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Abstract. Single sensor digital color cameras capture only one of
the three primary colors at each pixel and a process called color
demosaicking (CDM) is used to reconstruct the full color images.
Most CDM algorithms assume the existence of high local spectral
redundancy in estimating the missing color samples. However, for
images with sharp color transitions and high color saturation, such
an assumption may be invalid and visually unpleasant CDM errors
will occur. In this paper, we exploit the image nonlocal redundancy to
improve the local color reproduction result. First, multiple local direc-
tional estimates of a missing color sample are computed and fused
according to local gradients. Then, nonlocal pixels similar to the esti-
mated pixel are searched to enhance the local estimate. An adaptive
thresholding method rather than the commonly used nonlocal means
filtering is proposed to improve the local estimate. This allows the
final reconstruction to be performed at the structural level as op-
posed to the pixel level. Experimental results demonstrate that the
proposed local directional interpolation and nonlocal adaptive thresh-
olding method outperforms many state-of-the-art CDM methods in
reconstructing the edges and reducing color interpolation artifacts,
leading to higher visual quality of reproduced color images. © 2011
SPIE and IS&T. [DOI: 10.1117/1.3600632]

1 Introduction
Single sensor (CCD/CMOS) digital color cameras capture
images with a color filter array (CFA), such as the Bayer

Paper 10182R received Oct. 26, 2010; revised manuscript received May
3, 2011; accepted for publication May 25, 2011; published online Jun. 27,
2011.

1017-9909/2011/20(2)/023016/16/$25.00 C© 2011 SPIE and IS&T

pattern CFA.1 At each pixel, only one of the three primary
colors (red, green, and blue) is sampled; the missing color
samples are estimated by a process called color demosaick-
ing (CDM) to reconstruct full color images. The color re-
production quality depends on the image contents and the
employed CDM algorithms.2 Various CDM algorithms3–18

have been proposed in the past decades. The classical sec-
ond order Laplacian correction3, 4 (SOLC) algorithm is one
of the benchmark CDM schemes due to its simplicity and
efficiency. The recently developed methods include the suc-
cessive approximation-based CDM by Li,9 the adaptive ho-
mogeneity CDM by Hirakawa et al.,10 the directional linear
minimum mean square-error estimation (DLMMSE)-based
CDM method by Zhang et al.,12 the directional filtering and
a posteriori decision CDM by Menon et al.,13 the sparse
representation-based method by Mairal et al.,14 and the non-
local means-based self-similarity driven (SSD) method by
Buades et al.,15 etc. A recent review of CDM methods can
be found in Ref. 19.

Most of the existing CDM methods assume high local
spectral correlations. This assumption may well be valid for
images such as those in the Kodak dataset.20 The Kodak
dataset was not originally released for CDM but it has been
widely used as a benchmark dataset in evaluating CDM algo-
rithms. Inadvertently, the Kodak dataset misled the research
of CDM to some extent. It was pointed out in Refs. 15, 16,
and 19 that images in the Kodak dataset have much higher
spectral correlation, lower color saturation, and smaller chro-
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matic gradients than images in other datasets, e.g., the
McMaster dataset used in this paper (refer to Sec. 3.1 for more
information). Compared with the digital color images cap-
tured by current digital cameras, the images in Kodak dataset
are smoother and less saturated, and hence they are less repre-
sentative for the applications such as CDM. On the McMaster
dataset, the simple SOLC method outperforms many lately
developed more complex methods. The reason appears to
be that these methods were developed aiming to reproduce
the problematic Kodak images, without considering a wider
range of test images.

In natural images, the spectral correlation is often
weak around object boundaries. Consequently, many CDM
algorithms derived under the assumption of high spectral
correlation may fail in areas of edges. One way to improve
color reproduction near edges is to exploit the nonlocal
spatial and spectral redundancies. In natural images, there
can be many similar structures/patterns throughout the scene.
The most similar pixels to the given one can be far from
it. Thus, we can relax the constraint of local neighborhood
to nonlocal neighborhood when enhancing the given pixel.
The nonlocal means (NLM) filters have been widely used
in image processing, such as denoising and deblurring.21–26

The mathematical framework of NLM denoising was well
established by Buades et al.,21 where the given pixel x
is estimated as the weighted average of all pixels whose
Gaussian neighborhoods look like the neighborhood of x.
The recently developed SSD algorithm by Buades et al.15

is an NLM-based CDM scheme. In Sec. 3 we will see that
SSD has similar peak signal-to-noise ratio (PSNR) results to
the classical SOLC algorithm on the McMaster dataset but
it achieves much better perceptual quality.

In this paper, we propose to couple local directional inter-
polation (LDI) with nonlocal enhancement for a more effec-
tive CDM. The employed CDM strategy is very simple: ini-
tial local CDM by LDI, followed by a nonlocal enhancement
process. In the initial CDM, only the local spatial-spectral
correlation within a compact local window is exploited to
avoid CDM errors caused by high color variations around
color edges of high saturation. Since directional information
is crucial for edge preservation, we use directional filters to
interpolate the missing color samples. The obtained direc-
tional estimates are then fused according to the local direc-
tional gradients. The results of LDI can be augmented by
exploiting nonlocal redundancy to reduce initial CDM er-
rors. The similar pixels to the estimated pixel are chosen by
patch matching (in practice, a relatively large local window is
used), and the matched pixels are used to enhance the initial
CDM result.

A straightforward way to utilize nonlocal redundancy
is NLM filtering, as in NLM denoising21–25 and the SSD
method.15 With NLM, an initially demosaicked pixel is re-
estimated as the weighted average of the similar pixels to it.
Although NLM can remove much of the CDM noise (i.e., ini-
tial CDM errors), it blurs sharp edges and fails to remove bad
color artifacts accompanying high saturation object bound-
aries. To overcome these drawbacks, we propose a novel
adaptive thresholding method to make better use of nonlocal
redundancy than the NLM filtering. Different from NLM fil-
tering, which directly applies weighted average to the pixel to
be enhanced, we model the local patch centered on the pixel
as a signal vector and compute the statistics of this vector for

Fig. 1 Flowchart of the proposed CDM method.

processing. By using the nonlocal redundancy, we adaptively
compute the optimal transformation domain in which the
given patch is decorrelated, and then apply soft thresholding
in the transformation domain for filtering. The experimental
results in Sec. 3 clearly demonstrate that the proposed LDI
and nonlocal adaptive thresholding (NAT)-based method out-
performs most of the existing CDM methods, including the
recently developed NLM-based SSD algorithm. Compared
with NLM filtering, NAT works on the structural level in-
stead of the pixel level. Therefore, it preserves sharp edges
much better and removes more color artifacts than NLM.

