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Abstract. In this paper, we introduce an unconstrained differentiable penalty method for
solving implicit complementarity problems, which has an exponential convergence rate under the
assumption of a uniform ξ-P -function. Instead of solving the unconstrained penalized equations
directly, we consider a corresponding unconstrained optimization problem and apply the trust-region
Gauss-Newton method to solve it. We prove that the local solution of the unconstrained optimization
problem identifies that of the complementarity problems under monotone assumptions. We carry
out numerical experiments on the test problems from MCPLIB, and show that the proposed method
is efficient and robust.
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1. Introduction. Consider the following implicit complementarity problem
(ICP, for short) [24, 25], which is to find a vector x ∈ Rn satisfying the following
conditions,

H(x) ≤ 0, F (x) ≤ 0, ⟨H(x), F (x)⟩ = 0, (1.1)

where functions H,F : Rn → Rn are assumed to be continuously differentiable and
⟨y, z⟩ denotes the inner product for any vectors y, z ∈ Rn. Specially, as H(x) := x,
problem (1.1) reduces to the nonlinear complementarity problem (NCP, for short).
Moreover, problem (1.1) becomes a linear complementarity problem (LCP, for short)
as H(x) := x and F is an affine function, i.e., F (x) := Ax − b for a given matrix
A ∈ Rn×n and a vector b ∈ Rn. Complementarity problems play an important role in
operations research, option pricing, economic equilibrium models and the engineering
sciences; see, e.g., [10, 11, 14].

Comprehensive studies for complementarity problems have been done, see
monographs [6, 8, 9] and the references therein. Two differentiable minimization
formulations for problem (1.1) were studied by Tseng et al. [29] by virtue of
the Fukushima’s merit function for variational inequality problems [13] and the
Mangasarian and Solodov’s implicit Lagrangian function [21]. Peng [26] not only
extended Fukushima’s merit function for variational inequality but also presented
a new way to construct the merit functions for problem (1.1). Kanzow and
Fukushima [19] employed the Fischer’s function [12] to transform problem (1.1)
into an unconstrained minimization formulation. They presented mild conditions
to guarantee that the global minimizer of the unconstrained problem coincides with
the solution of problem (1.1). The unconstrained formulation above was further
investigated by Jiang et al. [17], where a trust-region method was proposed for solving
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problem (1.1) and the global convergence and local Q-superlinear convergence were
established under a nonsingularity assumption.

During the last decade, the ℓ 1
p
(p > 1)-penalty method has attracted wide

attention for the LCP [31, 32, 34], the NCP [4, 15, 30] and the mixed nonlinear
complementarity problem (MiCP, for short) [16, 35]. Furthermore, some desirable
results on the convergence rate were established under mild conditions. However,
the non-Lipschitzian of the ℓ 1

p
-penalized equations makes the classical numerical

methods lose their efficiency. In order to overcome this drawback, a box-constrained
differentiable penalty method was proposed in [28]. It is not proper to use the
box-constrained differentiable penalty method to solve problem (1.1) directly as
the corresponding constraint set is nonconvex. It is well known that optimization
problems with the nonlinear and nonconvex constraint set are much harder to solve
than optimization problems with the box constraint. Alternately, problem (1.1) can
be reformulated as a MiCP by virtue of artificial variables, which can be solved by
the ℓ 1

p
-penalty method [16]. The box-constrained differentiable penalty method can

also be used to solve problem (1.1) by introducing artificial variables, which however
doubles the number of nonlinear equations.

In this paper, we propose an unconstrained differentiable penalty method for
solving problem (1.1) without introducing any artificial variables. Specifically, we
consider the system of penalized equations as follows:

G(x, ρ) := ρH(x) ◦ F (x) + [H(x)]
1+ 1

p

+ + [F (x)]
1+ 1

p

+ = 0, (1.2)

where ρ > 0 is the penalty parameter, p ≥ 1 is the power, [z]σ+ denotes a vector with
components ([z]σ+)i = max{zi, 0}σ, for all i ∈ I, for any given vector z ∈ Rn and
constant σ > 0, and H(x)◦F (x) is the Hadamard (or Schur) product of vectors H(x)
and F (x) with components

(
H(x) ◦ F (x)

)
i
= Hi(x)Fi(x), for all i ∈ I. We establish

the exponential convergence rate of O(ρ
p
ξ ) between a solution xρ of system (1.2) and

the solution x∗ of problem (1.1) under the assumption of a uniform ξ-P -function,
where ξ ∈ (1, 2] is a constant.

