+k′(1−e)L = 2k′L−k′eb,

which implies that x < k′eb < meb. After the job interchange, the completion time of job s

is Cs(σ) + 2L− b̂, and the completion time of job l can be written as Cs(σ) + 2L − b̂− [x +

âs − (x/e)], where “x + âs − (x/e)” is the duration of job s, since job s occupies 100% of the

machine capacity for a period of length x and occupies e× 100% of the machine capacity for

a period of length âs − (x/e). Thus,

X2 = eâs[Cs(σ) + 2L − b̂] + [e(L − b̂) + L]
{

Cs(σ) + 2L − b̂ − [x + âs − (x/e)]
}

.

Using the facts that “x < meb” and “âs > (2 + e)mb,” it is easy to verify that X2 < X1.

Hence, in both Cases 1.1 and 1.2, schedule σ1 has a smaller total weighted completion time

than schedule σ.

Case 2: Fewer than 3k′ small jobs are processed before job l. Then, job l must be completed

after time (2k′ − 1)L and before time 2k′L. Let s be the first small job processed after job

l. Note that job s may be processed immediately after job l or after another large job. Let

22

¿ À Á Â Ã Ä Å Æ Ç È Å

É Ê Ë Ì Í Î Ï Ð Ñ Ò Ï Ó Ô Õ Ö × Ø Ù Ú Û

Ó Ü Û Ý Ü Þ × ß à á × â ã ä å æ ç è ç é

ê ë ì í î ï ð ñ ò ó ôõ ö ÷ ø ù

ú û ü ý þ ÿ � � û � � � �
� � �

	
 � � � � �
 �
� � ��

� � � � � � � � � �

� ! " # $ % & ' ()* + , - .
/ 0 1 2 3 4 5 6 0 7

8 9 :

; < =
> ? @ A B C D E ? F

G H IJ
K L M N O P Q R L S

T U V W X Y Z [\] ^_ ` a b c
d e f g h i j k e l

m n o

p q r
s t u v w x y z t {

| } ~�
� � � � � � � � � �

Figure 5: Fewer Than 3k′ Small Jobs Are Processed Before the k′th Large Job.

h be the number of large jobs scheduled between job l and job s, where 0 ≤ h ≤ m− 1 (see

Figure 5(a)). For i = 1, . . . , h, let li denote the ith large job processed after job l. Job li

must be completed after time (2k′ + 2i − 1)L and before time (2k′ + 2i)L − ps. Denote the

sum of weighted completion times of jobs s, l, l1, . . . , lh in this schedule as X3. Then,

X3 = eâsCs(σ) + [e(L − b̂) + L][Cl(σ) + Cl1(σ) + · · · + Clh(σ)].

Consider an alternative schedule σ2 that is obtained by interchanging job s with jobs

l, l1, . . . , lh, i.e., inserting job s at the front of job l. Denote the sum of weighted completion

times of jobs s, l, l1, . . . , lh in schedule σ2 as X4. Note that in schedule σ2, the completion

time of job li is Cli(σ) + ps, for i = 1, . . . , h. We consider two different cases.

Case 2.1: After the job interchange, job l completes at or before time 2k′L (see Figure 5(b)).

In this case, after the job interchange, the completion time of job l is Cl(σ) + ps. Thus,

X4 = eâsCs(σ2) + [e(L − b̂) + L]
{

[Cl(σ) + ps] + [Cl1(σ) + ps] + · · · + [Clh(σ) + ps]
}

.

23

Note that Cs(σ) = Clh(σ2). Note also that in schedule σ2, the duration of job li equals 2L−eb̂

for i = 1, . . . , h, since job li occupies e× 100% of the machine capacity for a period of length

L and occupies 100% of the machine capacity for L − eb̂ time units. The duration of job l

is greater than e(L − b̂) + L, since job l occupies only a portion of the machine capacity for

some time period. Hence, Cs(σ)−Cs(σ2) = Clh(σ2)−Cs(σ2) > [e(L− b̂) + L] + h(2L− eb̂).