The rest of the paper is organized as follows. Section 2
describes in detail the proposed local directional interpolation
and nonlocal adaptive thresholding (LDI-NAT) scheme for
CDM. Section 3 presents the experimental results and Sec. 4
concludes the paper.

2 Proposed Color Demosaicking Algorithm
2.1 Strategy and Flowchart
Figure 1 illustrates the flowchart of the proposed CDM al-
gorithm. First, an initial interpolation is applied to the green
(G) channel by LDI and fusion. Second, the NAT is applied
to enhance the interpolated G channel. In the third step, the
red (R) and blue (B) channels are initially interpolated by the
help of the reconstructed G channel. Finally, NAT is applied
to the R and B channels so that the whole CDM is completed.

One key issue in the initial CDM is the use of local and
directional information. In high saturation areas of natural
images, the change of colors is abrupt. Therefore, if we use
too many local neighbors to estimate the missing color sam-
ples, unexpected errors can be introduced and they can be
difficult to remove in the stage of nonlocal enhancement.
On the other hand, the preservation of edges is crucial to the
visual quality of reconstructed color images. Since edges usu-
ally have one or more dominant directions, the interpolation
should be along, instead of across, the edge main directions.

With the above considerations, we propose an LDI scheme
for initial CDM (the detailed description of LDI is in
Sec. 2.2). We will use an example to explain why the strat-
egy of LDI is adopted for initial CDM. Figure 2(a) shows
a small patch where there are sharp color transitions (from
red to white) in it. Figure 2(b) shows the green and red color
difference image (i.e., G-R) of Fig. 2(a). In Fig. 2(c), we plot
the color difference signals (with the origin being the center
of the patch) along four directions: horizontal (dh), vertical
(dv), 45 deg diagonal (d45), and 135 deg diagonal (d135).
Some observations can be made from this example.

First, the assumption of smooth color difference used in
many CDM methods is invalid. Particularly, from Fig. 2(c)
we see that the color differences outside the two-pixel-wide
neighborhood are very different from the center one. There-
fore, using a big local window (e.g., bigger than 5×5) to
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Fig. 2 (a) Cropped and zoomed full color patch; (b) green and red
color difference image of (a); and (c) color difference signals along
horizontal (dh), vertical (dv), 45 deg diagonal (d45), and 135 deg
diagonal (d135) directions at the center of color difference image (b).

estimate the missing color samples can result in unexpected
errors. In other words, a compact local window should be
used in the initial CDM of high saturation areas. Second,
the color edge direction information is very useful for color
interpolation. From Fig. 2(c), we see that the color differ-
ence along the 135 deg diagonal direction is much smoother
than other directions, and hence it should contribute more to
the color estimation. Due to the color down-sampling in the
mosaic CFA pattern, the color difference signal G-R along
diagonal directions cannot be directly calculated. In practice,
they are estimated as the weighted average of color differ-
ences in other directions.

2.2 Local Directional Interpolation of Green Channel
In various CFA patterns, such as the Bayer pattern,1 the sam-
pling frequency of G is higher than that of R and B channels.
Therefore, the G channel preserves much more image struc-
tural information than the other two color channels. Usually, a
better reconstruction of G will lead to a better reconstruction
of R and B. As shown in Fig. 1, we will initially interpolate
the G channel by using local redundancy, and then enhance
it by using nonlocal redundancy.

The well-known SOLC algorithm3, 4 is actually a direc-
tional interpolation method. In SOLC, at each R or B posi-
tion two filtering outputs of G are computed along horizontal
and vertical directions, respectively, and then one of them is
selected based on the gradients in the two directions. How-
ever, SOLC has two problems. First, it considers only two
directions in the interpolation. This limits its capability in
preserving edge structures along other directions. Second,
SOLC simply selects one of the two directions for interpola-
tion, but this will lose much useful information in the local
area, resulting in many interpolation errors. In this section,
we propose to fuse the directional information for more ro-
bust color interpolation.

Since there can be sharp color transitions in highly satu-
rated regions, we use a compact local window for the initial
interpolation. Considering a CFA block (refer to Fig. 3) and
we will focus on the red pixel R0, where the green color is to
be estimated. (The missing green colors on blue pixels can
be similarly interpolated.) Intuitively, if we could know the
color difference between G and R at position R0, denoted
by dgr = G0 − R0, the missing green sample can then be
recovered as G0 = R0 + dgr. Therefore, how to estimate the
color difference dgr is a key in the interpolation of G.

We compute the color difference along four directions:
north (n), south (s), west (w), and east (e). Referring to Fig. 3,
the four directional estimates, dn

gr , ds
gr , dw

gr , and de
gr , are cal-

culated as follows:⎧⎪⎪⎨
⎪⎪⎩

dn
gr = G2 − (R0 + R10) /2

ds
gr = G4 − (R0 + R12) /2

dw
gr = G1 − (R0 + R9) /2

de
gr = G3 − (R0 + R11) /2

. (1)

The interpolation error of the four directional estimates re-
lates to the edge direction and color transition at R0. In order
to evaluate which estimate is better, we calculate the gradi-
ents at R0 along the four directions. There are many forms to
define the directional gradients at R0. We have the following
considerations. First, the gradient should be calculated using
the pixels from the same channel; second, to make the calcu-
lation of gradients more stable, we could involve neighboring
columns/rows of the central column/row in calculation; third,
the central column/row should have higher contribution to the
gradient than the neighboring columns/rows. Based on the
above three considerations, we use the following formula
to calculate the gradients along north, south, west, and east
directions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇n = |G2 − G4| + |R0 − R10| + 1
2 |G1 − G14| + 1

2 |G3 − G15| + ε

∇s = |G2 − G4| + |R0 − R12| + 1
2 |G1 − G19| + 1

2 |G3 − G18| + ε

∇w = |G1 − G3| + |R0 − R9| + 1
2 |G2 − G13| + 1

2 |G4 − G20| + ε

∇e = |G1 − G3| + |R0 − R11| + 1
2 |G2 − G16| + 1

2 |G4 − G17| + ε

, (2)

where ε is a small positive number to avoid the gradient being
zero.