In order to design globally convergent methods allowing arbitrary starting
points to solve problem (1.1), we do not solve system (1.2) directly and consider a
corresponding unconstrained optimization problem and apply the trust-region Gauss-
Newton method to solve it. Furthermore, we prove that the local solution of the
unconstrained optimization problem identifies the solution of problem (1.1) under the
assumption of monotonicity.

We carry out numerical experiments on test problems from MCPLIB [2]. We first
compare the performance of the proposed method with p = 2 with the box-constrained
differentiable penalty method and the ℓ1-penalty method [1] in terms of the number of
function evaluations and the values of the penalty parameter. Furthermore, different
values of the power p = 1, 2, 100, 1000, 5000, 10000 are chosen to compare the efficiency
of the proposed method. Finally, we compare the performance of the proposed method
with the smooth approximation method [3], and the nonsmooth equations method [18]
in terms of the number of function evaluations.

This paper is organized as follows. In Section 2, we introduce an unconstrained
differentiable penalty method and establish its exponential convergence rate. In
Section 3, we present our unconstrained optimization problem formulation to solve
problem (1.1). In the last section, we show our numerical results.
Notation Throughout this paper, we write I := {1, 2, . . . , n} to indicate the index
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set and use ∥ · ∥ to indicate the Euclidean norm. Given vectors x ∈ Rn and y ∈
Rn. We write x ◦ y to indicate the Hadamard product of vectors x and y, that is,

x ◦ y := (x1y1, . . . , xnyn)
T . we write

(
x
y

)
to indicate a vector in Rn×n, that is,(

x
y

)
:= (xT yT )T . We write max x to indicate that the maximum element of vector

x, that is, max x := max
1≤i≤n

xi.

2. Unconstrained Differentiable Penalty Method. In this section, an
unconstrained differentiable penalty method is proposed for problem (1.1). Then, we
establish the exponential convergence rate under mild assumptions. Some important
definitions are recalled as follows.

Definition 2.1 ([8, Definition 2.3.1]). A function S : Rn → Rn is said to be
• monotone if

(x− y)T (S(x)− S(y)) ≥ 0, ∀ x, y ∈ Rn;

• strictly monotone if

(x− y)T (S(x)− S(y)) > 0, ∀ x, y ∈ Rn and x ̸= y;

• ξ-monotone for some ξ ∈ (1, 2], if there exists a constant α > 0 such that

(x− y)T (S(x)− S(y)) ≥ α∥x− y∥ξ, ∀ x, y ∈ Rn.

When ξ = 2, the ξ-monotonicity is called strong monotonicity.
Definition 2.2 ([28, Definition 2.4]). A function S : Rn → Rn is said to be a

uniform ξ-P -function for some ξ ∈ (1, 2], if there exists a constant α > 0 such that
for all pairs of vectors x and y in Rn,

max
1≤κ≤n

(xκ − yκ)(Sκ(x)− Sκ(y)) ≥ α∥x− y∥ξ.

Definitions 2.1 and 2.2 indicate that the uniform ξ-P -function is weaker than the
ξ-monotonicity.

Proposition 2.3 ([8, Proposition 2.3.2]). Let S : D ⊂ Rn → Rn be continuously
differentiable on the open convex set D,

• S is monotone on D if and only if ∇S(x) is positive semidefinite for all
x ∈ D;

• S is strictly monotone on D if and only if ∇S(x) is positive definite for all
x ∈ D.

Let y = H(x). Problem (1.1) can be recast as a MiCP as follows:

H(x)− y = 0,

F (x) ≤ 0,

⟨F (x), y⟩ = 0,

y ≤ 0.

(2.1)

We consider the penalized equations of problem (2.1) as follows(
H(x)− y

ρF (x) ◦ y + [y]
1+ 1

p

+ + [F (x)]
1+ 1

p

+

)
= 0. (2.2)
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where ρ > 0 is the penalty parameter.
A close relationship between the solution of system (1.2) and that of system (2.2)

is stated in the next proposition. Here, we omit its proof.
Proposition 2.4. For each ρ > 0, we say that xρ ∈ Rn is a solution of penalized

equations (1.2) if and only if there exists some yρ ∈ Rn satisfying yρ = H(xρ) such

that
(

xρ

yρ

)
is a solution of system (2.2).

We present an example to show that the solution of system (1.2) is not unique
even if problem (1.1) has a unique solution.

