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Abstract 
The issue of house price convergence in 34 Chinese cities is investigated. We augmented the 
convergence model with contemporaneous spatial dependence in house prices and found that 
price convergence and positive spatial spillover are both present. We explicitly addressed the 
endogeneity problem by introducing a Bayesian instrumental variable setup, which was 
estimated with particle filtering techniques. From a growth poles perspective, the empirical 
evidence indicates that the spread effect in regional house prices outweighs the backwash effect. 
The identified positive spatial spillover has two effects on the growth of house prices in Chinese 
cities. First, the spillover elevates the trajectories of the steady-state growth paths of house 
prices. Second, the spillover narrows the gaps between the growth paths of house prices in 
neighboring cities. Shocks to the socioeconomic variables of a city generate their own effects 
on domestic house prices that dominate the effects arising from cross-city price feedbacks, thus 
mitigating the prospect of level convergence. Our findings also suggest a collaborating role 
between time and spatial dependence parameters. The identification of inter-city spillover, 
which is a conditioning factor for regional house price convergence, offers implications to 
policies that are most likely to be effective in reducing regional disparity.  
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1. Introduction 

Are house prices in less developed cities catching up with those in more developed ones, and 

if so, at what pace and by what means? House price convergence at the city level has long been 

a topic of profound interest in the economics and urban planning literature. The relevance of 

this convergence stems from the possible revelation of the linkage between changes in relative 

house prices and those in economic activities. On the one hand, relative house prices can 

influence labor mobility through housing affordability and relocation costs. On the other hand, 

these prices largely reflect cities’ relative wealth levels because houses are usually the most 

important asset in homeowners’ portfolios. Economists and policy makers alike cannot afford 

to overlook these subjects.  

The life-cycle theory of consumption suggests that consumers’ expenditure depends on human 

capital, viz, the present value of expected incomes from the supply of labor and the value of 

tangible and financial assets (Deaton, 1992). If such is the case, a stagnant housing market can 

lead to stagnant consumption and consequently a contraction in a city’s economy. As a 

consumption good, housing has a strong non-traded component (i.e., land and labor) and a 

small traded component (e.g., construction materials) (Hiebert and Roma, 2010). The non-

traded component can limit the prospect of house price convergence across geographic regions. 

Therefore, house prices at the city level are expected to mainly reflect local factors such as 

regional per capita income and population. House prices may converge if housing demand 

fundamentals (e.g., per capita income or productivity) converge among cities (e.g., Rebelo, 

1991; Leung, 2001, 2003; Cheng et al., 2010). Specifically, economic theory suggests that less 

developed cities will grow faster over time as investments move to these underdeveloped 
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markets because entrepreneurs value inexpensive production factors. This theory has been 

extensively tested in the contexts of national economies (Barro, 1991) and metropolitan areas 

(Drennan et al., 1996; Pack, 2002). If convergence across cities actually exists, house prices of 

less prosperous cities are expected to appreciate faster than those of more prosperous ones.  

However, past empirical evidence on house price convergence was mixed. Several studies used 

cointegration models to demonstrate a long-run equilibrium in the ratio of regional house prices, 

although the house prices of the concerned regions may diverge in the short run (MacDonald 

and Taylor, 1993; Alexander and Barrow, 1994; Petersen et al., 2002; Holly et al., 2010). 

However, other studies presented no supporting evidence for house price convergence. For 

instance, Drake (1995), Ashworth and Parker (1997), Meen (1999), Petersen et al. (2002), and 

Holmes and Grimes (2008) reported either no or very weak evidence for stationarity in the ratio 

of regional house prices to the aggregate house prices in the United Kingdom. Similarly, Gallet 

(2004) and Clark and Coggin (2009) found only mixed evidence for regional house price 

convergence among cities in the United States.  

This study focuses on the possible house price convergence among Chinese cities. China’s 

housing reform has been gradually implemented in the last two decades through market 

mechanisms. The year 1999 marked a turning point for China's housing-distribution system 

when the provision of all welfare housing through municipal and work-unit distribution was 

ended. Nevertheless, regional disparity of housing development remains a major challenge to 

the housing reform (e.g., Song and Chen, 2004). Utilizing the concept of absolute and 

conditional convergence, this study investigates whether the growth rates of house prices 

converge among major cities in China. Absolute convergence refers to the case in which the 

convergence dynamics is governed entirely by the initial distribution of house prices. The 
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converging activities that flow through over time ensure that all cities can have the same steady-

state house price1. In a way, the growth paths of house prices in cities converge. However, if 

the major determinants of house prices are idiosyncratic, the prices converge to parallel growth 

paths and the gaps between these trajectories are decided by city-specific socioeconomic 

variables (i.e., conditioning factors). In this latter case of conditional convergence, initial 

differences in house price determinants across cities can create permanent differences in price 

levels. 

Past studies on house price convergence typically assumed cross-sectional independence. 

However, spatial correlation of house prices among adjacent regions is a common phenomenon. 

Statistics from the current study actually demonstrates significant and increasing spatial 

correlation among house prices in Chinese cities. Ignoring this spatial correlation may lead to 

biased and inconsistent estimates in convergence analysis (Anselin, 1988; Lesage and Pace, 

2009). Our study contributes to the literature by considering not only regional-specific 

socioeconomic variables but also spatial correlation (i.e., spatial spillover) of house prices as 

factors of conditional convergence. Under such an empirical setting, conditional convergence 

and spatial spillover jointly govern the growth of regional house prices through distinct but 

interactive channels. First, conditional convergence implies that regional house prices converge 

to parallel growth paths in the steady state. Second, positive (negative) spatial spillover 

increases (decreases) the trajectories of steady-state growth paths of house prices. Third, 

positive (negative) spatial spillover narrows (widens) regional disparity in house price growth 

caused by regional differences in socioeconomic factors. This interplay of convergence and 

 

1 Following past studies (e.g., Abraham and Hendershott, 1994; Capozza et al., 2002; Rodda and Goodman, 2005), 
steady-state house price is defined as the fundamental value for housing determined by economic conditions. 
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spatial spillover in the housing market can potentially yield policy implications for reducing 

regional disparity in China. 

The spatial interaction of regional house prices is attributed to the well-known “ripple effect” 

hypothesis, which postulates that shocks to regional house prices tend to “ripple out” across 

the economy (e.g., Drake, 1995; Ashworth and Parker, 1997; Meen, 1999). According to Meen 

(1999), the extent of the ripple effect hinges on factors such as spatial patterns of house price 

determinants, migration, equity transfer, and spatial arbitrage. The spatial spillover effect 

complements the ripple effect and provides an analysis with a spatial perspective that 

conventional convergence studies ignore. Myrdal (1957) dichotomized regional growth 

dynamics into “spread” and “backwash” effects. The spread effect is the positive influence of 

growth in the core regions on the peripheral regions2. This effect can stem from backward 

linkages between the core and the periphery in which the latter functions as suppliers of inputs 

to the former. The spread effect can also be caused by diffusion of investment and innovation 

from the core to the periphery. By contrast, the backwash effect is the negative influence of the 

core’s growth on the periphery, and it results in, for instance, depopulation and capital 

shortages in the periphery caused by the migration of production factors from the periphery to 

the core. The backwash effect can also be attributed to the displacement of certain sectors in 

the periphery by their counterparts in the core.  

Regional house prices are a manifestation of the regions’ economic strengths; therefore, the 

spread and backwash effects respectively create positive and negative linkages between house 

 

2 Core regions are places where favorable conditions for expanding employment opportunity and other economic 
activities exist. These conditions include a developed public infrastructure and current external economies. 
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prices of the core and the periphery. Richardson (1976) indicated that the spread and backwash 

effects usually occur simultaneously. For example, the migration of skilled and professional 

workers from the periphery to the core is a backwash effect, whereas decisions to decentralize 

by middle-class residences in the core represent a spread effect. Gaile’s (1980) review of 21 

studies up to the 1980s concluded that the spread effect is generally smaller than the backwash 

effect, and inter-regional interaction is limited to very short distances. In China, residents in a 

city without a local hukou (i.e., household registration) are not entitled to the same social 

benefits, such as the state-sponsored Urban Affordable Housing, as their local counterparts. 

This hukou system may reduce the backwash effect by restraining labor migration from the 

periphery to the core.3 

With these building blocks, we specify a reduced-form spatial dynamic panel model (Kuken-

ova and Monteiro, 2008; Parent and LeSage, 2010; Debarsy et al., 2011) that we estimate using 

Bayesian methodology. The rest of this article is organized as follows. Section 2 describes an 

endogenous growth model characterizing the steady-state growth paths of house price and real 

gross domestic product (GDP). Section 3 outlines the structure of an empirical model that 

considers both convergence and spatial spillover. Section 4 discusses the data and various 

estimation issues. Section 5 reviews the estimation results and their policy implications. 

Section 6 concludes. 