In general, a bigger gradient along a direction means more
variations in that direction and, hence, it is more difficult to

accurately estimate the color difference, vice versa. There-
fore, we can use the gradients as indices to weight the four
estimates into a final estimate. An optimal weighting scheme
needs to know the joint distribution of the gradient and the
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Fig. 3 CFA block.

color difference. However, such information is unknown in
advance or difficult to estimate online. In this paper, we
simply let the weight assigned to a directional estimate be
inversely proportional to the gradient along that direction:

wn = 1

∇n
, ws = 1

∇s
, ww = 1

∇w
, we = 1

∇e
. (3)

We then normalize the four weights to make the sum of
them be 1. There is

w̄n = wn

C
, w̄s = ws

C
, w̄w = ww

C
, w̄e = we

C
, (4)

where C = wn + ws + ww + we. The four directional esti-
mates are then fused into one estimation

d̂gr = w̄ndn
gr + w̄sds

gr + w̄w dw
gr + w̄ede

gr . (5)

Finally, the missing green component at R0 can be esti-
mated as

Ĝ0 = R0 + d̂gr . (6)

By applying the above procedures to all of the R and B
positions, we can reconstruct the G channel.

2.3 Nonlocal Enhancement of G Channel
By using the method described in Sec. 2.2, an initial estimate
of each missing green sample can be obtained. Since only
the local redundancy in a compact local window is exploited,
the interpolation may not be accurate, especially around ob-
ject boundaries where sharp color or intensity changes will
occur. Fortunately, in natural images there are many sim-
ilar patterns or structures, while a similar structure to the
given one may appear far from it. Such nonlocal redundancy
can be exploited to enhance the CDM results. The nonlocal
means (NLM) technique has been extensively studied and ef-
fectively used in image/video denoising and restoration,21–26

and recently it has also been successfully used in CDM.15 In
this section, we use the nonlocal redundancy to reduce the
initial interpolation errors and enhance the color reproduction
quality of G channel.

2.3.1 Nonlocal enhancement by nonlocal
means filtering

One straightforward way for the nonlocal enhancement of G
channel is to apply NLM filtering to the interpolated green
sample Ĝ0, as in many NLM-based denoising works.21–25 To
this end, we search for similar pixels (can be either original

green samples or interpolated green samples) to the given Ĝ0
in the recovered G image. The searching can be performed in
the whole image; however, this is computationally prohibitive
and is not necessary. In practice, we search for similar pixels
to Ĝ0 in a large enough window (e.g., a 31×31 window),
denoted by �, centered on it. The patch-based method can
be used to determine the similarity between Ĝ0 and other
pixels in �. Denoted by P0 the s × s patch is centered on Ĝ0,
and by Pi the s × s patch is centered on a green pixel Gi in
�. The l1-norm distance between P0 and Pi is computed as

di = ‖P0 − Pi‖1 = 1

s2

s∑
k=1

s∑
l=1

|P0(k, l) − Pi (k, l)|. (7)

In general, the smaller the distance di is, the more similar
Gi is to Ĝ0. Based on di, we select the N most similar pixels
to Ĝ0 (including Ĝ0 itself) for the nonlocal enhancement of
Ĝ0.

For the convenience of expression, we denote by z0 the
given pixel Ĝ0, by zn, n = 1,. . . , N − 1, the searched sim-
ilar pixels to Ĝ0, and by dn the associated distance of zn.
The nonlocal enhancement output of Ĝ0 by NLM filtering,
denoted by x̂0, is computed as the weighted average of zn

x̂0 =
∑N−1

n=0
wnzn, (8)

where the weights wn are set as

wn = exp(−dn/σ )/C, (9)

with C = ∑N−1
n=0 exp(−dn/σ ) being the normalization factor

to make the sum of wn be 1. In Eq. (9), parameter σ controls
the decay rate of weight wn w.r.t. distance dn. In the literature
of image denoising, σ is usually preset according to the
standard deviation of the noise in the image. In the SSD
algorithm for CDM,15 a coarse-to-fine strategy was used.
The nonlocal average process is iterated three times, and the
parameter σ is set smaller and smaller in the three iterations.

2.3.2 Nonlocal enhancement by nonlocal
adaptive thresholding

The NLM filtering-based nonlocal enhancement of Ĝ0 is
actually the weighted average of samples z0, z1, . . . , zN − 1.
Although it can suppress many interpolation errors generated
in the initial CDM and lead to much better color reproduc-
tion than many existing CDM algorithms (refer to Sec. 3.2),
it may also smooth the edges and some bad color artifacts
around object boundaries can still survive. Nonetheless, in
NLM the local neighboring pixels to Ĝ0 in the patch P0,
which altogether form the local pattern (i.e., structure) on
Ĝ0, are only used to determine the weights wn for averag-
ing. Actually, P0 and the similar patches Pi to it also specify
the variations of the local pattern on Ĝ0. This information is
not efficiently exploited in NLM weighting. To more effec-
tively exploit the nonlocal redundancy, we propose a nonlocal
adaptive thresholding (NAT) scheme in this section.