Example 2.1. Let F (x) = x + 1 and H(x) = x with x ∈ R in problem (1.1).
We have that x∗ = −1 is the unique solution. Take p = 1 in (1.2). The penalized
equation is ρx(x + 1) + [x]2+ + [x + 1]2+ = 0. After computing, we see that x̄ρ = −1
and x̂ρ = − 1

ρ+1 are two solutions of this penalized equation.

Next, we prove that the solution of system (2.2) converges to a solution of problem
(2.1) at an exponential convergence rate under the assumption of a uniform ξ-P -
function. Before doing this, we first show some useful lemmas. We define a vector-
valued function Z : Rn×n → Rn×n as

Z(x, y) =

(
H(x)− y

F (x)

)
.

Lemma 2.5. Assume that Z is a uniform ξ-P -function. For each ρ > 0, let
(

xρ

yρ

)
be a solution of system (2.2). Then there exists a constant M > 0, independent of(

xρ

yρ

)
, ρ and p, such that ∥∥∥(xρ

yρ

)∥∥∥ ≤ M.

Proof. It follows from
(

xρ

yρ

)
solving system (2.2) that we have H(xρ) − yρ = 0

and

ρFi(x
ρ)yρi + [yρi ]

1+ 1
p

+ + [Fi(x
ρ)]

1+ 1
p

+ = 0, ∀ i ∈ I. (2.3)

Then we see that
(
H(xρ)− yρ

)
◦xρ = 0 and F (xρ) ◦ yρ ≤ 0, which means that

(
xρ

yρ

)
◦

Z(xρ, yρ) ≤ 0. By Definition 2.2 of a uniform ξ-P -function, there exist constants
α > 0 and ξ > 1 such that

α
∥∥∥(xρ

yρ

)∥∥∥ξ ≤ max

(
xρ

yρ

)
◦
(
Z(xρ, yρ)− Z(0, 0)

)
≤ max−

(
xρ

yρ

)
◦ Z(0, 0)

≤
∥∥∥(xρ

yρ

)∥∥∥∥Z(0, 0)∥∞.

Thus, we proved this lemma with M = ξ−1

√
1
α∥Z(0, 0)∥∞.

Lemma 2.5 shows that the solution of problem (2.2) always lies in a bounded
closed set for each ρ > 0. By the continuity of Z, there exists a positive constant L,

independent of
(

xρ

yρ

)
, ρ and p, such that

∥Z(xρ, yρ)∥ ≤ L. (2.4)
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Lemma 2.6. Assume that Z is a uniform ξ-P -function. For each ρ > 0, let(
xρ

yρ

)
be a solution of system (2.2). Then there exist constants C1 > 0 and C2 > 0,

independent of
(

xρ

yρ

)
and ρ, such that

∥[yρ]+∥ ≤ C1ρ
p and ∥[F (xρ)]+∥ ≤ C2ρ

p.

Proof. It follows from (2.3) that we have

[yρi ]
1+ 1

p

+ = −ρFi(x
ρ)yρi − ρ[Fi(x

ρ)]
1+ 1

p

+

≤ −ρFi(x
ρ)yρi ≤ ρ∥F (xρ)∥∞∥yρ∥∞,

for all i ∈ I. Thus, ∥[yρ]+∥∞ ≤ ρp∥F (xρ)∥p∞. By the fact that all norms in Rn are

equivalent, there exists a constant C̃ > 0 such that ∥[yρ]+∥ ≤ C̃∥[yρ]+∥∞. It follows
from inequality (2.4) that we have ∥F (xρ)∥p∞ ≤ Lp. Thus, ∥[yρ]+∥ ≤ C1ρ

p with

C1 = C̃Lp. Similarly, we can prove that ∥[F (xρ)]+∥ ≤ C2ρ
p with C2 = C̃Mp.

Theorem 2.7. Assume that Z is a uniform ξ-P -function. For each ρ > 0, let(
xρ

yρ

)
be a solution of system (2.2) and

(
x∗

y∗

)
be a solution of problem (2.1). Then

there exists a constant Ĉ > 0, independent of
(

xρ

yρ

)
and ρ, such that

∥∥∥(x∗

y∗

)
−
(
xρ

yρ

)∥∥∥ ≤ Ĉρ
p
ξ .