Using this inequality, it is easy to verify that X4 < X3.

Case 2.2: After the job interchange, job l completes after time 2k′L (see Figure 5(c)). Let

2k′L + y be the completion time of job l after the job interchange, where y > 0. Since there

are at most 3k′ small jobs processed before job l and their total processing time is at most

3k′eM + meb, the total processing time of the small, large, and routine jobs completed by

time 2k′L + y is at most (3k′eM + meb)+ k′[e(L− b̂) + L] + k′(1− e)L = 2k′L + (m− k′)eb,

which implies that y ≤ (m−k′)eb < meb. Note that the completion time of job l in schedule

σ2 can be written as Cl(σ) + e(âs − y) + y. This is because moving job s in front of job

l implies that eâs units of processing time of job l need to be moved to the time interval

[Cl(σ), Cl(σ)+e(âs−y)+y], where e(âs−y) units are processed with 100% machine capacity

during the time interval [Cl(σ), Cl(σ)+ e(âs − y)], and ey units are processed with e× 100%

machine capacity during the time interval [Cl(σ) + e(âs − y), Cl(σ) + e(âs − y) + y]. Thus,

X4 = eâsCs(σ2) + [e(L− b̂) +L]
{

[Cl(σ)+ e(âs − y)+ y] + [Cl1(σ)+ ps] + · · ·+ [Clh(σ) + ps]
}

.

Note that Cs(σ) = Clh(σ2). Note also that in schedule σ2, the duration of job l equals

2L − eb̂ (since job l occupies 100% of the machine capacity for a period of length L and

occupies e × 100% of the machine capacity for a period of length L − b̂). The duration of

job li is at least e(L − b̂) + L for i = 1, . . . , h. Hence, Cs(σ)− Cs(σ2) = Clh(σ2) − Cs(σ2) ≥

(2L − eb̂) + h[e(L− b̂) + L]. Thus,

X3 − X4 = eâs[Cs(σ) −Cs(σ2)] − [e(L − b̂) + L][e(âs − y) + y + hps]

≥ eâs

{

(2L − eb̂) + h[e(L− b̂) + L]
}

− [e(L− b̂) + L][e(âs − y) + y + heâs]

= eâs(1 − e)L − (1 − e)[e(L − b̂) + L]y

> e(2 + e)mb(1− e)L − (1 − e)[e(L − b̂) + L]meb

= e(1 − e)(L + eb̂)mb > 0,

24

where the second inequality follows from “y < meb” and “âs > (2+ e)mb.” Hence, X4 < X3.

Therefore, in both Cases 2.1 and 2.2, schedule σ2 has a smaller total weighted completion

time than schedule σ. By repeatedly applying the job interchange argument presented in

Cases 1 and 2, we conclude that there exists a feasible schedule σ′ with no inserted idle time

and
∑

wjCj ≤ C such that there are three small jobs processed before the first large job and

between any two consecutive large jobs.

Now, consider schedule σ′. Let (π1, π2, π3) denote the sequence of small jobs processed

before the first large job, and let (π3i−2, π3i−1, π3i) denote the sequence of small jobs processed

between the (i − 1)st large job and the ith large job, for i = 2, . . . , m. For i = 1, . . . , m, let

ui =
∑i

k=1(âπ3k−2
+ âπ3k−1

+ âπ3k
)− ib̂. It is easy to check that the start time of the ith large

job is 2(i− 1)L + b̂ + ui. Note that um = 0 and that −ib < ui < ib for i = 1, . . . , m− 1. For

i = 1, . . . , m− 1, if ui < 0, then the completion time of the ith large job is 2iL + eui, which

is less than 2iL. In this case, the completion time of job π3i+1 is 2iL + ui + âπ3i+1
, which is

greater than 2iL. For i = 1, . . . , m − 1, if ui ≥ 0, then the completion time of the ith large