By viewing the initial CDM error as additive noise, the
initial CDM output can be modeled as y = x + ν, where
x is the true signal to be restored, ν is additive noise, and y
is the initial CDM result. To robustly estimate the original
signal x from the degraded observation y, a regularized solu-
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tion is often desired such that x̂ = arg min
x

J (x) s.t. ‖ y − x‖2
2

≤ τ , where J(x) is the regularization term and τ is a small
number. For example, in the total variational (TV) based im-
age restoration,27–30 J(x) is the l1-norm of the gradients of x.
Recently, the sparsity prior of x has been successfully used
for image restoration.14, 31–36 By assuming that the signal x
can be sparsely coded (i.e., represented) by a dictionary of
atoms �, i.e., x ≈ �α and most of the coefficients in α
are small, the sparsity-based estimation of x from y can be
obtained via l1-norm minimization

α̂ = arg min
α

|α|1 s.t. ‖ y − �α‖2 ≤ τ. (10)

The above l1-norm minimization problem can be solved by
standard convex optimization techniques37 or by the iterative
shrinkage methods.36 The sparse representation modeling
has led to many interesting results in image processing, such
as compressive sensing38–40 and denoising.33, 35

In our problem of the nonlocal enhancement of Ĝ0, we
denote by y0 = [y0, y1,. . . , yM-1]T, where M = s2. The column
vector y0 contains the samples in the s × s patch P0 centered
on Ĝ0, and it can be viewed as the observation of the un-
known true signal x0 = [x0, x1,. . . , xM − 1]T. Then we have y0
= x0 + ν0, where ν0 represents the initial CDM error. Once
a good estimation of x0, denoted by x̂0, can be made from
y0, the nonlocal enhancement of Ĝ0, denoted by x̂0, can be
readily extracted from x̂0. Since the elements in patch P0 are
highly correlated, it can be assumed that signal x0 is sparse in
some domain �, i.e., x0 ≈ �α0 and α0 is a sparse coefficient
vector. The enhancement of Ĝ0 can be modeled as

α̂0 = arg min
α0

|α0|1 s.t. ‖y0 − �α0‖2 ≤ τ. (11)

Once α̂0 is optimized, the estimated signal can be obtained
as x̂0 = � · α̂0.

Now the question is how to determine the sparse domain
� in Eq. (11) to solve α̂0. Although the wavelet bases or
the Fourier bases are often used, these analytically designed
bases cannot effectively characterize the many different local
patterns across the image. The dictionary learning33, 34 meth-
ods have been recently proposed to learn an over-complete
dictionary of bases from a training dataset to span the sparse
domain. Nonetheless, for a given signal y0, many atoms in
the learned over-complete dictionary will be irrelevant, while
the l1-norm minimization needs much computational cost.
With these considerations, in this paper we propose the NAT
scheme to solve Eq. (11) with nonlocal redundancy.

Recall that after the nonlocal similar pixels searching to
Ĝ0, we obtain N − 1 similar patches to P0. The vector y0 is
formed by stretching P0, and similarly we can form another
N − 1 column vectors by stretching Pi, I = 1,2,. . . ,N − 1.
Denote by y0 = [y0,0, y0,1,. . . , y0,M − 1]T the vector formed by
P0, and by yi = [yi,0, yi,1,. . . , yi,M − 1]T the vectors formed
by other patches. Then, an M × N data matrix Y can be
established by Y = [y0, y1, . . . , yN − 1]. Each row of Y is
then centralized by subtracting its mean value. For the con-
venience of expression, we still use the symbol Y in the
following development.

Since yi = xi + ν i, where xi is the unknown true signal
and ν i is the initial CDM error, we have Y = X + V, where
X = [x0, x1, . . . , xN − 1] and V = [ν0, ν1, . . . , νN-1]. A good

domain � for X should be a domain where the vectors xi
could be sparsely coded; that is, X ≈ �� and � is a sparse
matrix. Since only the observation of X, i.e., Y, is available,
we set the objective function to determine � as

arg min
�,�

|�|1 s.t. ‖Y − ��‖F ≤ τ, (12)

where || · ||F is the Frobenius norm.
Equation (12) is a joint optimization problem of � and

�, which can be solved by alternatively optimizing � and
�. Considering that the average power of CDM error V
is not seriously high (but the resulting color artifacts can
be visually very unpleasing), here we propose an efficient
solution to Eq. (12). By using singular value decomposi-
tion (SVD), we can factorize Y as Y = ��, where � is
an orthonormal matrix spanned by the eigenvectors of the
covariance matrix of Y (i.e., YYT), and � = �TY is the
projection of Y over �T. We let the desired dictionary �
= �. If we also let � = �, then the constraint ‖Y − ��‖F
= ‖Y − ��‖F = 0 ≤ τ is perfectly satisfied but |�|1 will
have a certain amount so that arg min

�

|�|1 is not optimized.

Thus, � needs to be further processed for a better solution
to �.

With Y = X + V, we have � = �TY = �TX + �TV
= �X + �V, where �X = �TX and �V = �TV. �T will
decorrelate true signal X and many coefficients in �X will
be small, while there are a few significant coefficients in �X
and they are mainly the projection coefficients of X on the
eigenvectors associated with the most significant eigenvalues
of YYT. The CDM errors V are very like random noise, and
thus, the energy of �V will be evenly spread over the domain
spanned by �T. Therefore, we could apply a soft threshold
t to � to remove �V from � so that the desired � can be
obtained as follows:

�(i, j) =
{

sign(�(i, j)) · (|�(i, j)| − t) i f �(i, j) > t

0 i f �(i, j) ≤ t
.

(13)

Actually soft-thresholding is widely used to solve the l1-
norm minimization problems.30, 36, 41 With Eq. (13), the term
|�|1 is much reduced while the term ‖Y − ��‖F can still be
controlled within a small range τ , and finally a good solution
to Eq. (12) is obtained.

The selection of threshold t depends on the CDM error
level in V. In practice, we can estimate t as follows. The
CDM accuracy of a local area is closely related to its local
smoothness. If the local area is smooth, usually the CDM
error will be low, and vice versa. Therefore, we empirically
estimate the CDM error level based on the local intensity
variation. We calculate the average gradient magnitude of all
patches in Y and denoted it by gY, and then we let t = c · gY,
where c is a constant. By experience, we set c = 0.03 in the
experiments.

Once the solution to � in Eq. (12) is obtained, the
desired solution α̂0 in Eq. (11) is obtained by extracting
it from �. The nonlocal enhancement result of Ĝ0 is x̂0
= � · α̂0. From the above description, we can see that NLM
applies nonlocal enhancement to Ĝ0 by weighted averag-
ing, while NAT applies nonlocal enhancement to the local
patch centered on Ĝ0. In other words, NAT lifts NLM from
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the pixel level to the structure level. Consequently, NAT can
reconstruct much better the image edges than NLM, as we
will see in the experimental results in Sec. 3.

2.4 Initial Interpolation of R and B Channels
With the nonlocally enhanced G channel, we first compute
the initial estimates of R and B channels by exploiting the
local spatial-spectral correlation, and then enhance them by
nonlocal redundancy. Since the interpolations of R and B
channels are symmetric, in the following we only discuss the
reconstruction of B.