 

3 Different from previous studies (e.g., Henry and Barkley, 1997) that investigated the urban–rural development 
linkages, the current study examines the spread and backwash effects across a system of cities and their immediate 
surrounding area. 
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2. Endogenous Growth Model with the Housing Sector 

This section presents an endogenous growth model based on those proposed by Rebelo (1991), 

Leung (2001, 2003), and Cheng et al. (2010), in which the growth rates of the real GDP and 

house price are endogenously determined. This model provides theoretical underpinning for 

house price convergence. Consider a region where population is normalized to unity and land 

supply is fixed. Each individual derives utility from a utility function, 𝑢𝑢(𝑐𝑐𝑡𝑡,ℎ𝑡𝑡) = ln(𝑐𝑐𝑡𝑡) +

𝑤𝑤𝑤𝑤𝑤𝑤(ℎ𝑡𝑡), where ct is the consumption of non-housing goods, ht is the stock of houses, and w is 

a preference parameter. Moreover, each individual owns a firm that produces non-housing 

goods and a firm that constructs houses. House construction requires both capital goods and 

land (represented by 𝑙𝑙𝑡𝑡). Following the assumptions of Leung (2003), each individual chooses 

𝑐𝑐𝑡𝑡, 𝑘𝑘𝑡𝑡+1, 𝑘𝑘𝑡𝑡+1ℎ , ℎ𝑡𝑡+1, ℎ𝑡𝑡𝑚𝑚, and 𝑙𝑙𝑡𝑡+1 to maximize the lifetime utility, U = ∑ 𝛾𝛾𝑡𝑡𝑢𝑢�𝑐𝑐𝑡𝑡,ℎ𝑡𝑡�∞
𝑡𝑡=0 , 

subject to: 

  𝑐𝑐𝑡𝑡 + 𝑘𝑘𝑡𝑡+1 + 𝑘𝑘𝑡𝑡+1ℎ + 𝑝𝑝𝑙𝑙,𝑡𝑡(𝑙𝑙𝑡𝑡+1 − 𝑙𝑙𝑡𝑡) + 𝑝𝑝𝑡𝑡ℎ𝑡𝑡𝑚𝑚 = 𝐴𝐴𝑘𝑘𝑡𝑡;    (1) 

   ℎ𝑡𝑡+1 − ℎ𝑡𝑡 = ℎ𝑡𝑡𝑚𝑚 + �𝑘𝑘𝑡𝑡ℎ�
𝛼𝛼

(𝑙𝑙𝑡𝑡)1−𝛼𝛼,     (2) 

where 𝐴𝐴𝑘𝑘𝑡𝑡  and �𝑘𝑘𝑡𝑡ℎ�
𝛼𝛼

(𝑙𝑙𝑡𝑡)1−𝛼𝛼  are respectively the production functions of non-housing 

goods and houses, and 𝐴𝐴  is a technology parameter. Equation (1) assumes that the 

unconsumed output of non-housing goods in each period is channeled into four types of other 

activities: (i) capital investment for the next-period non-housing goods production (𝑘𝑘𝑡𝑡+1), (ii) 

capital investment for the next-period house construction (𝑘𝑘𝑡𝑡+1ℎ  ), (iii) purchase of land (𝑙𝑙𝑡𝑡+1 −

𝑙𝑙𝑡𝑡) at a unit price 𝑝𝑝𝑙𝑙,𝑡𝑡 , and (iv) purchase of houses (ℎ𝑡𝑡𝑚𝑚) at a unit price 𝑝𝑝𝑡𝑡 . Equation (2) 
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signifies that the increase in the stock of houses owned by an individual comprises the amount 

of self-production �𝑘𝑘𝑡𝑡ℎ�
𝛼𝛼

(𝑙𝑙𝑡𝑡)1−𝛼𝛼 and the amount purchased from the market ℎ𝑡𝑡𝑚𝑚.  

In accordance with typical growth models (e.g., Barro and Sala-I-Martin, 1990), the 

diminishing return to capital ensures that the growth rates of poor and prosperous regions 

converge because the former tends to have higher growth rates than the latter. Leung (2003) 

demonstrated that, in the steady state, the growth rate of the output of non-housing goods (g), 

the growth rate of the stock of houses (x), and the growth rate of house price (y) have the 

following relationships: 

     𝑥𝑥 ≅ 𝛼𝛼𝛼𝛼,      (3) 

         𝑦𝑦 ≅ (1 − 𝛼𝛼)𝑔𝑔.      (4) 

Equation (3) implies that the stock of houses cannot grow faster than the output of non-housing 

goods because of the fixed supply of land. Consequently, in Equation (4), the growth rate of 

house price increases with the proportion of land (1 – α) in house construction. 

This model also clarifies the relationship between house price and the overall price index. 

Normalizing the unit price for non-housing goods to unity and assuming that 𝑙𝑙𝑡𝑡+1 − 𝑙𝑙𝑡𝑡 = ℎ𝑡𝑡𝑚𝑚 

= 0, the value of non-housing goods produced in year t is 𝐴𝐴𝑘𝑘𝑡𝑡 = 𝑐𝑐𝑡𝑡 + 𝑘𝑘𝑡𝑡+1 + 𝑘𝑘𝑡𝑡+1ℎ  and that of 

new houses constructed is 𝑝𝑝𝑡𝑡ℎ𝑡𝑡𝑥𝑥 . The overall price index defined as the value-weighted 

average price of non-housing goods and houses is 

    𝐶𝐶𝐶𝐶𝐶𝐶 = (1 − 𝜈𝜈𝑡𝑡) × 1 + 𝜈𝜈𝑡𝑡𝑝𝑝𝑡𝑡,     (5) 
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where 𝜈𝜈𝑡𝑡 =  𝑝𝑝𝑡𝑡ℎ𝑡𝑡𝑥𝑥/(𝐴𝐴𝑘𝑘𝑡𝑡 + 𝑝𝑝𝑡𝑡ℎ𝑡𝑡𝑥𝑥) is the value of houses constructed as a share of the real 

GDP. From Equation (5), 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝𝑡𝑡

= (𝑝𝑝𝑡𝑡 − 1) 𝜕𝜕𝑣𝑣𝑡𝑡
𝜕𝜕𝑝𝑝𝑡𝑡

+ 𝑣𝑣𝑡𝑡. Since both 𝑣𝑣𝑡𝑡 and 𝜕𝜕𝑣𝑣𝑡𝑡
𝜕𝜕𝑝𝑝𝑡𝑡

 are positive, 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝𝑡𝑡

 

is positive if 𝑝𝑝𝑡𝑡 is larger than unity (i.e., the unit price for non-housing goods). 

3. Empirical Model  

The endogenous growth model presented in the previous section implies that, if a region’s 

house price grows at a constant rate in the steady-state equilibrium, regions with initially 

different house prices eventually converge to parallel growth paths with the height of each path 

depending on region-specific conditioning factors (e.g., socioeconomic factors). Although 

typical convergence studies assume cross-sectional independence, Anselin (1988) and Lesage 

and Pace (2009) indicated that ignoring spatial correlation could lead to biased and inconsistent 

estimates. As Section 5 will demonstrate, a significant and increasing spatial correlation (in 

terms of Moran’s I index) exists among house prices in Chinese cities. Therefore, the empirical 

model of this study considers not only socioeconomic factors but also spatial correlation (i.e., 

spatial spillover) as conditioning factors for house price convergence. 

This study’s empirical model is classified either as a dynamic spatial autoregressive panel 

model (Debarsy et al., 2011) or as a time-space simultaneous model (Anselin, 2001). 

Specifically, 

𝑦𝑦𝑡𝑡 = 𝛽𝛽𝑦𝑦𝑡𝑡−1 + 𝜌𝜌𝜌𝜌𝑦𝑦𝑡𝑡 + 𝑍𝑍𝑡𝑡𝜙𝜙 + 𝜇𝜇 + 𝜀𝜀𝑡𝑡, (6) 

where 𝑦𝑦𝑡𝑡 is a 𝑁𝑁 × 1 vector of the rates of change in house prices of 𝑁𝑁 cities under study 

over a period of 𝑠𝑠 + 1  years, that is, 𝑦𝑦𝑡𝑡 = ln(𝑝𝑝𝑡𝑡 𝑝𝑝𝑡𝑡−𝑠𝑠⁄ ). 𝑍𝑍𝑡𝑡 = ln(𝑋𝑋𝑡𝑡 𝑋𝑋𝑡𝑡−𝑠𝑠⁄ ) is the 𝑁𝑁 × 𝑘𝑘 

matrix of growth rates in 𝑘𝑘 socioeconomic variables. The term 𝜌𝜌𝜌𝜌𝑦𝑦𝑡𝑡  captures the spatial 

spillover, where 𝑊𝑊  is the row-normalized spatial weight matrix. We use the inverse of 
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geographical distances (𝑑𝑑) among cities to characterize 𝑊𝑊, so the ij-th entry of the weight 

matrix before normalization is equal to 1/𝑑𝑑𝑖𝑖𝑖𝑖. 𝜙𝜙 is a 𝑘𝑘 × 1 vector of coefficients and 𝜇𝜇 is a 

vector of individual fixed effects.  𝛽𝛽  and 𝜌𝜌  are the time dependence and the space 

dependence parameters, respectively. Similar to past convergence studies, Equation (6) 

examines if the regions converge to parallel growth paths in the variable of interest (i.e., house 

price).  

Equation (6) is not a complete structural demand–supply model for the housing market per se 

but is a reduced form of the model suggestive of counterparts commonly found in the time 

series literature. Similar to the many variants of vector autoregression models, a key analytical 

aspect of the spatial model is to study the system’s response to shocks or impulses over the 

time dimension. The notable difference here is the extra spatial perspective that enriches (and 

complicates) the response structure. 