job is 2iL + ui, which is greater than or equal to 2iL. In this case, the completion time of

job π3i+1 is also 2iL + ui + âπ3i+1
. Let u0 = 0,

φi =

{

eui, if ui < 0;

ui, if ui ≥ 0;

and

∆i = [e(L − b̂) + L]φi − e(2L − b̂)ui,

for i = 1, . . . , m. Note that for i = 1, . . . , m,

3i−3
∑

k=1

âπk
= ui−1 + (i − 1)b̂ (8)

and

âπ3i−2
+ âπ3i−1

+ âπ3i
= ui − ui−1 + b̂. (9)

Then, the total weighted completion time of jobs 1, . . . , 4m is

m
∑

i=1

{

eâπ3i−2
[2(i − 1)L + ui−1 + âπ3i−2

] + eâπ3i−1
[2(i − 1)L + ui−1 + âπ3i−2

+ âπ3i−1
]

+ eâπ3i
[2(i − 1)L + ui−1 + âπ3i−2

+ âπ3i−1
+ âπ3i

] + [e(L − b̂) + L](2iL + φi)
}

= e
m
∑

i=1

{

âπ3i−2
[(i − 1)b̂ + ui−1 + âπ3i−2

] + âπ3i−1
[(i − 1)b̂ + ui−1 + âπ3i−2

+ âπ3i−1
]

25

+ âπ3i
[(i− 1)b̂ + ui−1 + âπ3i−2

+ âπ3i−1
+ âπ3i

]
}

+ e
m
∑

i=1

(âπ3i−2
+ âπ3i−1

+ âπ3i
)[2(i − 1)L − (i − 1)b̂] + [e(L − b̂) + L]

m
∑

i=1

(2iL + φi)

= e
m
∑

i=1

[

âπ3i−2
(âπ1

+ · · · + âπ3i−2
) + âπ3i−1

(âπ1
+ · · · + âπ3i−1

) + âπ3i
(âπ1

+ · · · + âπ3i
)
]

+ e
m
∑

i=1

(ui − ui−1 + b̂)[2(i − 1)L − (i − 1)b̂] + [e(L − b̂) + L]
m
∑

i=1

(2iL + φi)

=
e

2

3m
∑

j=1

â2

j +
e

2

(3m
∑

j=1

âj

)2

+
eb̂(2L − b̂)m(m− 1)

2
+ [e(L − b̂) + L]Lm(m + 1)

+ e
m
∑

i=1

(ui − ui−1)[2(i − 1)L − (i − 1)b̂] + [e(L − b̂) + L]
m
∑

i=1

φi

= C + e
m
∑

i=1

(ui − ui−1)[2(i − 1)L − (i − 1)b̂] + [e(L − b̂) + L]
m
∑

i=1

φi

= C − e(2L − b̂)
m
∑

i=1

ui + [e(L − b̂) + L]
m
∑

i=1

φi

= C +
m
∑

i=1

∆i,

where the second equality follows from equations (8) and (9). It is easy to check that ∆i = 0 if

ui = 0, and that ∆i > 0 if ui 6= 0. Hence, ui = 0 for all i = 1, . . . , m, since otherwise the total

weighted completion time of jobs 1, . . . , 4m is greater than C . Let Si = {π3i−2, π3i−1, π3i} for

i = 1, . . . , m. Then, {S1, . . . , Sm} is a 3-partition of {1, . . . , 3m}.

3.2 Total completion time

We show that the SPT rule provides an optimal sequence for the total completion time

objective.

Theorem 8 For any 0 ≤ e ≤ 1, problem 1 | share(e) |
∑

Cj can be solved in O(ñ + n log n)

time by scheduling the primary jobs in SPT order without inserted idle time.

Proof. Since the objective is an increasing function of time, there exists an optimal schedule

without inserted idle time. The remainder of the proof is by contradiction. Suppose there

is an optimal schedule σ that includes a pair of adjacent primary jobs i and j, where i is

processed before j, and pi > pj . We obtain a new schedule σ′ from σ by interchanging

jobs i and j. We then show that the total completion time of σ′ is smaller than that of σ,

contradicting the fact that σ is optimal.