We interpolate the missing B samples by using a two-step
strategy. First, we interpolate the B samples at the R positions
and then, with these interpolated B samples, all the other B
samples at the G positions can be interpolated. Referring to
Fig. 3, suppose we are to interpolate the missing sample B0
at R0. Note that all the G samples have been recovered and
are now available, and we can estimate the color differences
between B and G along the four diagonal directions at R0 as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dnw
bg = B5 − G5

dne
bg = B6 − G6

dse
bg = B7 − G7

dsw
bg = B8 − G8

, (14)

where the superscripts “nw,” “ne,” “se,” and “sw” represent
the north-western, north-east, south-east, and south-western
directions, respectively.

The four directional estimates are weighted for a more
robust estimate. To determine the weights, the gradients along
the four directions are calculated as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇nw = |B5 − B7| + |R21 − R0| + |G5 − G0| + ε

∇ne = |B6 − B8| + |R22 − R0| + |G6 − G0| + ε

∇se = |B5 − B7| + |R23 − R0| + |G7 − G0| + ε

∇sw = |B6 − B8| + |R20 − R0| + |G8 − G0| + ε

, (15)

where ε is a small positive number. As in Eqs. (3) and (4),
the four weights are set as

w̄nw = 1

C · ∇nw
, w̄ne = 1

C · ∇ne
,

w̄se = 1

C · ∇se
, w̄sw = 1

C · ∇sw
, (16)

where C = 1/∇nw + 1/∇ne + 1/∇se + 1/∇sw . Then, the fi-
nal blue and green color difference at position R0 is esti-
mated by d̂bg = w̄nw dnw

bg + w̄nedne
bg + w̄sedse

bg + w̄sw dsw
bg , and

the missing blue component at R0 is estimated as B̂0

= G0 + d̂bg .
Once the B samples at the R positions are interpolated

as described above, we can consequently interpolate the B
samples at all the other G positions. Take the position G1
in Fig. 3 as an example. Note that the blue samples at R9

and R0 have been interpolated, and we denote them as B̂9

and B̂0. The directional estimates of the blue and green color
difference at G1 are computed as⎧⎪⎪⎨
⎪⎪⎩

dn
bg = B5 − G5

ds
bg = B8 − G8

dw
bg = B̂9 − G9

de
bg = B̂0 − G0

. (17)

The gradients at position G1 along the four directions are
calculated as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇n = |G14 − G1| + |B5 − B8| + 1
2 |R21 − R9| + 1

2 |R10 − R0| + ε

∇s = |G19 − G1| + |B5 − B8| + 1
2 |R20 − R9| + 1

2 |R12 − R0| + ε

∇w = |G1 − G26| + |R0 − R9| + 1
2 |B27 − B5| + 1

2 |B25 − B8| + ε

∇e = |G1 − G3| + |R0 − R9| + 1
2 |B5 − B6| + 1

2 |B8 − B7| + ε

. (18)

The associated four weights for the four directions are
computed in the same way as in Eqs. (3) and (4), and the
fused color difference is obtained as d̂bg = w̄ndn

bg + w̄sds
bg

+ w̄w dw
bg + w̄ede

bg . Finally, the missing B sample at position

G1 is interpolated by B̂1 = G1 + d̂bg .

2.5 Nonlocal Enhancement of R and B Channels
Once the R and B channels are interpolated with the help of
nonlocally enhanced G channel, they can then be enhanced
by exploiting nonlocal redundancies in R and B channels,
respectively. The process is the same as that for the G channel.
For each interpolated red (blue) sample R̂0 (B̂0), we search
for similar pixels to it in a large window centered on it. The
N most similar pixels to R̂0 (B̂0), including itself, are used to
enhance it via NLM or NAT.

3 Experimental Results
3.1 McMaster Dataset
The Kodak image dataset20 is widely used as a standard
dataset in CDM and many other color image processing
fields. The Kodak dataset contains 24 full color images,

Table 1 Statistics of the Kodak and the McMaster datasets.

Datasets Kodak McMaster

Mean spectral correlation G and R 0.8712 0.7445

G and B 0.9050 0.7114

Mean saturation 15.6 45.81

Mean chromatic gradient 1.78 4.54
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Fig. 4 Scenes of the eight test images in McMaster dataset.

whose spatial size is 768×512. It is said that these images
were originally captured by film and then digitized by scan-
ner. However, in recent years it has been noticed that the
statistics of Kodak images are very different from other nat-
ural images,15, 16, 19 e.g., the images in the McMaster dataset
to be introduced. The images in Kodak dataset look smooth
and less saturated, which makes them less representative for
the digital color images captured by the current digital cam-
eras and, hence, less representative for applications such as
CDM. Specifically, the Kodak images have very high spectral
correlation, are smooth in chromatic gradient, and have low
saturation (refer to Table 1). It is doubted that these images
were post-processed, and they are not suitable for evaluating
CDM algorithms.

Fig. 5 Cropped McMaster sub-images (500×500) used in the ex-
periments. From top to bottom and left to right, these sub-images are
labeled as 1 to 18.

In this study, we use a new color image dataset, namely
the McMaster dataset, for the evaluation of CDM algorithms.
This dataset was established in a project of developing
new CDM methods by McMaster University, Canada, in
collaboration with some industry partners. It has eight

Table 2 Summary of the SSD, LDI-NLM, and LDI-NAT algorithms.

Methods SSD LDI-NLM LDI-NAT

Procedures 1. The full color image is initially
interpolated by bilinear
interpolator. Denote it by u0.

1. The G channel is initially
recovered by LDI.

1. The G channel is initially
recovered by LDI.

2. For σ = {16,4,1} 2. The G channel is nonlocally
enhanced by NLM filtering.

2. The G channel is nonlocally
enhanced by NAT with
soft-thresholding.

2a. Apply nonlocal means filtering
to u0 with scale parameter σ .

3. The R or B channel is initially
recovered by LDI with the
nonlocally recovered G.

3. The R or B channel is initially
recovered by LDI with the
nonlocally recovered G.

2b. Convert u0 into YUV color
space and apply chromatic
regularization to U and V
channels. Transform the
regularized image back to RGB
color space, and denote it by u.