Proof. We define the index sets at
(

xρ

yρ

)
as follows

Yρ
a = {i ∈ I | yρi = 0, Fi(x

ρ) > 0};
Yρ
b = {i ∈ I | yρi = 0, Fi(x

ρ) = 0};
Yρ
c = {i ∈ I | yρi = 0, Fi(x

ρ) < 0};
Yρ
d = {i ∈ I | yρi > 0, Fi(x

ρ) > 0};
Yρ
e = {i ∈ I | yρi > 0, Fi(x

ρ) = 0};
Yρ
f = {i ∈ I | yρi > 0, Fi(x

ρ) < 0};
Yρ
g = {i ∈ I | yρi < 0, Fi(x

ρ) > 0};
Yρ
h = {i ∈ I | yρi < 0, Fi(x

ρ) = 0};
Yρ
s = {i ∈ I | yρi < 0, Fi(x

ρ) < 0}.

Since that
(

xρ

yρ

)
solves system (2.2), the sets Yρ

a , Y
ρ
d , Yρ

e and Yρ
s are empty. Let

Λ := Yρ
b ∪ Yρ

c ∪ Yρ
f and Γ := Yρ

g ∪ Yρ
s . Then I = Λ ∪ Γ.

We first prove that the next inequality holds for all i ∈ Λ,(
y∗i + [yρi ]−

)(
Fi(x

∗)− Fi(x
ρ)
)
≤ 0, (2.5)

where [a]− := max{−a, 0} for all a ∈ R.
(I) Let i ∈ Yρ

b . Then(
y∗i + [yρi ]−

)(
Fi(x

∗)− Fi(x
ρ)
)
= y∗i Fi(x

∗) ≤ 0.
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(II) Let i ∈ Yρ
c . Then(

y∗i + [yρi ]−

)(
Fi(x

∗)− Fi(x
ρ)
)

= y∗i Fi(x
∗)− y∗i Fi(x

ρ) + [yρi ]−Fi(x
∗)− [yρi ]−Fi(x

ρ)

= −y∗i Fi(x
ρ) ≤ 0.

(III) Let i ∈ Yρ
f . Then(

y∗i + [yρi ]−

)(
Fi(x

∗)− Fi(x
ρ)
)

= y∗i Fi(x
∗)− y∗i Fi(x

ρ) + [yρi ]−Fi(x
∗)− [yρi ]−Fi(x

ρ)

= −y∗i Fi(x
ρ) ≤ 0.

Next, we prove that the following inequality holds for all i ∈ Γ,(
y∗i − yρi

)(
Fi(x

∗) + [Fi(x
ρ)]−

)
≤ 0. (2.6)

(I) Let i ∈ Yρ
g . Then(

y∗i − yρi

)(
Fi(x

∗) + [Fi(x
ρ)]−

)
= y∗i Fi(x

∗) + y∗i [Fi(x
ρ)]− − yρi Fi(x

∗)− yρi [Fi(x
ρ)]−

= −yρi Fi(x
∗) ≤ 0.

(II) Let i ∈ Yρ
h. Then(

y∗i − yρi

)(
Fi(x

∗) + [Fi(x
ρ)]−

)
= y∗i Fi(x

∗) + y∗i [Fi(x
ρ)]− − yρi Fi(x

∗)− yρi [Fi(x
ρ)]−

= −yρi Fi(x
∗) ≤ 0.

Therefore, we have

max
i∈Λ

(y∗i − yρi )(Fi(x
∗)− Fi(x

ρ))

= max
i∈Λ

(y∗i + [yρi ]− − [yρi ]+)(Fi(x
∗)− Fi(x

ρ))

≤ max
i∈Λ

−[yρi ]+(Fi(x
∗)− Fi(x

ρ))

≤ ∥[yρ]+∥∥
(
F (x∗)− F (xρ)

)
∥∞

≤ C1ρ
p∥
(
F (x∗)− F (xρ)

)
∥∞

≤ 2C1Lρ
p,

where the first inequality is from (2.5) and the third inequality comes from Lemma
2.6.

Moreover, we have

max
i∈Γ

(y∗i − yρi )(Fi(x
∗)− Fi(x

ρ))

= max
i∈Γ

(y∗i − yρi )(Fi(x
∗)− [Fi(x

ρ)]+ + [Fi(x
ρ)]−)

≤ max
i∈Γ

−[Fi(x
ρ)]+(y

∗
i − yρi )

≤ ∥[F (xρ)]+∥∥y∗ − yρ∥∞
≤ C2ρ

p∥y∗ − yρ∥∞
≤ 2C2M1ρ

p,
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where the first inequality and the third inequality are from (2.6) and Lemma 2.6,
respectively.