With Zt and Wyt as possible conditioning factors, Equation (6) allows for the validation of both 

absolute and conditional convergence in house prices. Imposing the restrictions 𝜌𝜌 = φ = 0 

and 𝜇𝜇 having identical elements, the conventional test for absolute convergence estimates the 

regression 𝑦𝑦𝑡𝑡 =  𝛽𝛽0𝑙𝑙𝑙𝑙(𝑝𝑝0) + 𝜇𝜇 + 𝜀𝜀𝑡𝑡 and verifies 𝛽𝛽0 < 0. Convergence is ensured as long as 

𝛽𝛽 < 1 in Equation (6) because a simple derivation can show that 𝛽𝛽 = 1 + 𝛽𝛽0. Whether the 

convergence is absolute or conditional depend on the significance of the parameters 𝜌𝜌, φ, and 

𝜇𝜇. 𝜌𝜌 signifies the degree of contemporaneous spillover in house prices. The sign of 𝜌𝜌 is 

positive (negative) if the spread effect is larger (smaller) than the backwash effect. 𝜌𝜌 = 0 if 

the spread effect is in exact balance with the backwash effect. 
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We can look at the interplay between convergence and spillover by manipulating the algebra 

in the model. First, if 𝛽𝛽 = 0 and 𝜌𝜌 ≠ 0, Equation (6) can be rewritten as follows: 

𝑦𝑦𝑡𝑡 = (𝐼𝐼 − 𝜌𝜌𝜌𝜌)−1𝑍𝑍𝑡𝑡𝜙𝜙 + (𝐼𝐼 − 𝜌𝜌𝜌𝜌)−1(𝜇𝜇 + 𝜀𝜀𝑡𝑡) 

= 𝑍𝑍𝑡𝑡𝜙𝜙 + 𝜌𝜌𝜌𝜌𝑍𝑍𝑡𝑡𝜙𝜙 + 𝜌𝜌2𝑊𝑊2𝑍𝑍𝑡𝑡𝜙𝜙 + 𝜌𝜌3𝑊𝑊3𝑍𝑍𝑡𝑡𝜙𝜙 + ⋯+ (𝜇𝜇 + 𝜀𝜀𝑡𝑡)

+ 𝜌𝜌𝜌𝜌(𝜇𝜇 + 𝜀𝜀𝑡𝑡) + 𝜌𝜌2𝑊𝑊2(𝜇𝜇 + 𝜀𝜀𝑡𝑡) + ⋯ ; 

(7) 

therefore, the growth rate of house prices in city i at time t is subject to the multiple-order effect 

of contemporary changes in socioeconomic variables and exogenous shocks in own and 

neighboring cities. Note that Equation (7) has spatial lag effects but no time lag effects. If 𝛽𝛽 ≠

0 and 𝜌𝜌 = 0, the model can be restated by repeated substitution as follows: 

𝑦𝑦𝑡𝑡 = 𝑍𝑍𝑡𝑡𝜙𝜙 + 𝛽𝛽𝑍𝑍𝑡𝑡−1𝜙𝜙 + 𝛽𝛽2𝑍𝑍𝑡𝑡−2𝜙𝜙 + ⋯+ (𝜇𝜇 + 𝜀𝜀𝑡𝑡) + 𝛽𝛽(𝜇𝜇 + 𝜀𝜀𝑡𝑡−1) +

𝛽𝛽2(𝜇𝜇 + 𝜀𝜀𝑡𝑡−2) + ⋯; 

(8) 

therefore, the growth rate of city i is subject to multiple rounds of the lagged effect of its own 

shocks and changes in the socioeconomic variables in its own region. Spatial spillover is non-

existent. If both 𝛽𝛽 and 𝜌𝜌 are nonzero, the model becomes 

𝑦𝑦𝑡𝑡 = ∑ (𝐼𝐼 − 𝜌𝜌𝜌𝜌)−(1+𝑗𝑗)∞
j=0 𝛽𝛽𝑗𝑗�𝑍𝑍𝑡𝑡−𝑗𝑗𝜙𝜙 + 𝜇𝜇 + 𝜀𝜀𝑡𝑡−𝑗𝑗�, (9) 

where there is interacting spatial and temporal dependence across all cities. The derivation of 

Equation (9) is presented in Appendix 1. 

A non-technical view of the spillover–convergence account can be illustrated by the following. 

Suppose we have two groups of cities, E and C, with the former having higher house prices 

initially than the latter. Convergence (i.e., 𝛽𝛽 < 1) implies a slowdown in the growth rates of 

E and faster growth rates in C. However, the convergence concept is independent of distance 

or the geographic distribution of E and C in China. A special feature of Equation (9) is that it 
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also captures the spatial spillover effect (ρ) that is tied to geographical distance. For instance, 

if the backwash effect is concurrently larger (smaller) than the spread effect, that is, ρ < 0 (> 

0), the members of C farther away from E (e.g., C1) have higher (lower) catch-up growth. Those 

nearer to E (e.g., C2) have lower (higher) growth than C1, but it is still possible for C2 to have 

growth rates that exceed those of E by virtue of convergence. 

We can also contemplate the issue from the perspective of clustering. If the price distribution 

is initially such that a few high-priced cities are clustered along the coastal areas, with lower- 

priced cities more sparsely distributed toward the inner part and the fringe areas of the country, 

then cities that are farther away from the coast have above par growth rates in house prices than 

those near the coast by virtue of convergence. At the same time, backwash (spread) implies 

that (i) the original clusters along the coast can (cannot) gain further dominance, and (ii) there 

will be less (more) newly developed clusters as the effect of convergence is diluted (enhanced) 

by a negative (positive) spillover. 

As a caveat, our study does not consider Wyt–1 (i.e., a “second-order” spatial lag) in Equation 

(6) because our model blends together a dynamic spatial model with a Bayesian instrumental 

variable setup to handle endogeneity and feedback. Parent and LeSage (2012) pointed out that 

without such restriction it is impossible to separate the space and time dimensions in evaluating 

the impact of changes on variables.4 In fact, excluding Wyt-1 does not totally rule out the 

possibility of intertemporal correlation among the sample cities’ house prices because our 

 

4 This technical constraint is not unique to our study. Including only the first-order spatial lag in the model is a 
rather common practice in past related studies. For instance, in a brief survey conducted by Kukenova and 
Monteiro (2008), none of the reviewed models simultaneously contained both first- and second-order spatial lags, 
and majority of them did not have a second-order lag. 
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empirical framework allows the house price growth of city i to correlate with that of city j in 

period t (i.e., the space dimension), which in turn correlates with city j’s own house price 

growth in t+1 (i.e., the time dimension). Moreover, our findings are unlikely to be sensitive to 

the exclusion of Wyt–1 because the sample’s cross-correlation between the current-period 

growth of city j’s house price against the lagged growth of city i’s house price is insignificant 

(the mean correlation coefficient is –0.0646). 

4. Data and Estimation  

4.1. Data 

We compile a balanced panel of 𝑁𝑁 =  34 Chinese cities from 2000 to 2008 based on data 

obtained from China Data Online.5 The growth rate of house price (yt) in Equation (6) is 

measured by the growth rate of the sale price index of houses rescaled to a base of 100 in 2000.6 

Distances among cities are obtained from the China Distance Calculator.7 𝑋𝑋𝑡𝑡 includes the 

following k = 8 variables: 

(i) GDP: Equation (4) of the endogenous growth model implies that house price growth is 

a fraction of the GDP growth in the long-run equilibrium when the two variables grow 

 

5  China Data Online is compiled by the China Data Center, University of Michigan, using data from China 
Statistical Yearbook. The city-level sale price index of houses is available until 2009. We compiled the sample 
until 2008 to avoid the possible effect of the global financial crisis on the real estate market. The sample cities are 
Beijing, Changchun, Changsha, Chengdu, Chongqing, Dailan, Fuzhou, Guangzhou, Guiyang, Haikou, Hangzhou, 
Harbin, Hefei, Hohhot, Jinan, Kunming, Lanzhou, Nanjing, Nanning, Ningbo, Qingdao, Shanghai, Shenyang, 
Shenzhen, Shijiazhuang, Taiyuan, Tianjin, Urumqi, Wuhan, Xiamen, Xi'an, Xining, Yinchuan, and Zhengzhou. 
6 To show that yt in Equation (6) is equal to the growth rate of the house price index, let ht = pt/p0 be the price 
index, where pt is the actual house price in t (t=0 is the base year). The growth rate of ht = ln(ht/ht-1) = ln(ht)–ln(ht-

1) = ln(pt)–ln(pt-1) = ln(pt/pt-1) = yt. 

7 http://www.distancecalculator.globefeed.com/China Distance Calculator.asp. 
 

http://www.distancecalculator.globefeed.com/China%20Distance%20Calculator.asp
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at constant rates. Since the growth rates of house price and GDP are endogenously 

determined in the theoretical model, our estimation approach controls for this potential 

endogeneity. 

(ii) Consumer price index (CPI): Previous studies such as Ozanne and Thibodeau (1983) 

found house price to be positively associated with inflation. According to Campbell and 

Cocco (2015), rising inflation lowers real interest rates by increasing expected inflation, 

which decreases the user cost of housing and real mortgage payments.8 Similar to the 

GDP, CPI is potentially endogenous because house price is included in the construction 

of CPI. Equation (5) suggests that the degree of such endogeneity increases with the 

price gap between houses and non-housing goods. Again, our estimation approach 

controls for this potential endogeneity. 

(iii) Population: This study employs an endogenous growth model that assumes constant 

household population and land supply. Cheng et al. (2010) relaxed this assumption and 

found that the steady-state growth rate of house price increases with the excess of 

population growth over land supply growth. Assuming that land supply is fixed (or 

population grows considerably faster than land supply), house price growth is expected 

to increase with population growth. 