26

Since the completion times of any job, other than i and j, are the same in both schedules,

we compare the completion times of jobs i and j in both schedules. It is clear that Cj(σ) =

Ci(σ
′). To show that Ci(σ) > Cj(σ

′), we begin at the start time of job i in schedule σ and

trace the execution of job j. Since pj < pi, we have Cj(σ
′) < Ci(σ), regardless of when the

processing of jobs i and j is shared with the routine jobs. Hence, sequencing the primary

jobs in SPT order yields an optimal schedule.

Sorting the primary jobs in SPT order requires O(n log n) time. Constructing the schedule

for the primary and routine jobs requires O(n+ ñ) time. Therefore, the overall computation

time is O(ñ + n log n).

We observe that the SPT order of the primary jobs is unaffected by the scheduled times

of the routine jobs. Hence, even if there is uncertainty about those times, the algorithm we

propose remains optimal.

3.3 Maximum lateness

For the Lmax objective, sequencing the primary jobs in EDD order always provides the

minimum value of Lmax, as the following result shows.

Theorem 9 For any 0 ≤ e ≤ 1, problem 1 | share(e) | Lmax can be solved in O(ñ + n log n)

time by scheduling the primary jobs in EDD order without inserted idle time.

Proof. Since the objective is a nondecreasing function of time, there exists an optimal

schedule without inserted idle time. Suppose there is an optimal schedule σ that includes a

pair of adjacent primary jobs i and j, where i is processed before j, and di > dj . We obtain

a new schedule σ′ from σ by interchanging jobs i and j. We then show that the maximum

lateness of σ′ is not larger than the maximum lateness of σ.

It is clear that the completion times of every job, other than i and j, are identical in both

σ and σ′. Thus, all we need to show is that max{Li(σ), Lj(σ)} ≥ max{Li(σ
′), Lj(σ

′)}. It is

clear that Cj(σ) = Ci(σ
′). Thus, Li(σ

′) = Ci(σ
′) − di < Cj(σ) − dj = Lj(σ). Furthermore,

Cj(σ) > Cj(σ
′), and hence Lj(σ) = Cj(σ)−dj > Cj(σ

′)−dj = Lj(σ
′). Thus, we have Lj(σ) >

max{Li(σ
′), Lj(σ

′)}, and hence max{Li(σ), Lj(σ)} ≥ max{Li(σ
′), Lj(σ

′)}. Repeating this

interchange argument establishes the optimality of the EDD order. The analysis of the

computation time follows that in Theorem 8.

27

We observe that the EDD order of the primary jobs is unaffected by the scheduled times

of the routine jobs. Hence, even if there is uncertainty about those times, the algorithm we

propose remains optimal.

3.4 Number of late jobs

We consider the problem 1 | share(e) |
∑

Uj. Our work in this section extends that of [16]

for the classical problem 1 ||
∑

Uj. We first state a property of an optimal schedule. This

result is similar to Lemma 1 in [8].

Lemma 4 For any 0 ≤ e ≤ 1, there exists an optimal schedule for problem

1 | share(e) |
∑

Uj in which all the on-time primary jobs are sequenced by the EDD rule,

followed by all late primary jobs in arbitrary order, with no inserted idle time.

Proof. For a given schedule σ, Uj(σ) is a nondecreasing function of Cj(σ). Therefore, there

exists an optimal schedule with no inserted idle time. For a given instance of the problem,

let E and T denote the sets of on-time and late primary jobs, respectively. A pairwise

interchange argument shows that there exists an optimal schedule where all the jobs of E

are scheduled before any job of T . Since the jobs of T do not affect the objective, we assume

that they are scheduled in arbitrary order. It remains to sequence the jobs of E. To ensure

that the maximum lateness of the jobs of E is zero or negative, it suffices to sequence the

jobs of E to minimize their maximum lateness. Therefore, from Theorem 9, there exists an

optimal schedule where the jobs of E are sequenced by the EDD rule.