By Definition 2.2 of a uniform ξ-P -function, there exist constants α > 0 and ξ > 1
such that

α
∥∥∥(x∗

y∗

)
−
(
xρ

yρ

)∥∥∥ξ
≤ max

(
x∗ − xρ

y∗ − yρ

)
◦
(
Z(x∗, y∗)− Z(xρ, yρ)

)
= max

{
0, max

i∈Λ∪Γ
(y∗i − yρi )

(
Fi(x

∗)− Fi(x
ρ)
)}

≤ Ĉρp,

where Ĉ = max
{

ξ

√
2C1L
α , ξ

√
2C2M1

α

}
.

Theorem 2.8. Assume that H and F are uniform ξ-P -functions. For each
ρ > 0, let xρ be a solution of system (1.2) and x∗ be the solution of problem (1.1).

Then there exists a constant C̃1 > 0, independent of xρ and ρ, such that

∥x∗ − xρ∥ ≤ C̃1ρ
p
ξ .

Proof. It follows from x∗ solving problem (1.1) that there exists y∗ ∈ Rn satisfying

y∗ = H(x∗) such that
(

x∗

y∗

)
is a solution of problem (2.1). Since xρ is a solution

of system (1.2), by Proposition 2.4, there exists some yρ ∈ Rn such that
(

xρ

yρ

)
is

a solution of system (2.2). Therefore, by use of Theorem 2.7, we conclude that

∥x∗ − xρ∥ ≤
∥∥∥(x∗

y∗

)
−
(

xρ

yρ

)∥∥∥ ≤ C̃1ρ
p
ξ with C̃1 = max

{
ξ

√
2C1L
α , ξ

√
2C2M1

α

}
.

Problem (2.1) also can be solved by the box-constrained differentiable penalty
method proposed in [28]. Specifically, we consider the next system of penalized
equations with box-constraint(

H(x)− y

ρF (x) ◦ y + [F (x)]
1+ 1

p

+

)
= 0, y ∈ Ω, (2.7)

where Ω := {y ∈ Rn | y ≤ 0}.
We establish its exponential convergence rate as follows.

Theorem 2.9. Assume that H and F are uniform ξ-P -functions. For each

ρ > 0, let
(

xρ

yρ

)
be a solution of system (2.7) and x∗ be the solution of problem (1.1).

Then there exists a constant Ĉ > 0, independent of
(

xρ

yρ

)
and ρ, such that

∥x∗ − xρ∥ ≤ Ĉρ
p
ξ .

Proof. Since
(

xρ

yρ

)
solves system (2.7), we see that it is a solution of system (2.2).

By use of Theorems 2.7 and 2.8, we conclude that this theorem holds.
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3. Numerical Method. In this section, instead of solving the penalized
equations (2.2) directly, we consider the corresponding optimization problem

min
x

Ψ(x, ρ) :=
1

2
∥G(x, ρ)∥2. (3.1)

For each ρ > 0, a local solution xρ of problem (3.1) satisfies that
∇G(xρ, ρ)TG(xρ, ρ) = 0, where ∇G(x, ρ) is the Jacobian matrix of G(x, ρ), which
can be expressed as

∇G(x, ρ) := Θ(x, ρ)∇H(x) + Π(x, ρ)∇F (x),

where ∇F (x) and ∇H(x) are the Jacobian matrices of F (x) and H(x), respectively,
Θ(x, ρ) := diag(R1(x, ρ), . . . , Rn(x, ρ)) and Π(x, ρ) := diag(Q1(x, ρ), . . . , Qn(x, ρ))
are diagonal matrices with

Ri(x, ρ) := ρFi(x)+(1+
1

p
)[Hi(x)]

1
p

+ and Qi(x, ρ) := ρHi(x)+(1+
1

p
)[Fi(x)]

1
p

+, ∀ i ∈ I.

3.1. Convergence Analysis. In this subsection, we establish the connection
between the solution of the problem (3.1) and that of problem (1.1).

Theorem 3.1. Assume that H and F are uniform ξ-P -functions. Moreover,
suppose that xi ∈ Rn is a global solution of problem (3.1) for each ρi > 0 and that
ρi → 0+. Then every limit point of the sequence {xi} is a solution of problem (1.1).