(iv) Total wages: The expected relationship between the growth rates of house price and 

wages is uncertain. While a city’s wage growth increases the city’s demand for 

residential housing (e.g., Manning, 1989), wage growth across the entire country (e.g., 

 

8 Alternatively, the high expected inflation and nominal interest rates signify that nominal house prices tend to 
increase. 
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economic boom) is usually accompanied by high interest rates as a part of the 

contractionary monetary policy (Campbell and Cocco, 2015). 

(v) Employment: The expected relationship between the growth rates of house price and 

employment is uncertain. While a city’s employment level indicates the level of 

economic activity that is positively associated with the city’s house price (e.g., Bourassa 

et al., 1999), nationwide employment growth is usually accompanied by high interest 

rates. 

(vi) Outstanding amount of savings deposit: Engelhardt (1996) argued that the amount of 

savings deposit indicates homebuyers’ financial ability to overcome liquidity 

constraints. Similarly, Campbell and Cocco (2015) showed that households with tight 

liquidity constraints have a high rate of mortgage default. 

(vii) Number of regular secondary schools: Haurin and Brasington (1996) reported that 

education quality and house price are positively associated. 

(viii) Total passenger traffic: This variable proxies the development of transportation 

infrastructure, such as roads and public transit, and it is expected to be positively 

associated with house price (e.g., Haider and Miller, 2007). 

4.2. Estimation Approach  

We feed the data into Equation (6) using 𝑠𝑠 = 2 and divided the sample into 𝑇𝑇 = 3 intervals 

of equal length (i.e., 2000–2002, 2003–2005, and 2006–2008). Each observation t represents a 

three-year interval, and the numerical value is the growth rate of the variable over a three-year 

period. Therefore, the period t and t – 1 variables in Equation (6) have an underlying coverage 

of six years, and they tend to span beyond a complete growth cycle of many economic time 
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series (Harding and Pagan, 2002).9 This strategy allows an optimal use of the limited data we 

have and prevents high-frequency variations of house prices to weigh on our analysis at the 

same time.  

As previously mentioned, GDP and CPI are potentially endogenous in Equation (6). However, 

none of the existing approaches for estimating spatial dynamic panel data models, including 

generalized method of moments (GMM) (Kukenova and Monteiro, 2008) and Markov Chain 

Monte Carlo (MCMC) estimation (Parent and LeSage, 2010; Debarsy et al., 2011), offer an 

integrated solution to address endogeneity and potential time-varying parameters. To 

accommodate these possibilities, we place Equation (6) in a state-space setting and solve the 

model using Sequential Monte Carlo (SMC) methods (e.g., Doucet and Johansen, 2011). First, 

we decompose the socioeconomic variable 𝑍𝑍𝑡𝑡  into subsets of 𝑘𝑘�  endogenous variables 𝑍𝑍�𝑡𝑡 

(which includes the growth rates of GDP and CPI in our exercise) and 𝑘𝑘 − 𝑘𝑘� = 𝑘𝑘∗ exogenous 

counterpart 𝑍𝑍𝑡𝑡∗ . A first-order autoregressive structure is introduced to each variable in the 

former group10 and a time-varying structure is specified for the coefficient vector 𝜙𝜙. Thus, 

the model is augmented as follows: 

�

𝐼𝐼𝑁𝑁 − 𝜌𝜌𝜌𝜌 0
0 1 

  ⋮  
  0  

⋯ 0
0

 ⋱ ⋮
⋯ 1

� �

𝑦𝑦𝑡𝑡
𝑍𝑍�1𝑡𝑡
⋮
𝑍𝑍�𝑘𝑘� 𝑡𝑡

� = �

𝑦𝑦𝑡𝑡−1
0
⋮
0
� 𝛽𝛽 + �

𝑍𝑍�𝑡𝑡 𝑍𝑍𝑡𝑡∗
0 0
⋮  ⋮
0  0

� �𝜙𝜙
�𝑡𝑡
𝜙𝜙𝑡𝑡∗
� + 

 

 

 

9 We have experimented with the inclusion of t-2 endogenous variables as instruments in equation (5), and found 
counter-intuitive patterns in the direct-indirect effects and signs of coefficients. A possible reason is that the 
second-order lags of the instruments are weakly related to the endogenous variables given the large time gap 
separating them. We have also tried an alternative specification of setting the endogenous variables not as 
contemporaneous factors but as first lag inputs while retaining the first order autoregressive transitional dynamics. 
The results largely resemble those of the chosen model reported in this paper. 
10 The lagged terms of the endogenous variables can be replaced with instruments if they are readily available. 
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                                                         �

0     ⋯
𝑍𝑍�1𝑡𝑡−1 0 
0      ⋱ 
⋮      0

0
⋯
⋮

  𝑍𝑍�𝑘𝑘� 𝑡𝑡−1

� �
𝑎𝑎1
⋮
𝑎𝑎𝑘𝑘�
� + �

𝐼𝐼𝑁𝑁
0
⋮
0

� 𝜇𝜇 + �

𝜀𝜀𝑡𝑡
𝑣𝑣1𝑡𝑡
⋮
𝑣𝑣𝑘𝑘� 𝑡𝑡

� 

(10) 

 

�𝜙𝜙
�𝑡𝑡
𝜙𝜙𝑡𝑡∗
� = �

𝐵𝐵𝑘𝑘� 0
0 𝐶𝐶𝑘𝑘∗

� �𝜙𝜙
�𝑡𝑡−1
𝜙𝜙𝑡𝑡−1∗ � + 𝜉𝜉𝑡𝑡. 

�

𝜀𝜀𝑡𝑡
𝑣𝑣1𝑡𝑡
⋮
𝑣𝑣𝑘𝑘� 𝑡𝑡

� ≡ 𝜂𝜂𝑡𝑡~𝑁𝑁(0,Ω),      𝜉𝜉𝑡𝑡~𝑁𝑁(0,Ψ), 

(11) 

(12) 

 

where 𝜂𝜂𝑡𝑡  and 𝜉𝜉𝑡𝑡  are uncorrelated. The stacking of the variables in (10) resembles the 

standard Bayesian treatment of simultaneous equation problems except that the instruments are 

replaced by the lags of the endogenous variables.  

The covariance matrix Ω  has non-zero off-diagonal elements indicating the correlation 

between 𝜀𝜀𝑡𝑡 and 𝑣𝑣𝑡𝑡. The dimension of the parameters can be significantly reduced11 if we 

restrict Ω to  

   Ω = �
Ωε Ω𝑣𝑣1,ε′ Ω𝑣𝑣2,𝜀𝜀′
Ω𝑣𝑣1,ε Ω𝑣𝑣1 Ω𝑣𝑣2,𝑣𝑣1′
Ω𝑣𝑣2,𝜀𝜀 Ω𝑣𝑣2,𝑣𝑣1 Ω𝑣𝑣2

� , Ω𝑖𝑖,𝑗𝑗 = Ω𝑖𝑖
1/2′𝑐𝑐𝑖𝑖,𝑗𝑗Ω𝑗𝑗

1/2             , (13) 

where 𝑣𝑣1and 𝑣𝑣2 are the error terms of the first-order autoregression of the two endogenous 

variables, namely, GDP growth and inflation, and the subscripts ν1, ν2, and ε to Ω represent the 

parameter pairs that the correlation term defines. The correlation matrices 𝑐𝑐𝑖𝑖,𝑗𝑗  and Ω𝑖𝑖  are 

diagonal, thus implying that endogeneity only exists among variables within the same city. 

 

11  The order of reduction is from ��𝑘𝑘� + 1�𝑁𝑁���𝑘𝑘� + 1�𝑁𝑁 + 1�/2  to ��𝑘𝑘� + 1
2

� + 𝑘𝑘� + 1� 𝑁𝑁 . Reducing the 

dimension can make the numerical computation of likelihoods easier. 
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Stationarity of the system requires |(𝐼𝐼𝑁𝑁𝛽𝛽)(𝐼𝐼𝑁𝑁 − 𝜌𝜌𝜌𝜌)−1| < 1 (Parent and LeSage, 2010). In 

previous studies, imposing the constraints |𝛽𝛽| < 1 and 1/𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜌𝜌 < 1/𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 is common, 

where 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚  and 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚  are the largest and smallest eigenvalues of the weight matrix, 

respectively. As the posterior of 𝛽𝛽 and 𝜌𝜌 can be non-regular or multi-modal, we relax the 

conventional practice of constraining 𝛽𝛽  between [–1, 1] to exclude this case of non-

convergence in our context. The eventual prior we use for 𝛽𝛽 has a wider support than that 

typically adopted.    

The state space Equations (10)–(12) can be estimated through various means. The sheer 

dimension of the model has prompted us to choose a method that is numerically easy to 

implement. The Liu–West (Liu and West, 2001) particle-filtering algorithm we adopted uses 

discrete approximation to obtain draws (i.e., “particles”) of the state vectors from the joint 

posterior distribution and to make inference. The parameters are sampled using kernel 

smoothing techniques through the mixtures of normals. Although not particularly relevant in 

our case, particle filtering is congenial to the online learning of complex nonlinear state space 

models. Steps applied to implement the Liu–West algorithm are provided in Appendix 2. A 

full coverage of the Sequential Monte Carlo method is beyond the scope of this paper as the 

articulated descriptions are already presented in Lopes and Tsay (2011) and Liu and West 

(2001). We would, however, outline the prior distributions and major iteration steps. 