4. The R or B channel is nonlocally
enhanced by NLM filtering.

4. The R or B channel is nonlocally
enhanced by NAT with soft-
thresholding.

2c. Let u0 = u.
End

The way to use
nonlocal information

1. A coarse-to-fine strategy is used
to iteratively exploit the nonlocal
redundancy. In each iteration, the
similar pixels to the given one are
weighted as the updated
estimation.

1. The R, G, and B channels are
separately enhanced.

1. The R, G, and B channels are
separately enhanced.

2. In each iteration, the RGB color
space is transformed into the
YUV space for chromatic
regularization.

2. The similar pixels to the given one
are weighted, while the weights
are determined based on the
distances between similar
patches.

2. The pixels in the given patch are
taken as a vector signal, which is
soft-thresholded in an adaptively
computed sparse domain based
on the statistics of similar
patches.
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Table 3 PSNR (dB) results by different CDM methods on the McMaster dataset.

Methods
SOLC
(Ref. 3)

AHD
(Ref. 10)

SA
(Ref. 9)

DLMMSE
(Ref. 12)

SSD
(Ref. 15) LDI-NLM LDI-NAT

1 R 28.26 26.02 23.53 26.94 27.28 28.81 29.29

G 31.22 29.82 25.17 30.63 30.68 32.31 32.67

B 26.34 24.04 22.05 24.82 25.12 26.47 26.71

2 R 33.68 32.47 31.63 33.30 33.61 34.66 35.02

G 37.62 37.20 34.00 37.66 37.81 39.01 39.08

B 32.11 31.26 30.74 31.86 32.01 32.79 32.92

3 R 30.64 31.10 31.47 32.60 32.81 33.41 33.05

G 33.73 33.49 32.75 35.28 35.05 35.50 35.51

B 28.60 29.67 29.80 30.70 30.93 30.99 30.31

4 R 32.80 33.76 34.59 34.70 36.36 37.41 36.25

G 37.16 35.66 34.05 36.99 38.98 39.01 40.33

B 30.89 31.48 32.19 32.07 33.49 34.02 33.30

5 R 33.61 29.52 28.60 30.38 31.10 34.50 35.05

G 36.28 34.73 30.97 35.11 35.43 37.67 38.15

B 30.47 28.78 28.08 29.41 29.48 31.02 31.16

6 R 37.14 33.92 32.23 34.98 36.09 38.59 39.40

G 40.30 37.72 32.50 38.61 38.85 41.70 43.42

B 34.00 29.96 29.14 31.15 31.72 34.21 34.97

7 R 33.85 35.64 37.03 38.30 36.61 36.28 36.09

G 36.34 37.36 40.39 40.70 37.62 37.66 37.41

B 32.45 35.07 36.22 37.29 36.38 34.59 34.49

8 R 34.87 34.15 35.31 35.45 35.31 36.89 36.31

G 39.09 39.45 38.49 41.43 40.34 40.44 40.29

B 35.04 35.79 35.82 36.99 36.76 36.84 36.67

9 R 34.36 31.54 30.71 32.39 33.72 35.54 35.49

G 39.62 37.99 33.83 38.73 39.52 41.56 41.73

B 35.34 34.00 32.54 34.66 35.38 36.54 36.30

10 R 36.86 33.99 34.03 34.70 36.33 37.64 38.26

G 40.86 39.17 36.15 40.00 40.23 42.19 42.64

B 36.08 34.88 34.78 35.55 36.13 36.51 36.83

11 R 38.12 36.13 36.16 36.91 38.16 39.25 39.82

G 40.78 39.34 37.11 40.44 40.19 41.66 42.57

B 37.19 34.73 34.33 35.75 36.81 37.50 37.66

12 R 37.13 33.60 34.49 34.74 35.37 37.62 38.36

G 40.17 40.09 37.66 39.59 39.70 41.45 41.49

B 35.70 36.24 36.24 36.47 37.11 37.51 37.59
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Table 3 Cont.

Methods
SOLC

(Ref. 3)
AHD

(Ref. 10)
SA

(Ref. 9)
DLMMSE
(Ref. 12)

SSD
(Ref. 15) LDI-NLM LDI-NAT

13 R 39.80 37.91 38.11 38.66 40.01 42.23 41.77

G 43.46 42.16 39.90 42.57 43.82 45.55 44.89

B 37.65 36.20 36.51 36.75 37.19 37.88 38.13

14 R 37.85 37.33 36.82 37.74 38.66 39.28 39.39

G 41.37 40.65 38.79 41.13 41.93 42.62 42.84

B 35.64 34.30 34.45 34.78 35.00 35.82 36.12

15 R 36.44 34.88 34.87 35.32 36.23 37.34 36.95

G 41.20 40.27 38.13 40.71 40.75 42.39 42.68

B 38.17 36.84 36.52 37.30 37.90 38.49 38.99

16 R 32.75 30.95 28.75 31.95 32.21 34.18 34.97

G 34.09 32.36 28.60 33.22 32.99 35.00 35.59

B 31.63 26.85 24.87 28.06 28.30 31.12 31.53

17 R 31.24 27.12 25.35 28.32 29.24 31.60 32.14

G 35.17 32.13 26.68 33.31 33.62 37.31 37.62

B 30.69 26.65 25.06 27.77 28.38 30.78 30.91

18 R 32.69 32.30 31.61 33.32 33.24 34.63 34.58

G 36.20 35.69 33.84 37.02 35.91 37.30 37.27

B 33.43 31.90 31.11 32.93 33.44 34.87 34.30

Average R 34.71 33.05 32.68 34.06 34.71 36.10 36.23

G 38.11 37.10 34.63 38.10 38.08 39.46 39.79

B 33.41 32.30 31.87 33.15 33.47 34.33 34.38

high resolution (size: 2310×1814) color images that were
originally captured by Kodak film and then digitized. The
scenes of the eight images are shown in Fig. 4. Since these
images are big in size, we crop 18 sub-images (size: 500
×500) from them to evaluate the CDM methods. Figure 5
shows the cropped 18 sub-images. In Table 1 we compare
the mean spectral correlation, mean chromatic gradient, and
mean saturation of the images in the two datasets. [The
mean saturation is computed as follows. For each pixel
with color components {r,g,b}, its saturation is computed
as s =

√
[(r − y)2 + (g − y)2 + (b − y)2]/3, where y = (r

+ g + b)/3. The mean saturation is obtained by averaging
the saturation of all pixels. The mean chromatic gradient
is computed as follows. We first convert the image into
the YUV space. The chromatic gradient of each pixel
is set as the modulus of the gradient in the U and V
channels. Then, the mean chromatic gradient is obtained by
averaging over the whole image.] We see that the spectral
correlation of the Kodak images is obviously higher than
that of the McMaster dataset. The McMaster images are
more saturated and there are many sharp structures with

Fig. 6 Graphical presentation of the average PSNR by different
methods on the McMaster dataset.
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Table 4 Zipper Effect Ratio (ZER) by different CDM methods on the McMaster dataset.