Proof. Let x∗ be a solution of problem (1.1). Then we have Ψ(x∗, ρ) = 0 for each
ρ > 0. Therefore, we have Ψ(xi, ρi) ≤ Ψ(x∗, ρi) = 0, which implies that Ψ(xi, ρi) = 0.
Specifically, we have

1

2

n∑
l=1

(
(ρi)2Hl(x

i)2Fl(x
i)2 + [Hl(x

i)]
2+ 2

p

+ + [Fl(x
i)]

2+ 2
p

+

)
+

n∑
l=1

(
ρiFl(x

i)[Hl(x
i)]

2+ 1
p

+ + ρiHl(x
i)[Fl(x

i)]
2+ 1

p

+

)
+

n∑
l=1

[Hl(x
i)]

1+ 1
p

+ [Fl(x
i)]

1+ 1
p

+ = 0. (3.2)

Suppose that x̄ is a limit point of the sequence {xi}, so there exists an infinite

subsequence K such that x̄ = lim
i
K→∞

xi. By taking the limit as i
K→ ∞ on both sides of

the last equation, we obtain

1

2

n∑
l=1

(
[Hl(x̄)]

2+ 2
p

+ + [Fl(x̄)]
2+ 2

p

+

)
+

n∑
l=1

[Hl(x̄)]
1+ 1

p

+ [Fl(x̄)]
1+ 1

p

+ = 0.

Therefore, we conclude that F (x̄) ≤ 0 and H(x̄) ≤ 0. Taking the limit as i
K→ ∞, we

see that

1

2

n∑
l=1

(
Fl(x̄)Hl(x̄)

)2
= lim

i
K→∞

1

2

n∑
l=1

(Hl(x
i)2Fl(x

i)2

= − lim
i
K→∞

( 1

2(ρi)2

n∑
l=1

(
[Hl(x

i)]
2+ 2

p

+ + [Fl(x
i)]

2+ 2
p

+

)
+

1

(ρi)2

n∑
l=1

[Hl(x
i)]

1+ 1
p

+ [Fl(x
i)]

1+ 1
p

+

)
+ lim

i
K→∞

n∑
l=1

(
[Fl(x

i)]+[Hl(x
i)]+

)2 ≤ 0,
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where the second equality follows from the fact that

Fl(x
i)[Hl(x

i)]
2+ 1

p

+ +Hl(x
i)[Fl(x

i)]
2+ 1

p

+ = −ρi
(
[Fl(x

i)]+[Hl(x
i)]+

)2
, ∀ l ∈ I.

Therefore, we conclude that ⟨F (x̄),H(x̄)⟩ = 0. The proof is complete.
It is difficulty to find a global solution of problem (3.1) without the assumption

of the convexity on Ψ(x, ρ) for each ρ > 0. We mainly focus on the local solution of
problem (3.1) in practice. Next, we prove that a local solution of problem (3.1) can
identify a solution of problem (1.1) under the monotone assumptions.

Theorem 3.2. Suppose that F is monotone and H is strictly monotone. For
each ρ > 0, let xρ be a local solution of problem (3.1). Moreover, assume that xρ

satisfies F (xρ) ≤ 0 and H(xρ) ≤ 0. Then xρ is a solution of problem (1.1).
Proof. Since xρ is a local solution of problem (3.1) for a given ρ > 0, we see that

∇H(xρ)TΘ(xρ, ρ)G(xρ, ρ) +∇F (xρ)TΠ(xρ, ρ)G(xρ, ρ) = 0. (3.3)

By assumptions of F (xρ) ≤ 0 and H(xρ) ≤ 0, we have

G(xρ, ρ) = ρ(H1(x
ρ)F1(x

ρ), . . . , Hn(x
ρ)Fn(x

ρ))T ,

Θ(xρ, ρ) = ρdiag(F1(x
ρ), . . . , Fn(x

ρ)),

Π(xρ, ρ) = ρdiag(H1(x
ρ), . . . , Hn(x

ρ)).

In order to prove this theorem, we need to prove that G(xρ, ρ) = 0. Assume on
the contrary that G(xρ, ρ) ̸= 0. We see that there exists at least some i ∈ I such
that Gi(x

ρ, ρ) ̸= 0, which means that Hi(x
ρ) ̸= 0 and Fi(x

ρ) ̸= 0. Thus, we have(
Θ(xρ, ρ)G(xρ, ρ)

)
i
= ρ2Hi(x

ρ)Fi(x
ρ)2 ̸= 0. By Proposition 2.3 and the assumption

of strict monotonicity on H, we see that(
Θ(xρ, ρ)G(xρ, ρ)

)T∇H(xρ)TΘ(xρ, ρ)G(xρ, ρ) > 0.

