%315 %48 FrM T R FFIRCA ARAE O Vol. 31 No. 4
2002 % 8 A JOURNAL OF GUIZHOU UNIVERSITY OF TECHNOLOGY August. 2002
(Natural Science Edition)

Articled ID: 1009-0193 (2002)04-0027-07

Object-oriented clusters

— A proposal for a new parallel processing paradigm

Philip Wong, Thomas Fischer
(School of Design The Hong Kong Polytechnic University, Hong kong, China)

Abstract: Clustering desktop computers in order to achieve cheap supercomputing power has be-
come a popular approach for processing labor-intensive tasks for example in the academic and en-
tertainment fields during the past few years. The distributed architecture and scalability of PC
clusters provide a highly suitable hardware foundation in particular for the processing of large sets
of data that are easily broken into pieces and distributed for parallel computation. However, re-
quired advanced programming skills, development time as well as data and algorithms that are not
easily parallelized (as typically found in real-time shared virtual reality generation) are major ob-
stacles on the pathway to flexible cluster application. In this paper, we propose a new cluster
topology that takes advantage of the Java 3D data architecture to generate large virtual reality
datasets. A discussion of our experimental investigation into this approach is given with special
emphasis on our design perspective towards virtual reality production. The benefits of the pro-
posed strategy are manifold and include easier and more economic development at comparatively
gentle leaming curves, significantly better runtime performance, and the reusability of generic
software components. This can contribute to a wider range of real-time VR content to be pro-

duced and hence expand the application of virtual reality beyond the boundaries of the design

field.
Key words: parallel processing; cluster topology; virtual reality; Java 3D
CLC number: TP311 Document code: A

0 Background

This paper proposes a new approach to cluster topology design as part of an ongoing project to develop a vir-
tual gallery at the School of Design, Hong Kong Polytechnic University. From a designer’ s perspective, develop-
ing interactive 3D content for a narrative virtual environment continues being a long aw aited dream. Despite vari-
ous speculations, virtual reality is still not delivering what it is supposed to and widely unavailable to open appli-
cations such as Networked Education in Design.

It isone of the aims of this research project to develop strategies to achieve greater availability and flexibility
of virtual reality by applying PC clustering technology. This type of technology as firstly been made available by
the Beow ulf Project in 1994. In this paper we use the term cluster for multi— PC setups that are optimized for
speed rather than for reliability .

The nature and requirements of virtual reality production predestinate this field for parallel computation.
Execution times last hours, days or even longer w hile no changes need to be applied to the underlying code base,
the execution is CP U intensive and requires scalability and highly detailed and realistic resolution. One major hur-

dle on the pathway tow ards this ambition lies in the topological differences betw een virtual space, V R data struc-

Received date: 2002— 06— 15

28 ® oM I ok kK F F R AAHAFR 2002 4

tures and parallel hardw are platforms required for processing and delivering 3D content. While V R geometry and
behaviors are modeled after three— dimensional physical space and time, VR data (for example in VRM L) is
structured in tree hierarchies which are not easily accommodated by the linear (or on case of some particular de-
signs n— dimensional) cluster structures.

Conventional cluster applications are developed on the parallel paradigm. Under this paradigm, a master node
is responsible for breaking up tasks into smaller units and distributing these units to an array of slave nodes for
computation. Once a slave node has finished computing its subtask, the results are send back to and reassembled
on the master node, w hich keeps on assigning new tasks to the slave nodes. Current implementations em ploy ei-
ther the M assage Passing Interface (M PI) standard or the Parallel Virtual M achine (PVM) library as a commu-
nication protocol within the cluster. How ever, these implementations of parallelism are heavily influenced by the
von Neumann architecture, where a single eentral processor takes charge of all processes and has ex clusive access
to memory. The consequences are applications that execute sequentially. While robust and efficient, these parallel
applications suffer from a number of weaknesses:

Bottleneck created on the master node
Limited portability
Interfacing with graphic APIs not readily available

These limitations discourage V R developers from deploying the parallel paradigm to generate content. We
believe however, that the recent maturing of Java as a fully developed object oriented programming language and
the architecture of its 3D data structure can help changing this.