Methods
SOLC

(Ref. 3)
AHD

(Ref. 10)
SA

(Ref. 9)
DLMMSE
(Ref. 12)

SSD
(Ref. 15) LDI-NLM LDI-NAT

1 0.2059 0.1678 0.4348 0.2021 0.0996 0.0748 0.1082

2 0.0939 0.1225 0.1673 0.1249 0.0753 0.0486 0.0682

3 0.1659 0.2336 0.4357 0.2179 0.1044 0.0815 0.1044

4 0.3475 0.3952 0.7680 0.5287 0.0915 0.0930 0.1468

5 0.0996 0.1130 0.1831 0.1144 0.0629 0.0477 0.0591

6 0.0987 0.1206 0.2121 0.1306 0.0563 0.0477 0.0477

7 0.1983 0.1945 0.1459 0.1368 0.1163 0.1282 0.1397

8 0.1249 0.2336 0.1988 0.1344 0.0567 0.0510 0.0686

9 0.1387 0.2160 0.3585 0.2174 0.0915 0.0524 0.0896

10 0.1020 0.1464 0.2212 0.1526 0.0739 0.0434 0.0577

11 0.1425 0.2264 0.3280 0.2260 0.1130 0.0667 0.0801

12 0.1011 0.1835 0.2102 0.1587 0.0481 0.0243 0.0572

13 0.1249 0.2040 0.2098 0.1821 0.0577 0.0200 0.0830

14 0.1135 0.1721 0.2102 0.1649 0.0653 0.0381 0.0682

15 0.1564 0.1955 0.2975 0.2417 0.0982 0.0610 0.1120

16 0.1549 0.2150 0.3852 0.2350 0.1554 0.0920 0.1096

17 0.1788 0.2245 0.3933 0.2584 0.1468 0.1125 0.1254

18 0.1669 0.1444 0.4329 0.1759 0.0768 0.0567 0.0791

Average 0.1508 0.1949 0.3107 0.2001 0.0883 0.0633 0.0891

abrupt color transitions in them. Many CDM methods use
the Kodak dataset as the target images in algorithm develop-
ment and testing, and they assume that the color differences
change smoothly. Though this assumption holds well for the
Kodak dataset, we can see from Table 1 that it may not hold
for the images in the McMaster dataset. The cropped 18

Fig. 7 Graphical presentation of the average ZER by different meth-
ods on the McMaster dataset.

sub-images and the source code of the proposed LDI-NLM
and LDI-NAT algorithms can be downloaded at http://www.
comp.polyu.edu.hk/˜cslzhang/CDM_Dataset.htm.

3.2 Color Demosaicking Results
We evaluate the performance of various CDM schemes on the
McMaster dataset. The proposed LDI- and NLM-based CDM
method is denoted by LDI-NLM and the LDI- and NAT-based
CDM method is denoted by LDI-NAT. The following repre-
sentative CDM methods are used for comparison: the second
order Laplacian correction (SOLC) method;3, 4 the adaptive
homogeneity-directed (AHD) method,10 the successive ap-
proximation (SA) method,9 the directional linear minimum
mean square-error estimation (DLMMSE) method,12 and
the self-similarity driven (SSD) method.15 Considering that
the SSD, LDI-NLM, and LDI-NAT algorithms all exploit the
nonlocal redundancy, in Table 2 we summarize the proce-
dures of the three algorithms for a better understanding of the
common points and differences between them. These nonlo-
cal methods involve a step of similar patch searching, which
is one of the main sources of computational cost. Therefore,
SSD, LDI-NLM, and LDI-NAT have higher complexity than
the local methods SOLC, AHD, SA, and DLMMSE.

Suppose that the same nonlocal similar patch searching
algorithm is used for SSD, LDI-NLM, and LDI-NAT, then
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Fig. 8 (a) Original image 1 and demosaicked images by (b) SOLC (Ref. 3); (c) AHD (Ref. 10); (d) SA (Ref. 9); (e) DLMMSE (Ref. 12); (f) SSD
(Ref. 15); (g) the proposed LDI-NLM and (h) LDI-NAT.

LDI-NLM has similar complexity to SSD because both of
them use weighted average to exploit the nonlocal redun-
dancy. However, LDI-NAT has higher complexity than SSD
because it uses PCA to exploit the nonlocal redundancy.
The data matrix Y formed by nonlocal similar patches is of
size M × N, and the covariance matrix of it is of size M
× M. In the PCA transformation, the SVD of the covariance
matrix is required and the complexity is O(M 3), which is
much higher than that of the weighted average. Hence, the
proposed LDI-NAT has the highest complexity among the

competing methods, while LDI-NLM and SSD have similar
complexity.

In our implementation of LDI-NLM, 25 similar patches to
the given patch (patch size: 5×5) are searched in a 31×31 lo-
cal window. (Please note that based on our experiments, using
more similar patches in NLM filtering will not improve the
final CDM performance.) The parameter σ [refer to Eq. (9)]
in the NLM filtering is set as 2.5. In our implementation of
LDI-NAT, 100 similar patches to the given patch (patch size:
5×5) are searched in a 31×31 window. The threshold used
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Fig. 9 (a) Original image 5 and demosaicked images by (b) SOLC (Ref. 3); (c) AHD (Ref. 10); (d) SA (Ref. 9); (e) DLMMSE (Ref. 12); (f) SSD
(Ref. 15); (g) the proposed LDI-NLM and (h) LDI-NAT.

in Eq. (13) is set as t = 0.03 × gY, where gY is the average
gradient magnitude of the similar patches.