A simple fixed effects panel data model is run to provide a perspective of reasonable ranges of 

parameter values that can appropriately define the prior distributions. In particular, the prior 

means and variances of the state vector 𝜙𝜙  in Equation (11), the individual effects 𝜇𝜇  in 

Equation (10), and Ω𝜀𝜀 in Equation (12) equal the estimates of the fixed effect model whenever 

applicable. The initial observations 𝑦𝑦0 and 𝑍𝑍0 are unobservable, and they have to be sampled 
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to initialize the algorithm. These values are generated from normal distributions with prior 

means that equal the first available observations 𝑦𝑦1  and 𝑍𝑍1 . 12  The time and space 

dependence parameters are distributed as 𝛽𝛽~𝑈𝑈(−2, 2) and 𝜌𝜌~𝑈𝑈(−1, 1) respectively. The 

endogenous vector 𝑍𝑍�𝑡𝑡 in Equation (10) and the state vector in Equation (11) are assumed to 

follow random walks a priori, and they define the probabilistic structure of parameters 𝑎𝑎𝑘𝑘� , 

𝐵𝐵𝑘𝑘� , and 𝐶𝐶𝑘𝑘∗. Finally, the correlation coefficients in 𝑐𝑐𝑖𝑖,𝑗𝑗 are uniform, and they have the usual 

bounds of –1 and 1. Ψ is assumed to have an inverted Wishart prior with a hyperparameter of 

a tightened identity matrix. 

The number of particles is first selected (𝑀𝑀 = 10,000 in our exercise). For each particle, the 

parameters and an initial state vector are drawn from their corresponding priors. The particle 

weights are then evaluated on the basis of the likelihood function13. With the inflow of new 

information/data through the measurement equation, resampling from the existing particles is 

completed with the state vector propagated and the parameters updated. A re-weighting based 

on likelihood ratios is performed to prepare for the resampling in the next filtering time step. 

The weighted averages (or weighted medians in case of bi-modal posteriors) of the particle 

values are eventually obtained as the model estimates. 

5. Estimation Results  

5.1. Convergence and Spillover Parameters  

 

12 In a Bayesian analysis, the importance of the prior distribution diminishes as the sample size grows. In the 
context of particle filtering applied in this study, the filter becomes asymptotically optimal as the number of 
particles increases (i.e., partition of the state space becomes increasingly fine) (e.g., Crisan and Miguez, 2013). 
13 Typically, log-likelihoods are highly feasible computationally in high-dimensional problems.  
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The estimation results are reported in Tables 1 and 2. Table 1 reports the posterior means and 

medians of the major parameters and their standard errors estimated from our spatial dynamic 

panel model. For comparison, Table 2 reports estimates from four auxiliary panel data models, 

namely, standard fixed effects model (FE), random effects model (RE), simple spatial 

autoregressive lag model (SAR), and spatial error correlation model (SEM).  

[Insert Tables 1 and 2 here] 

Regarding the state vector, the signs of the coefficients on the socioeconomic variables 

presented in Table 1 match those from the reference models in Table 2. The Hausman test 

statistics reported in Table 2 rejects the null hypothesis that the RE is more efficient and favors 

the FE instead. Table 2 also reports the Moran’s I index over the three model periods; this index 

is positive in each case and displays an increasing pattern from the first period (0.521) to the 

third period (0.885).14 This finding indicates the increased spatial correlation in the growth 

rates of house prices and thus justifies the inclusion of spatial spillover in our empirical model. 

In Table 1, we find evidence supporting the convergence hypothesis and the positive spatial 

spillover in house prices, which is robust in the variations in prior parameters we explored. The 

weighted mean of 𝛽𝛽 = −0.159 in our model, and the conventional convergence parameter 

𝛽𝛽0 = −1.15 because 𝛽𝛽 = 1 + 𝛽𝛽0.15 The positive spatial dependence parameter (𝜌𝜌 = 0.2615) 

 

14 Moran’s I index ranges between –1 and +1. A positive (negative) value indicates a positive (negative) spatial 
correlation (e.g., Li et al., 2007). 

15  The estimation is under the assumption that the convergence parameter is time invariant. To explore the 
possibility of a time-varying convergence parameter, we re-estimated the model using observations 𝑡𝑡 = {1, 2} 
and 𝑡𝑡 = {2, 3} separately and determined that the values of β from the two subsamples are –0.0143 and –0.0246, 
respectively. Considering that the actual convergence parameter is β0 = β – 1, the speed of convergence is indeed 
stable over the sample period. 
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suggests that the spread effect outweighs the backwash effect, which offers a magnifying factor 

(together with the distance matrix) for multiple rounds of instantaneous cross-city price 

feedback. In each round, a ∆% change in the house price of a neighboring city causes a at most 

0.2615∆% change in the house price in the subject city in the same direction because the 

distance matrix has been normalized. The magnitudes of subsequent rounds continue to 

decline.16 The pure spatial lag model results in a large estimate for the spatial dependence 

parameter (ρ = 0.3190) by excluding the time dependence parameter. 

 [Insert Figure 1 here] 

From the upper panel of Figure 1, 𝜌𝜌 is clearly bi-modal.17 Although we have relaxed the tight 

support of [–1, 1] for 𝛽𝛽, the parameter values in excess of the range on either side do not appear 

to be admissible when the stationarity rule is applied. To deliver a desired estimate for 𝜌𝜌, the 

weighted median rather than the weighted mean of 𝜌𝜌 is presented in Table 1. 

To further assess the adequacy of the spatial dynamic panel model, we compute the Bayes 

Factor (BF) against alternative specifications. Two competing scenarios are evaluated, one is 

a case of divergence (no convergence), that is, 𝛽𝛽 > 1, and the other is a case in which the 

space dependence is negative, that is, 𝜌𝜌 < 0. In the SMC literature, the principal tool for 

hypothesis testing is the BF, which is essentially a likelihood ratio. The particle filter we used 

 

16 Here is a possible misnomer as all rounds are supposed to take effect instantaneously. 
17 The raw values presented in Figure 1 are unweighted. Different from the MCMC estimates that give equal 
weights to all sampled points, the particle-filtering algorithm employed in our study attaches small weights to 
pairs of 𝛽𝛽 and 𝜌𝜌 (i.e., particles) that violate the stationarity condition, in which the weights are functions of the 
likelihoods. The pairs of 𝛽𝛽 and 𝜌𝜌 that violate the stationarity condition have a slight effect on the posterior 
estimates because they receive small weights and the chance of their values being drawn in the re-sampling step 
of the algorithm is small. 
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enables the sequential update of the BF using the Monte Carlo approximation of marginal 

likelihoods. Specifically, the sequential BF is computed as follows: 

ℬℱ12,𝑡𝑡 =
∏ 𝑝𝑝(𝑌𝑌𝜏𝜏|𝑌𝑌0:𝜏𝜏−1,ℳ1)𝑡𝑡
𝜏𝜏=1

∏ 𝑝𝑝(𝑌𝑌𝜏𝜏|𝑌𝑌0:𝜏𝜏−1,ℳ2)𝑡𝑡
𝜏𝜏=1

,     𝑡𝑡 = 1,⋯ ,𝑇𝑇,            (14) 

  𝑝𝑝(𝑌𝑌𝜏𝜏|𝑌𝑌0:𝜏𝜏−1,ℳ) ≈
1
𝑀𝑀
� 𝑝𝑝�𝑌𝑌𝜏𝜏|{𝑥𝑥𝜏𝜏−1,𝜃𝜃}(𝑖𝑖)�

𝑀𝑀

𝑖𝑖=1
,             (15) 

where 𝑥𝑥𝜏𝜏−1 is the state vector at time 𝜏𝜏 − 1, 𝜃𝜃 is the set of constant parameters, and ℳ is 

the model under the hypothesis. The logarithmic-transformed sequential BFs are reported in 

Table 1. The evidence indicates a general preference for the basic unrestricted model over the 

non-convergence and negative spatial spillover alternatives. 

5.2. Effect of Socioeconomic Variables  

As expected, Table 1 suggests that GDP growth, inflation (i.e., CPI growth), population growth, 

savings deposit growth, and traffic growth all contribute positively to the steady-state growth 

rates of house prices. In particular, the house price growth rate is a fraction of the GDP growth 

rate (i.e., 1−α < 1) as predicted by Equation (4). However, employment growth and wage 

growth tend to have the opposite effect. As previously mentioned, the expected relationship 

between house price and wages is ambiguous because a city’s wage growth increases the city’s 

housing demand, whereas nationwide wage growth is usually accompanied by high interest 

rates. The dominating negative effect is due to the large degree of co-movement in wage growth 

among Chinese cities (the mean cross-sectional correlation coefficient of wage growth is 

0.5143). A similar explanation is applicable to the negative effect of employment growth on 

house price growth. 
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Switches in signs of the estimated coefficients are infrequent among the socioeconomic 

variables, but their values can slightly vary periodically. Most of the growth elasticities are 

smaller than 1 in absolute value, and this value partly explains why we observe very small 

indirect effects, which we will discuss below. One obvious exception is the elasticity to CPI 

growth (≈ 0.5), which demonstrates a reasonable level given that houses are important fixed 

assets and their returns may track inflation to a certain extent. 