Multiply (Θ(xρ, ρ)G(xρ, ρ))T on both sides of (3.3) to get(
Θ(xρ, ρ)G(xρ, ρ)

)T∇H(xρ)TΘ(xρ, ρ)G(xρ, ρ)

= −
(
Θ(xρ, ρ)G(xρ, ρ)

)T∇F (xρ)TΠ(xρ, ρ)G(xρ, ρ)

= −G(xρ, ρ)T
(
Θ(xρ, ρ)∇F (xρ)TΠ(xρ, ρ)

)
G(xρ, ρ).

By the assumption of monotonicity on F and the fact of positive
semidefiniteness of the matrices −Θ(xρ, ρ) and −Π(xρ, ρ), we see that the matrix
Θ(xρ, ρ)∇F (xρ)TΠ(xρ, ρ) is positive semidefinite, which implies that

−G(xρ, ρ)T
(
Θ(xρ, ρ)∇F (xρ)TΠ(xρ, ρ)

)
G(xρ, ρ) ≤ 0.

We have a contradiction, which means that G(xρ, ρ) = 0. Since F (xρ) ≤ 0 and
H(xρ) ≤ 0, we see that xρ is a solution of problem (1.1). The proof is complete.

3.2. A Trust-Region Gauss-Newton Method. this section, we apply the
trust-region Gauss-Newton method [5, 20, 23] to solve problem (3.1) with each ρ > 0.
At the k-th iteration, we consider a quadratic approximation mk(d, ρ) for Ψ(x, ρ) at
xk and replace problem (3.1) by a trust region problem

min
d

mk(d, ρ) s.t. ∥d∥ ≤ ∆k,
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with the objective function

mk(d, ρ) :=
1

2
∥G(xk, ρ) +∇G(xk, ρ)d∥2,

where ∆k > 0 is the trust-region radius. A formal description of the trust-region
Gauss-Newton method can be found in [22, Algorithm 3.1]. Here we omit the details.

Before presenting the unconstrained differentiable penalty method for problem
(1.1), we define the termination criterion as follows

Termination(x) := min{∥[H(x)]+∥, ∥[F (x)]+∥, ∥F (x) ◦H(x)∥} ≤ ϵ,

where ϵ > 0 is the tolerance parameter. A formal description of the proposed method
for problem (1.1) is given as follows.

Algorithm 1: Unconstrained differentiable penalty method for the ICP.

1 Initializing ρ0 > 0, ρmin, σ ∈ (0, 1), ϵ > 0 and an initial point x0 and let
i := 0;

2 while ρi > ρmin do
3 if Termination(xi) ≤ ϵ then
4 Stop;
5 else
6 Using [22, Algorithm 3.1] to solve the unconstrained problem (3.1)

with starting point xi and penalty parameter ρi, we obtain xi+1;
7 end
8 Letting ρi+1 := σρi and i := i+ 1;

9 end

4. Numerical Experiments. In this section, we present numerical results
by using MATLAB R2011b on the test problems from MCPLIB [2]. We conduct
the numerical testing on Windows XP with 3.00GB of main memory and Intel(R)
Core(TM) 2 Duo 3.0GHz processors.

We refer to the implementation of Algorithm 1 as the UDLOP method, which
stands for the Unconstrained Differentiable Lower-Order Penalty method. For
convenience, we write the UDLOP method with p = 1, 2 and 100 as UDLOP1,
UDLOP1/2 and UDLOP1/100 methods, respectively. The abbreviations for some
existing penalty methods are presented in Table 4.1.

Table 4.1: Abbreviations for some existing methods.

CDLOP1 [28] constrained differentiable lower-order penalty method with p = 1

CDLOP1/2 constrained differentiable lower-order penalty method with p = 2

CDLOP1/100 constrained differentiable lower-order penalty method with p = 100

SSOOP1 [1] semismooth one-order penalty method

SAM [3] smooth approximate method

NSEM [18] nonsmooth equations method

10



The semismooth Newton method [27] is employed to solve the ℓ1-penalized
equations for the SSOOP1 method and the semismooth equations for the NSEM. The
Zang smooth plus function [33] is used in the SAM to smooth its normal equations.
The solver TRESNEI [22] is used to solve the corresponding optimization problems for
all methods mentioned in this paper. The fact that the box-constrained differentiable
penalty method is more efficient than the smoothed ℓ 1

p
-penalty method was proved in

[28]. Therefore, we do not consider the smoothed ℓ 1
p
-penalty method in our numerical

experiments.