Algorithm ShareU

1. Sort the primary jobs in nondecreasing order of their due dates; i.e., d1 ≤ d2 ≤ · · · ≤ dn.

2. i := 1; E := ∅; T := ∅; t := 0.

3. Add primary job i to set E, assign it to start at time t, and let t′ denote the time at

which it completes. Note that any routine jobs which are processed between times t

and t′ share processing with job i.

4. If t′ > di, then remove the longest job from E and the current schedule, add it to T ,

eliminate all idle time between the primary jobs, and let t′ be the completion time of

the last primary job in the resulting schedule.

28

5. If i = n, then schedule the jobs in T at the end of the schedule, and stop. Otherwise,

i := i + 1; t := t′; and go to Step 3.

For any primary job subset S ⊆ {1, 2, . . . , n}, let `(S) denote the completion time of the

last job in S if we schedule the jobs in S in EDD order in front of the jobs in {1, 2, . . . , n}\S,

with no idle time between jobs. The optimality of Algorithm ShareU is based on the following

property.

Lemma 5 For an instance of problem 1 | share(e) |
∑

Uj, consider the subset of primary

jobs S. Let k and k′ be any two jobs in S. If pk ≤ pk′ , then `(S \ {k}) ≥ `(S \ {k′}).

Proof. By contradiction, suppose `(S \{k}) < `(S \{k′}). Then, let x and y denote the total

amount of processing of the routine jobs during the time intervals [`(S \ {k}), `(S \ {k′})]

and [`(S \ {k′}), `(S)], respectively.

We first consider the case where e > 0. We have

x ≤ (1 − e)[`(S \ {k′}) − `(S \ {k})], (10)

`(S) − `(S \ {k′}) = pk′ + y, (11)

and

`(S) − `(S \ {k}) = pk + x + y. (12)

From (10)–(12), and since pk ≤ pk′ , we have

`(S) − `(S \ {k}) ≤ [`(S) − `(S \ {k′})] + (1 − e)[`(S \ {k′}) − `(S \ {k})].

This implies that

e · `(S \ {k′}) ≤ e · `(S \ {k}),

which contradicts that `(S \ {k}) < `(S \ {k′}).

Next, we consider the case where e = 0. In this case,

x < `(S \ {k′}) − `(S \ {k}), (13)

where the strict inequality follows from the fact that part of the time interval [`(S\{k}), `(S\

{k′})] must be spent on the processing of some primary job(s). Note that in this case

29

equations (11) and (12) remain valid. However, conditions (11)–(13) imply that pk > pk′ ,

which is a contradiction.

Lemma 5 implies that if primary job sets S and S ′ differ from each other by only one job,

for example S \ S ′ = {k} and S ′ \ S = {k′}, and if pk′ ≤ pk, then the completion time of the

last job in S ′, when the jobs are processed in EDD order, is no greater than the completion

time of the last job in S, when the jobs are processed in EDD order. We now present the

main result of this section.

Theorem 10 For any 0 ≤ e ≤ 1, Algorithm ShareU finds an optimal schedule for problem

1 | share(e) |
∑

Uj in O(ñ + n log(ñn)) time.

Proof. The optimality of Algorithm ShareU can be proved by applying Lemmas 4 and 5

and applying a similar argument to that in the proof of Theorem 4 in [8]. The details of the

optimality proof are omitted.