Using these model estimates, we can predict house prices and observe how they compare with 

the actual levels. Figure 2 gives the predicted average growth in house prices for all the cities 

between 2000 and 2008 along with the actual growth rates. Despite the hundreds of parameters 

incorporated in our model and the inherent heterogeneity in the data, we observe a rather good 

fit of the actual data. 

[Insert Figure 2 here] 

As our specification considers the issue of endogeneity, we can also assess the pervasiveness 

of the problem in our sample. The vector 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑐𝑐𝑖𝑖,𝜀𝜀� captures the degree of endogeneity 

between the i-th endogenous variable and house price. A positive element in this vector implies 

that the error in the house price equation is positively related to that in the endogenous variable 

equation [i.e., Equation (10)] for the corresponding city. The numbers vary from city to city. 

The average error correlation between inflation and house price in the 34 cities is –0.16 and 

that between GDP growth and house price is 0.07. These results indicate a weak endogeneity 

between house price and the two explanatory variables. 

The last issue concerning the socioeconomic variables is the decomposition of their effect into 

direct and indirect ones. The terminology may be vague as diffusions into one’s own house 
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price and into those of others are evident. Direct effect refers to the own (instantaneous, spatial 

spillover and time diffusion, all inclusive) effect of a change in the r-th factor in city i on the 

growth in house price in the same city. Indirect effect is the response of j’s house price to a 

shock originating from city i through spatial and temporal spillover. Debarsy et al. (2011) 

demonstrated how these effects could be evaluated when the coefficients are time invariant. 

Essentially, these effects are functions of 𝜌𝜌 and 𝛽𝛽 as implied by Equation (9). In our case, 

𝜙𝜙 is not constant, and the direct and indirect effects depend on the time of impact. 

Manipulating Equation (9) results in the 𝜕𝜕𝑌𝑌𝑖𝑖𝑖𝑖 𝜕𝜕𝑍𝑍𝑗𝑗𝑗𝑗−ℎ⁄  we need. Here, ℎ  is the time lag 

between current time t and the time of impact, 𝑖𝑖 = 𝑗𝑗, ℎ = 0,1,⋯ gives the direct effect, and 

𝑖𝑖 ≠ 𝑗𝑗, ℎ = 0,1,⋯  yields the indirect effect. To save space, we report only the average 

cumulative direct (i.e., averaged over all shock-originating cities i) and indirect effects of the 

socioeconomic variables (i.e., averaged over all non-shock-originating cities j) in Table 3. An 

element-by-element summation of the figures gives the average cumulative total effect of a 

change in the socioeconomic variable concerned. 

As expected, the direct effect at the time of impact should be slightly larger than the 

corresponding coefficient because of the presence of positive spillover. Stationarity of the 

system guarantees that the non-cumulative response will die down eventually, but the negative 

time dependence implies that the adjustment will not be monotonic. These facts are reflected 

in the cumulative figures in the table. The indirect effects are much smaller in magnitude but 

share the same signs as the direct effects because of the aforementioned spatial spillover. On 

average, population growth, inflation, and GDP growth are the most influential factors that 

propel house prices regardless of the city of shock origin. 

[Insert Table 3 here] 
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As previously mentioned, house prices may converge if there is convergence in housing de-

mand fundamentals, such as incomes. Therefore, the dynamic relationship between the growth 

rates of house prices and GDP deserves further investigation. First, as the degree of 

endogeneity between the two variables is weak, GDP growth tends to be a conditioning factor 

for house price convergence but not the opposite. To compare their convergence speeds, Figure 

3 plots the house price and GDP growth rates for 𝑡𝑡 = {1, 2} and 𝑡𝑡 = {2, 3} in the form of a 

scatter diagram. 

[Insert Figure 3 here] 

A visual inspection of the figure reveals that the observations of the two variables are aligned 

in similar directions and patterns. Specifically, both variables flatten as time lapses, thus 

indicating that their convergence speeds do not differ exceedingly from each other. 

 

Alternatively, the magnitude by which a vector variable changes between any two time 

instances can be measured by the angle of the two vectors evaluated at the two time points. The 

angle of the two vectors of any variable (Y) between t and t+k is defined as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ≡ ∠ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
‖𝑌𝑌𝑡𝑡+𝑘𝑘‖2 + ‖𝑌𝑌𝑡𝑡‖2 − ‖𝐷𝐷‖2

2‖𝑌𝑌𝑡𝑡+𝑘𝑘‖‖𝑌𝑌𝑡𝑡‖
� ,                  (11)  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ≡ ‖𝐷𝐷‖ = �� �𝑦𝑦𝑖𝑖,𝑡𝑡+𝑘𝑘 − 𝑦𝑦𝑖𝑖,𝑡𝑡�
2𝑁𝑁

𝑖𝑖=1
�
1/2

.                            

The change is small when the angle is close to zero. The angles of GDP between t = 1 to 2 and 

t = 2 to 3 are 0.3405 and 0.2980, and the corresponding figures for house price are 0.6861 and 

0.6125, respectively. The growth rates of house price and GDP decline by similar percentages 
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(approximately 12% and 11%, respectively) over the sample period, thus indicating that GDP 

and house price tend to have similar convergence speeds.  

5.3. Interpretation  

The results reported in this paper indicate a distinct possibility that house prices in Chinese 

cities conditionally converge to parallel growth paths in the steady state, and absolute 

convergence is unlikely. The positive spatial spillover governs the growth of the house prices 

in the cities in the following means. First, as a factor of conditional convergence, the positive 

spatial spillover elevates the trajectories of the steady-state (parallel) growth paths of house 

prices. Second, the positive spatial spillover implies that the house price growth of a city tends 

to spillover to nearby cities, and this spillover helps narrow the gap among the growth paths of 

house prices in neighboring cities. 

As we have observed, the direct effect of a change in a socioeconomic variable is dominated 

by the non-diffusion inspired own effect. While the spatial spillover allows other cities to share 

the impact and benefit from the spread effect, the relatively small space dependence parameter 

means that exogenous jumps in the house prices of certain cities can make catching up entirely 

or surpassing difficult for others.  

Figure 4 illustrates the distribution of actual sale price of houses in Chinese cities in 200118. 

The data are categorized in quintiles. The large and dark dots indicate the high house prices in 

the city concerned. In 2001, cities with house prices in the top 20th percentile were clustering 

 

18 No comparable data for 2000 are available. The data can be found in the official website of the National Bureau 
of Statistics of China http://www.stats.gov.cn/was40/gjtjj outline.jsp. 

http://www.stats.gov.cn/was40/gjtjj%20outline.jsp
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along the coastline of the country. If absolute convergence applies, long-term growth rates of 

the house prices in the cities are expected to accelerate as they expand from the coast. Figure 

5 depicts the total growth in house prices from 2000 to 2008, which is again categorized in 

quintiles. In contrast to the prediction of absolute convergence, the highest growth rates remain 

clustered along or near the coast. However, an increase in the concentration of high growth 

cities is evident toward the inner parts of China (e.g., the provinces of Hebei, Henan, and 

Shangdong). This increase is consistent with the price convergence accompanied by spread 

effects, as discussed in section 1. In addition, far away regions, such as the Northeast and the 

Northwest, do not appear to have benefited from any spillover. This finding gives some 

credibility to our distance-weighted spillover structure. 

To further differentiate the convergence experiences of Chinese cities, we apply our spatial 

model to two subsets of our sample, namely, East–West and North–South19. The procedures 

are the same as those specified in section 3. The nexuses include East, West, Central, and 

Northeast regions (25 cities) in the first batch and North, South, Central, and Northeast regions 

(16 cities) in the second. The segregation enables the exclusion of a different set of cities in 

each exercise to prevent identification and interpretation problems. The results suggest that 

convergence is present in both nexuses: 𝛽𝛽 = −0.9663 and 𝜌𝜌 = 0.0581 for the E–W nexus, 

and 𝛽𝛽 = 0.1813  and 𝜌𝜌 = 0.1881  for the N-S nexus. In summary, convergence is 

exceedingly slower in the N–S nexus than in the E–W one although the former is compensated 

by a slightly higher spread effect than the latter. A possible explanation of this phenomenon 

 

19  North: Beijing, Hohhot, Shijiazhuang, Taiyuan, and Tianjin. South: Guangzhou, Haikou, Nanning, and 
Shenzhen. East: Fuzhou, Hangzhou, Hefei, Jinan, Nanjing, Ningbo, Qingdao, Shanghai, and Xiamen. West: 
Chengdu, Chongqing, Guiyang, Kunming, Lanzhou, Urumqi, Xi'an, Xining, and Yinchuan. Central: Changsha, 
Wuhan, and Zhengzhou. Northeast: Changchun, Dailan, Harbin, and Shenyang.  
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can be the exclusion of the clusters of high growth coastal cities in the N–S nexus, thus leaving 

only a few low growth cities in the Central to bridge the N–S corridor (Figure 5). In the E–W 

batch, we have a large network of high-growth cities in the East and Northeast that helps 

establish the convergence relationship.  

[Insert Figures 4 and 5 here.] 

Provided that there exists regional house price interactions in the data which cannot be fully 

explained by idiosyncratic factors, observable or not, the burden will be borne by either the 

space dependence parameter or the time dependence parameter or both. If convergence is in 

place but is statistically underestimated, the discrepancy will be usurped by an overestimated 

positive spatial spillover effect. Conversely, an overestimated convergence phenomenon will 

have to be balanced by a smaller-than-actual spatial spillover effect to match the data pattern. 

In essence, the closing of gaps in house prices is a statistical phenomenon of growth 

appropriation.  