In the experiments, we down-sampled the original color
images into CFA images according to the Bayer pattern
and then reconstructed the full color images from the CFA
mosaic data by using the seven methods. Table 3 lists the
PSNR results. We see that the proposed LDI-NLM and LDI-
NAT algorithms achieve much higher PSNR measures than
other competing algorithms in almost every channel of all
of the test images. Although the classical SOLC is simple,
it achieves almost the same PSNR results as the recently de-

veloped SSD scheme, while SOLC and SSD outperform the
other three methods in the competition. The DLMMSE has
similar PSNR results to SOLC and SSD, and the AHD and
SA algorithms have the lowest PSNR measures. Figure 6
graphically presents the average PSNR results by various
methods on the McMaster dataset.

It is well known that PSNR is not a good indicator of
CDM quality because the CDM errors mainly occur around
the (color) edges, which account for only a small por-
tion of the image pixels. In Ref. 15, the zipper effect ra-
tio (ZER) was used to evaluate the color edge preservation
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Fig. 10 (a) Original image 6 and demosaicked images by (b) SOLC (Ref. 3); (c) AHD (Ref. 10); (d) SA (Ref. 9); (e) DLMMSE (Ref. 12); (f) SSD
(Ref. 15); (g) the proposed LDI-NLM and (h) LDI-NAT.

performance of CDM. Although this metric cannot perfectly
reflect the CDM quality, it works better than PSNR in eval-
uating the CDM performance. Table 4 shows the ZER mea-
sures of the seven competing methods. Figure 7 graphically
presents the average ZER results by various methods on the
McMaster dataset. We see that LDI-NLM, SSD, and LDI-
NAT achieve much lower ZER values than other methods.
Although SOLC and DLMMSE have similar PSNR results
to SSD, their ZER measures are much worse than SSD. This
also validates that PSNR is not a good metric to measure im-
age edge preservation. Note that LDI-NLM has lower ZER

values than LDI-NAT. However, LDI-NAT actually has much
better edge preservation than LDI-NLM. This is because
LDI-NLM results in smooth color edges, while the ZER
metric favors smooth images. Nonetheless, how to define a
good CDM quality metric is a very difficult problem, and this
is beyond the discussion of this paper.

Figures 8–11 show the cropped and zoomed CDM re-
sults of the seven methods on images 1, 5, 6, and 16. It
can be clearly seen that the proposed two algorithms, espe-
cially LDI-NAT, yield much better CDM outputs than the
other five methods. The methods SA, AHD, and DLMMSE
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Fig. 11 (a) Original image 16 and demosaicked images by (b) SOLC (Ref. 3); (c) AHD (Ref. 10); (d) SA (Ref. 9); (e) DLMMSE (Ref. 12); (f) SSD
(Ref. 15); (g) the proposed LDI-NLM and (h) LDI-NAT.

produce many zipper effects and false colors because they
assume smooth color differences but this assumption does
not hold well on the McMaster dataset. The SOLC uses a
compact (five-tap) filter to interpolate the missing colors,
which makes it free of many interpolation errors caused
by abrupt color changes. However, SOLC neither fully ex-
ploits the local redundancy nor uses any nonlocal redun-
dancy for CDM. The SSD exploits the nonlocal redundancy
to iteratively recover the color information but it is not ef-
fective in using the image local directional information. As
a result, both SOLC and SSD still produce many visible
color artifacts, which can be clearly observed in Figs. 8–
11. The proposed LDI-NLM and LDI-NAT effectively ex-
ploit the image local redundancy and edge direction infor-
mation in the initial interpolation, and exploit the nonlocal
similarity to enhance the CDM output. They significantly
reduce the CDM errors and artifacts, recovering more faith-
fully the missing color samples than SOLC and SSD. Their

higher PSNR and lower ZER measures in Tables 3 and 4 also
validate their powerful capability in color reproduction.

At last, we will compare the performance of LDI-NLM
and LDI-NAT. As summarized in Table 2, LDI-NLM exploits
the nonlocal redundancy by NLM filtering. NLM filtering is
powerful in smoothing the initial CDM noise; however, it
may also smooth the edges. In addition, for strong zippers
and color artifacts caused by sharp color transition in highly
saturated areas, NLM filtering is not effective to remove
them. Different from NLM filtering, LDI-NAT processes the
patch centered on the given pixel as a whole to better pre-
serve the local pattern. The nonlocal redundancy is used to
compute the sparse domain, and adaptive soft-thresholding
is used to remove the initial CDM errors. Compared with
NLM filtering, the NAT exploits the structural statistics in
the similar patches, and hence, it can more effectively pre-
serve the edges and reduce the zipper effects and false colors.
From Table 3, we see that for images with more smooth areas
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(e.g., images 8, 9, 13, and 18), the overall PSNR measures
of LDI-NLM can be higher than LDI-NAT. Nonetheless, in
the smooth areas, both the methods can have good visual
quality. In areas with high color variations, LDI-NAT leads
to much better CDM outputs. This can be more clearly seen
in the images with more color edges, e.g., images 1, 5, 6,
and 16.

4 Conclusion
This paper presented a CDM scheme by effectively ex-
ploiting both the local spectral correlation and the nonlocal
similarity in the CFA image. Many previous CDM methods
assume the high local spectral redundancy in the color
interpolation. Such an assumption, however, fails for images
with sharp color transitions and high color saturation.
Fortunately, the nonlocal redundancy can be used to
compensate for the lack of local redundancy in CDM. We
first computed four directional local estimates of a missing
color component and fused them into one estimate based on
the local directional gradients. After the LDI, the nonlocal
similar pixels to the given one were searched to enhance
the initial CDM results. Apart from the commonly used
NLM filtering technique, a NAT scheme was proposed
to better preserve the local structure while reducing the
initial CDM errors. The proposed LDI-NAT algorithm
was tested on the McMaster dataset in comparison with
state-of-the-art CDM methods. The experimental results
showed that LDI-NAT visually leads to much better demo-
saicked images, significantly reducing the unpleasing zipper
effects and false colors that often appear in highly saturated
areas.
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