We consider the running time of Algorithm ShareU. The running time is dominated by

the loop in Steps 3–5, which has n iterations. In order to compute t′ efficiently in each

iteration, we precompute two arrays A[·] and B[·]. We use A[2i − 1] and A[2i] to store

the start time and finish time, respectively, of routine job n + i for i = 1, . . . , ñ. We use

B[k] to store the total amount of processing available for primary jobs between time 0 and

time A[k], for k = 1, . . . , 2ñ. Thus, B[2i − 1] = B[2i − 2] + (A[2i − 1] − A[2i − 2]) and

B[2i] = B[2i − 1] + e(A[2i] − A[2i − 1]) for i = 1, . . . , ñ, where A[0] = B[0] = 0. Given

any set E of primary jobs and their total processing requirement P , we obtain t′, i.e., the

completion time of the last job in E, in O(log ñ) time via a binary search of array B[·]. If

P ∈ [B[2l− 1], B[2l]), then t′ = A[2l − 1] + (P −B[2l − 1])/e. If P ∈ [B[2l], B[2l + 1]), then

t′ = A[2l] + (P − B[2l]). In Step 4, if t′ > di, then we need to determine the longest job in

E. If we maintain the jobs in E as a heap, it takes O(log n) time to insert a single job or

delete a longest job. Hence, when arrays A[·] and B[·] are precomputed, the total running

time of the loop is O(n(log ñ + log n)) = O(n log(ñn)). Precomputing arrays A[·] and B[·]

requires O(ñ) time. Therefore, the overall computational requirement of Algorithm ShareU

is O(ñ + n log(ñn)) time.

30

4 Concluding Remarks

This paper studies two multitasking system designs for two different types of schedule dis-

ruption that arise in practice, and describes how the resulting mathematical models can be

solved. For each system design, we consider four of the most important practical scheduling

objectives, and for each, where possible, describe an efficient optimal algorithm. We also

provide intractability results that define limits on the solvability of some of the problems.

Table 1 summarizes our algorithm and complexity results. The table provides the running

time of all our polynomial and pseudo-polynomial time algorithms. Also, we use “BNPC”

(respectively, “UNPC”) to denote that the recognition version of a problem is binary (re-

spectively, unary) NP-complete. Each cell in the table contains a reference to a location in

the paper where the corresponding result can be found.

∑

wjCj

∑

Cj Lmax

∑

Uj

Alternate Period UNPC O(nP), BNPC O(nP), BNPC O(n2P), BNPC
Processing Thm. 1 Thm. 2, Thm. 3 Thm. 4, Thm. 5 Thm. 6, Cor. 1

Shared Processing with UNPC O(ñ + n logn) O(ñ + n log n) O(ñ + n log(ñn))
Routine Activities Thm. 7 Thm. 8 Thm. 9 Thm. 10

Table 1: Summary of Algorithm and Complexity Results.

We make the following observations. The alternative period processing model is a simple

and practical design to allow workers to rest and prevent them from becoming bored. How-

ever, using this model, the scheduling problems become less computationally tractable than

the corresponding classical problems. On the other hand, the shared processing model for

handling routine activities is computationally tractable when the objective is
∑

Cj, Lmax, or
∑

Uj . In fact, when the objective is
∑

Cj or Lmax, a simple sequencing rule for the primary

jobs generates optimal solutions.

A number of interesting problems remain open for further research. First, the classical

scheduling literature contains a large number of problems that remain to be studied under

the two types of disruptions discussed here. Second, our work motivates the development

and evaluation of practical measures for handling disruptions. Finally, our work motivates

research to develop and analyze scheduling models with multitasking features, which is an

important research direction due to the prevalence of multitasking in business applications.

31

Acknowledgments

The authors thank the three anonymous referees for their helpful comments and sugges-

tions. This work is supported in part by the Summer Fellowship Program, Fisher College

of Business, The Ohio State University, to the first author; in part by the National Science

Foundation under grant CMMI-0969830, to the second author; and in part by Research

Grants Council of Hong Kong under grant PolyU5195/13E, to the third author.

References

[1] G. Appasami, K. Suresh Joseph, Optimization of operating systems towards green com-

puting, International Journal of Combinatorial Optimization Problems and Informatics

2(3) (2011) 39–51.

[2] B. Detienne, A mixed integer linear programming approach to minimize the number

of late jobs with and without machine availability constraints, European Journal of

Operational Research 235 (2014) 540–552.