Throughout the experiments, we set parameters ρ0 = 1, ρmin = 10−16, σ = 0.1
and ϵ = 10−6 in Algorithm 1. We follow all default parameters in the solver TRESNEI.
The details can be found in [22]. We select 22 test problems from MCPLIB shown in
Table 4.2. For each problem, we perform 100 runs from randomly generated starting
points by a uniform distribution in a given interval. Therefore, we run each method
on a set of 2200 test problems.

Table 4.2: Problem characteristics and starting intervals.

Problem Dim Interval Problem Dim Interval

colvnlp 15 [-10,0] cycle 1 [-10,0]
josephy 4 [-10,0] kojshin 4 [-10,0]
mathisum 4 [-10,0] powell 16 [-10,0]
scarfanum 13 [-1,0] scarfsum 14 [-1,0]
sppe 27 [-10,0] tobin 42 [-10,0]
billups 1 [-10,0] colvdual 20 [-10,0]
degen 2 [-10,0] hanskoop 14 [-10,0]
nash 10 [-10,0] tinloi 146 [-1,0]
colvtemp 20 [-1,0] oligomcp 6 [-10,0]
fathi 100 [-10,0] murty 100 [-10,0]
primaldual 6 [-10,0] explcp 16 [-10,0]

In Table 4.2, the Problem denotes the name of test problem, the Dim denotes
the dimension of problem (1.1) and the Interval denotes the interval in which a
starting point is generated by a uniform distribution.

Using the performance profiles of Dolan and Moré in [7], we plot Figure 4.1, where
the plots πs(τ) denote the scaled performance profile

πs(τ) :=
number of problems p̂ where log2(rp̂,s) ≤ τ

total number of problems
, τ ≥ 0,

where log2(rp̂,s) is the scaled performance ratio between the number of function
evaluations to solve problem p̂ by solver s over the fewest number of function
evaluations required by the three solvers. It is clear that πs(τ) is the probability
for solver s that a scaled performance ratio log2(rp̂,s) is within a factor τ ≥ 0 of the
best possible ratio. See [7] for more details regarding the performance profiles.

We first compare the performance of the UDLOP1/2 method with the CDLOP1/2

and SSOOP1 methods in terms of the number of function evaluations and the values
of the penalty parameter.
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Fig. 4.1: Performance profiles based on the number of function evaluations for the
CDLOP1/2, UDLOP1/2 and SSOOP1 methods.

Figure 4.1 indicates that the SSOOP1 method is the weakest solver as it can only
solve 80% test problems. The UDLOP1/2 method is the most robust and can solve
about 93% test problems.

We plot π(τ) for different values of 1
ρ in Figure 4.2, which shows that the SSOOP1

method employs smaller values of the penalty parameter than that of the CDLOP1/2

method in order to achieve an approximate solution within the given accuracy.
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Fig. 4.2: Performance profiles based on the values of the penalty parameter for the
CDLOP1/2, UDLOP1/2 and SSOOP1 methods.

We plot Figures 4.3 and 4.4 to compare the performance of the UDLOP method
with different values of the power p in terms of the number of function evaluations
and the values of the penalty parameter.
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Fig. 4.3: Performance profiles based on the number of function evaluations for the UDLOP
method with different p.

Figure 4.3 indicates that the number of function evaluations for the UDLOP
method decreases dramatically as the power p increases from 1 to 100. However,
slight difference happens on the performance profiles as we increase p from 100 to
10000.

We plot π(τ) for different values of 1
ρ in Figure 4.4, which indicates that the

UDLOP1 method uses the smallest values of the penalty parameter among them.
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Fig. 4.4: Performance profiles based on the values of the penalty parameter for the UDLOP
method with different p.
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Fig. 4.5: Performance profiles based on the number of function evaluations for the CDLOP1,
UDLOP1 and SSOOP1 methods.

Figure 4.5 is plotted using the number of function evaluations, which indicates
that the UDLOP1 method uses the least number of function evaluations and the
SSOOP1 method uses the most number of function evaluations among all these three
solvers.

Finally, using the number of function evaluations, we compare the performance
of the CDLOP1/100 and UDLOP1/100 methods with the SAM and NSEM.

Figure 4.6 shows that the SAM can solve about 47% test problems with the
least number of function evaluations, but this method only can solve about 75% test
problems. The UDLOP1/100 method is the most robust among them and can solve
about 89% test problems.
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Fig. 4.6: Performance profiles based on the number of function evaluations for the
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