5.4. Policy Implications  

China’s housing reform that began in 1978 is part of the overall economic reform. Under the 

housing reform, the Chinese government introduced market elements to urban housing by 

commercializing and decentralizing housing investment (Wang and Murie, 1996). The 

government also considered housing conditions as a major indicator of living standards and 

assigned urban housing investment as a national priority. However, regional disparity of 

housing development remains a major challenge (e.g., Song and Chen, 2004). Findings from 

this study suggest that regional house price convergence is conditional on region-specific 

factors and that regional disparity in housing development can be a permanent phenomenon. 
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Thus, identifying the conditioning factors for regional house price convergence and targeting 

the interventions and public resources toward the regions that need them the most are the key 

to reducing regional disparity.  

The findings reveal that house price convergence among major Chinese cities is partly 

conditional on the spatial dependence of house prices. Increases in steady-state house prices 

tend to spillover from the more developed cities to their less developed counterparts, and this 

spillover helps reduce regional disparity. According to growth pole theory, the two opposing 

forces governing the sign and the magnitude of such spillover are the spread and backwash 

effects. This study establishes that the spread effect outweighs the backwash effect, and this 

result is favorable to narrowing the gaps between Chinese cities’ house prices. This finding 

may be partly attributable to China’s hukou (i.e., household registration) system that restrains 

inter-regional labor migration20. Chen et al. (2011) argued that migrants without a hukou in 

coastal provinces usually find entering the housing markets there unaffordable. 

In general, policy makers should recognize the coexistence of the two opposing forces when 

crafting regional development strategy. If the government prefers to enhance the existing 

economic center, for instance, a highly significant spread–backwash pattern can be expected 

between the center and the less developed regions. Government policies aiming to reduce 

regional disparity can be highly effective if the policies are both conducive to the spread effect 

and obstructive to the backwash effect.  

 

20 To curb the increasing house prices in major cities, for instance, non-local-registered families that have not 
paid local social security or income taxes for several years are banned from buying local properties in major cities. 
Whalley and Zhang’s (2004) simulation suggests that abolishing the hukou system can enhance rural-urban labor 
migration and thus positively affect urban house prices. 
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One possible approach is to foster specialization and collaboration among the more developed 

cities and their less developed counterparts through economic restructuring. An example is the 

“Rise of Central China Plan” announced by the Chinese government in 2004 in an attempt to 

close the widening gap between the central and the eastern regions21. Under the plan, the central 

region will be a connecting link between eastern and western developments because the central 

region has advantages in certain industrial sectors and it is situated between the booming 

eastern region and the relatively backward but resource-rich western region (Xinhua News 

Agency, February 17, 2006). The plan has become part of the country’s overall strategy to 

promote a coordinated development of different regions that emphasize the formation of a new 

development pattern in which the eastern, central, and western parts of the country can interact, 

complement each other, and contribute to each other’s development.  

6. Conclusion  

We investigated the house price dynamics of 34 Chinese cities between 2000 and 2008. Strong 

evidence favors conditional convergence and contemporary spatial dependence of house prices 

in different cities at the same time. Nevertheless, the estimated effect of spatial spillover is 

small. A shock to a socioeconomic variable exerts a strong direct effect on domestic house 

price and induces a relatively meager indirect effect that originates from cross-city house price 

and intertemporal feedback. This phenomenon creates an environment that favors convergence 

in growth paths of house prices rather than in levels. From a social science perspective, the 

 

21 The Plan was a strategic decision made by the Chinese government following its earlier decision to prioritize 
the development of the eastern region, develop the central region through urbanization, and rejuvenate the old 
industrial bases. 
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empirical findings support the fact that the spread effect dominates the backwash effect. Finally, 

we found that spatial spillover and convergence are inter-related numerically and intuitively, 

so excluding the convergence factor in our model could result in a biased estimate of spatial 

interaction. A limitation of this study is that the spread and backwash effects that constitute 

positive spatial spillover are not separately identifiable in the existing data set. Incorporating 

the determinants of spread and backwash effects such as inter-city factor flows into the 

empirical model is a possible extension of this study. 
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Appendix 1: Derivation of Equation (4) 

Equation (9) can be obtained by repeated substitution with the main Equation (6). First, 

   𝑦𝑦𝑡𝑡 = 𝛽𝛽𝑦𝑦𝑡𝑡−1 + 𝜌𝜌𝜌𝜌𝑦𝑦𝑡𝑡 + 𝑍𝑍𝑡𝑡𝜙𝜙 + 𝜇𝜇 + 𝜀𝜀𝑡𝑡.    (I) 

   ⇒ (𝐼𝐼 − 𝜌𝜌𝜌𝜌)𝑦𝑦𝑡𝑡 = 𝛽𝛽𝑦𝑦𝑡𝑡−1 + 𝑍𝑍𝑡𝑡𝜙𝜙 + 𝜇𝜇 + 𝜀𝜀𝑡𝑡.   (II)

   ⇒ 𝑦𝑦𝑡𝑡 = (𝐼𝐼 − 𝜌𝜌𝜌𝜌)−1[𝛽𝛽𝑦𝑦𝑡𝑡−1 + 𝑍𝑍𝑡𝑡𝜙𝜙 + 𝜇𝜇 + 𝜀𝜀𝑡𝑡]. 

Lagging the above equation for one period gives the following: 

   𝑦𝑦𝑡𝑡−1 = (𝐼𝐼 − 𝜌𝜌𝜌𝜌)−1[𝛽𝛽𝑦𝑦𝑡𝑡−2 + 𝑍𝑍𝑡𝑡−1𝜙𝜙 + 𝜇𝜇 + 𝜀𝜀𝑡𝑡−1].  (III) 

Substituting (III) into (II), 

 (𝐼𝐼 − 𝜌𝜌𝜌𝜌)𝑦𝑦𝑡𝑡 = 𝛽𝛽{(𝐼𝐼 − 𝜌𝜌𝜌𝜌)−1[𝛽𝛽𝑦𝑦𝑡𝑡−2 + 𝑍𝑍𝑡𝑡−1𝜙𝜙 + 𝜇𝜇 + 𝜀𝜀𝑡𝑡−1]} + 𝑍𝑍𝑡𝑡𝜙𝜙 + 𝜇𝜇 + 𝜀𝜀𝑡𝑡. 

Applying (III) to 𝑦𝑦𝑡𝑡−2, 

 (𝐼𝐼 − 𝜌𝜌𝜌𝜌)𝑦𝑦𝑡𝑡 = 𝛽𝛽{(𝐼𝐼 − 𝜌𝜌𝜌𝜌)−1[𝛽𝛽[(𝐼𝐼 − 𝜌𝜌𝜌𝜌)−1{𝛽𝛽𝑦𝑦𝑡𝑡−3 + 𝑍𝑍𝑡𝑡−2𝜙𝜙 + 𝜇𝜇 + 𝜀𝜀𝑡𝑡−2}] +

𝑍𝑍𝑡𝑡−1𝜙𝜙 + 𝜇𝜇 + 𝜀𝜀𝑡𝑡−1]} + 𝑍𝑍𝑡𝑡𝜙𝜙 + 𝜇𝜇 + 𝜀𝜀𝑡𝑡. 

Expanding and collecting terms gives the following: 

   (𝐼𝐼 − 𝜌𝜌𝜌𝜌)𝑦𝑦𝑡𝑡 = (𝑍𝑍𝑡𝑡𝜙𝜙 + 𝜇𝜇 + 𝜀𝜀𝑡𝑡) + 

   𝛽𝛽(𝐼𝐼 − 𝜌𝜌𝜌𝜌)−1(𝑍𝑍𝑡𝑡−1𝜙𝜙 + 𝜇𝜇 + 𝜀𝜀𝑡𝑡−1) + 

   𝛽𝛽2(𝐼𝐼 − 𝜌𝜌𝜌𝜌)−2(𝑍𝑍𝑡𝑡−2𝜙𝜙 + 𝜇𝜇 + 𝜀𝜀𝑡𝑡−2)  + 

   𝛽𝛽2(𝐼𝐼 − 𝜌𝜌𝜌𝜌)−2(𝛽𝛽𝑦𝑦𝑡𝑡−3) …     (IV) 

Continually expanding the last term of (IV) gives Equation (9). 
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Appendix 2: Steps applied to implement the Liu–West Algorithm 

 

• Let 𝑥𝑥𝑡𝑡 denote the time-varying coefficients and 𝜃𝜃𝑡𝑡 the set of all other unknown 

parameters. A particle set of size M is represented by �(𝑥𝑥𝑡𝑡,𝜃𝜃𝑡𝑡)(𝑖𝑖)�𝑖𝑖=1
𝑀𝑀

. 

• Let 𝜃̅𝜃𝑡𝑡 and 𝑉𝑉𝑡𝑡 be the Monte Carlo posterior mean and variance of 𝜃𝜃𝑡𝑡. Define 

𝑚𝑚�𝜃𝜃𝑡𝑡
(𝑖𝑖)� = 𝑎𝑎𝜃𝜃𝑡𝑡

(𝑖𝑖) + (1 − 𝑎𝑎)𝜃̅𝜃𝑡𝑡 and 𝑔𝑔�𝑥𝑥𝑡𝑡
(𝑖𝑖)� = 𝐸𝐸 �𝑥𝑥𝑡𝑡+1|𝑥𝑥𝑡𝑡

(𝑖𝑖),𝑚𝑚�𝜃𝜃𝑡𝑡
(𝑖𝑖)�� with 𝑎𝑎 and ℎ 

as the pre-defined parameters. 