[3] B.T. Doshi, Queueing systems with vacations—A survey, Queueing Systems 1 (1986)

29–66.

[4] J. Du, J.Y-T. Leung, Minimizing total tardiness on one machine is NP-hard, Mathe-

matics of Operations Research 15 (1990) 483–495.

[5] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness, Freeman, New York, 1979.

[6] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and ap-

proximation in deterministic sequencing and scheduling: A survey, Annals of Discrete

Mathematics 5 (1979) 287–326.

[7] R.R. Guadaña, M.R. Perez, L. Rutaquio, Jr., A comprehensive review for central pro-

cessing unit scheduling algorithm, International Journal of Computer Science Issues

10(1) (2013) 353–358.

32

[8] N.G. Hall, J.Y.-T. Leung, C.-L. Li, The effects of multitasking on operations scheduling,

Production and Operations Management 24 (2015) 1248–1265.

[9] N. Hashemian, C. Diallo, B. Vizvári, Makespan minimization for parallel machines

scheduling with multiple availability constraints, Annals of Operations Research 213

(2014) 173–186.

[10] W.A. Horn, Minimizing average flow time with parallel machines, Operations Research

21 (1973) 846–847.

[11] Y. Huo, H. Zhao, Total completion time minimization on multiple machines subject

to machine availability and makespan constraints, European Journal of Operational

Research 243 (2015) 547–554.

[12] J.R. Jackson, Scheduling a production line to minimize maximum tardiness, Research

Report 43, Management Science Research Project, University of California at Los An-

geles, 1955.

[13] J. Kaabi, Y. Harrath, A survey of parallel machine scheduling under availability con-

straints, International Journal of Computer and Information Technology 3 (2014) 238–

245.

[14] I. Kacem, H. Kellerer, Y. Lanuel, Approximation algorithms for maximizing the

weighted number of early jobs on a single machine with non-availability intervals, Jour-

nal of Combinatorial Optimization 30 (2015) 403–412.

[15] Y. Ma, C. Chu, C. Zuo, A survey of scheduling with deterministic machine availability

constraints, Computers & Industrial Engineering 58 (2010) 199–211.

[16] J.M. Moore, An n job, one machine sequencing algorithm for minimizing the number

of late jobs, Management Science 15 (1968) 102–109.

[17] J. Noguera, R.M. Badia, Multitasking on reconfigurable architectures: Microarchitec-

ture support and dynamic scheduling, ACM Transactions on Embedded Computing Sys-

tems 3 (2004) 385–406.

33

[18] M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 4th edition, Springer, New

York, 2012.

[19] S. Sachdeva, P. Panwar, A review of multiprocessor directed acyclic graph (DAG)

scheduling algorithms, International Journal of Computer Science & Communication

6(1) (2015) 67–72.

[20] W.E. Smith, Various optimizers for single-stage production, Naval Research Logistics

Quarterly 3 (1956) 59–66.

[21] C. Steiger, H. Walder, M. Platzner, Operating systems for reconfigurable embedded

platforms: Online scheduling of real-time tasks, IEEE Transactions on Computers 53

(2004) 1393–1407.

[22] J. Teghem, Jr., Control of the service process in a queueing system, European Journal

of Operational Research 23 (1986) 141–158.

[23] G. Wang, H. Sun, C. Chu, Preemptive scheduling with availability constraints to mini-

mize total weighted completion times, Annals of Operations Research 133 (2005) 183–

192.

[24] W. Wang, S. Ranka, P. Mishra, Energy-aware dynamic slack allocation for real-time

multitasking systems, Sustainable Computing: Informatics and Systems 2 (2012) 128–

137.

[25] X. Wang, T.C.E. Cheng, A heuristic for scheduling jobs on two identical parallel ma-

chines with a machine availability constraint, International Journal of Production Eco-

nomics 161 (2015) 74–82.

34