• Resample ��𝑥𝑥�𝑡𝑡,𝜃𝜃�𝑡𝑡�
(𝑖𝑖)�

𝑖𝑖=1

𝑀𝑀
from the current particle set with the following weights: 

𝜑𝜑𝑡𝑡+1
(𝑖𝑖) ∝ 𝑝𝑝 �𝑦𝑦𝑡𝑡+1|𝑔𝑔�𝑥𝑥𝑡𝑡

(𝑖𝑖)�,𝑚𝑚�𝜃𝜃𝑡𝑡
(𝑖𝑖)��. 

• For each particle, sample 𝜃𝜃�𝑡𝑡+1
(𝑖𝑖)  from 𝑁𝑁 �𝑚𝑚�𝜃𝜃�𝑡𝑡

(𝑖𝑖)�,ℎ2𝑉𝑉𝑡𝑡�. 

• Sample 𝑥𝑥�𝑡𝑡+1
(𝑖𝑖)  from 𝑝𝑝�𝑥𝑥𝑡𝑡+1|𝑥𝑥�𝑡𝑡

(𝑖𝑖),𝜃𝜃�𝑡𝑡+1
(𝑖𝑖) �. 

• Compute weights 𝑤𝑤𝑡𝑡+1
(𝑖𝑖) ∝ 𝑝𝑝�𝑦𝑦𝑡𝑡+1|𝑥𝑥�𝑡𝑡+1

(𝑖𝑖) ,𝜃𝜃�𝑡𝑡+1
(𝑖𝑖) �/𝑝𝑝 �𝑦𝑦𝑡𝑡+1|𝑔𝑔�𝑥𝑥�𝑡𝑡

(𝑖𝑖)�,𝑚𝑚�𝜃𝜃�𝑡𝑡
(𝑖𝑖)��. 

• Sample �(𝑥𝑥𝑡𝑡+1,𝜃𝜃𝑡𝑡+1)(𝑖𝑖)�𝑖𝑖=1
𝑀𝑀

 from the updated particle set with weights �𝑤𝑤𝑡𝑡+1
(𝑖𝑖) �

𝑖𝑖=1

𝑀𝑀
. 
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Figure 1. Posterior Distributions of ρ and β. 
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Figure 2. Average Growth in House Prices in 34 Cities, 2000-2008.   
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Figure 3. Scatter Diagram of GDP Growth and House Price Growth across Time 
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Figure 4. Actual Sale Prices of Houses in Chinese Cities as of 2001 
 

 
Notes: Sale prices categorized into 20 percentiles. The top 20 percentile has the biggest and darkest dots and the lowest 20 percentile the smallest and the 
lightest.
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Figure 5. Actual Growth in House Prices in Chinese Cities between 2000 and 2008 
 

 
Notes: Total growth in house prices between 2000 and 2008 categorized into 20 percentiles. The top 20 percentile has the biggest and darkest dots and 
the lowest 20 percentile the smallest and the lightest. 
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Table 1. Estimates of the Spatial Dynamic Panel Model  

 Spatial Dynamic Panel Model 

 t = 1 t = 2 t = 3 

Coefficient of: Estimate s.e. Estimate s.e. Estimate s.e. 

(i) GDP growth 0.1059 (0.0061) 0.0905 (0.0471) 0.1239 (0.0471) 

(ii)  CPI growth 0.4862 (0.0314) 0.4938 (0.0316) 0.4849 (0.0316) 

(iii) Population Growth 0.2461 (0.0473) 0.2139 (0.0471) 0.2332 (0.0471) 

(iv) Wage growth –0.0733 (0.0111) –0.0593 (0.0112) –0.1172 (0.0112) 

(v)  Employment growth –0.0014 (0.0013) –0.0515 (0.0013) –0.0068 (0.0013) 

(vi) Saving growth 0.0353 (0.0006) 0.0389 (0.0006) 0.0405 (0.0006) 

(vii) Secondary School growth –0.1020 (0.0081) –0.0588 (0.0081) –0.0933 (0.0081) 

(viii) Traffic growth 0.0086 (0.0002) 0.0095 (0.0002) 0.0150 (0.0002) 

 𝜌𝜌 spatial dependence 0.2615 (0.0016)     

 𝛽𝛽 time dependence –0.1590 (0.0020)     

Model Adequacy:       

Sequential (log) Bayes Factor       

Estimated Model against the 

alternative of 𝛽𝛽 divergence (>1) 

1.1046e+14  1.2799e+24  1.2798e+24  

Estimated Model against the 

alternative of 𝜌𝜌 < 0 

–4.6937e+13  7.4613e+24  7.4613e+24  
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Table 2. Estimates of Standard Panel Data and Spatial Panel Data Models  

 Ordinary Panel Data Spatial Panel Data 

 Fixed Effects (FE) Random Effects (RE) Spatial Autoregressive Lag  Spatial Error Model 

Coefficient of: Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e. 

(i) GDP growth 0.1198 (0.0622) 0.0690 (0.0635) 0.0842 (0.0727) 0.0693 (0.0751) 

(ii)  CPI growth 0.4890 (0.1421) 0.3386 (0.1437) 0.3792 (0.1962) 0.5686 (0.1931) 

(iii) Population Growth 0.2420 (0.1735) 0.0792 (0.1654) 0.2104 (0.2010) 0.2000 (0.1980) 

(iv) Wage growth –0.0763 (0.0848) 0.0652 (0.0780) –0.0654 (0.0981) –0.0565 (0.0961) 

(v)  Employment growth –0.0001 (0.0284) –0.0114 (0.0285) –0.0124 (0.0330) –0.0156 (0.0333) 

(vi) Saving growth 0.0403 (0.0189) 0.0290 (0.0205) 0.0350 (0.0218) 0.0331 (0.0220) 

(vii) Secondary School growth –0.0924 (0.0716) –0.0786 (0.0716) –0.0709 (0.0834) –0.0706 (0.0826) 

(viii) Traffic growth 0.0097 (0.0124) 0.0056 (0.0146) 0.0099 (0.0143) 0.0129 (0.0144) 

 𝜌𝜌 spatial dependence n.a.  n.a.  0.3190 (0.2147) n.a.  

 𝛽𝛽 time dependence n.a.  n.a.  n.a.  n.a.  

 spatial error autocorrelation n.a.  n.a.  n.a.  0.4020 (0.2158) 

Model Adequacy:         

 𝑅𝑅2  0.3785  0.0160  0.3816  0.3665  

Specific Tests         

(i) Hausman Test for FE/RE Chi-squared statistics = 28.5019 p value = 0.0004  

(ii) Moran’s I Index for Spatial Correlation 𝐼𝐼𝑡𝑡=1 = 0.5207 𝐼𝐼𝑡𝑡=2 = 0.8123 𝐼𝐼𝑡𝑡=3 = 0.8850   

Remarks: The 𝑅𝑅2 reported are the overall 𝑅𝑅2. 
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Table 3. Direct and Indirect Effects of Shocks to Socioeconomic Variables over Five Three-year 
Intervals 

 Socioeconomic 
Variables 

t = 1   
Impact Time 

 
t = 2 

 
t = 3 t = 4 t = 5 

       

 Shock in: Direct Effect (cumulative) averaged over all shock originating cities 

(i)  GDP growth 0.1063 0.0893 0.0920 0.0916 0.0917 

(ii)  CPI growth 0.4882 0.4099 0.4225 0.4205 0.4208 

(iii)  Pop. growth 0.2471 0.2075 0.2139 0.2128 0.2130 

(iv)  Wage growth –0.0736 –0.0618 –0.0637 –0.0634 –0.0634 

(v)  Employ growth –0.0014 –0.0012 –0.0012 –0.0012 –0.0012 

(vi)  Saving growth 0.0354 0.0298 0.0307 0.0305 0.0305 

(vii)  Sec School growth –0.1024 –0.0860 –0.0886 –0.0882 –0.0883 

(viii)  Traffic growth 0.0086 0.0073 0.0075 0.0074 0.0075 

       

 Shock in: Indirect Effect (cumulative) averaged over all neighboring cities 

(i)  GDP growth 0.0011 0.0007 0.0008 0.0008 0.0008 

(ii)  CPI growth 0.0052 0.0032 0.0038 0.0036 0.0037 

(iii)  Pop. growth 0.0026 0.0016 0.0019 0.0018 0.0019 

(iv)  Wage growth –0.78 e –3 –0.49 e –3 –0.57 e –3 –0.55 e –3 –0.55 e –3 

(v)  Employ growth –0.15 e –4 –0.09 e –4 –0.11 e –4 –0.10 e –4 –0.11 e –4 

(vi)  Saving growth 0.37 e –3 0.23 e –3 0.27 e –3 0.26 e –3 0.27 e -3 

(vii)  Sec School growth –0.0011 –0.0007 –0.0008 –0.0008 –0.0008 

(viii)  Traffic growth 0.91 e –4 0.57 e –4 0.67 e –4 0.64 e –4 0.65 e –4 

       

Remarks: Each observation t represents a three-year interval. The direct effect is the own effect of a change in 
the r-th explanatory variable in city ion the growth in house price in city i. The indirect effect captures the 
effect of the same shock originated in city i on j’s house price growth via the spillover from city i. Shock is 
assumed to originate at calendar time t =1 of the data sample. 
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