The essential concept of object— oriented programming is that components of an application are autonomous
but at the same time communicates with each other. Each component performs a specified function that eventual-
ly contributes to accomplishment of a higher objective. Theoretically, components can exist on different comput-
ers to harness more com putational power into the system. In fact, many applications achieve this by using tech-
nologies such as RM T or COBRA . However, dy namic generation of interactive 3D content with a cluster remains
to be a threshold due to the fact that there was no object oriented graphics API that can make use of distributed
processing, until the recent advent of Java 3D.

The first public specification of Java 3D, jointly developed by Sun Microsystems and SGI, was released in
1997 .1t is a high level, scene graph based API that uses either DirectX or the OpenG L low level API to take ad-
vantage of 3D hardw are acceleration. Being fully object —oriented and platform independent, it offers some very
interesting possibilities. For example, its Input Device class offers a convenient way to integrate peripherals like
data gloves, motion trackers and head mounted displays into a system offering novel possibilities to experimental
V R production. It is also possible to draw directly to the screen, bypassing the window system altogether. This
feature alone offers new and interesting possibilities in the field interface design. Java 3D also allows the process-
ing (compilation) of individual scene graph elements while allow ing the later application of data changes and lat-
er assembly of pre—compiles elements into one complete scene graph. With Java, it is relatively easy and a com-
mon practice to program server—client systems that provide communication means among computers (e.g. with-
in a cluster). M ulti— threading is built into the core Java API which provides away to efficiently use more than
one CPU, possibly on different computers.

By combining the strength of the cluster concept with the object oriented Java 3D API, it is now conceivable
that loose parallelism can be achieved on a cluster without using parallel programming. We propose achieving by
dynamically mapping the structure of Java 3D scene graphs onto the hardw are architecture topology of a cluster.
As a possible application scenario, the following section proposes the design of a system, called the sene graph

server, which generates dy namic interactive 3D content.

% 4 7 Philip Wong, et al: Object-oriented clusters—A proposal for a new parallel processing paradigm 29

1 Design Principle

This section discusses a possible methodology for task distribution in a PC cluster w hich is uniquely offered

by the scene graph structure of Java 3D. The following figure shows the structure of a Java 3D scene graph:

| Virtual Universe

Locale Node

Branch Group Node

Behavior Node TransCorm Node

View Plattorm Node

Physical Body Node

Shape 3D Node
Physical Environment Node

Canvas 3D Node

Figure 1 Java 3D scene graph structure

In Java 3D, the basic component is a node. A node essentially is an object that performs specific functions.
The fundamental (or "root”) node is called a ”Virtual Universe” to which only a ” Locale” object can be at-
tached.” Branch Group” are objects that contain all the visible elements, as well as behaviors of those elements,
present in the virtual environment and are attached to the Locale object. A branch group can be attached to other
branch groups and their functions can be altered in runtime even when they are already com piled. All objects in
Java 3D, together with their appearance and behaviors, are just hierarchical structures rooted at a branch group
node.

The branch group object can be conceived as a 3D object that has a visual representation in the virtual uni-

verse. For example, a house, a car, a bird, a piece of cloudor a person are all branch groups in the virtual universe.

Branch Group Scene Graph Structure Cluster Node
Transform Node @
v
Axel AXEL Node
@ WHEEL Node
Wheel
Hub HUB Node
T
Tire @ TIRE Node

Figure 2 The Scene Graph of a Simple Wheel and the Corresponding Processing Nodes

30 ® oM I ok kK F F R AAHAFR 2002 4

The hub and tire are attached to the wheel that is attached to the axel.The axel is attached to a” Transform
Group” that affects its behavior. The transform group causes the axel to rotate which in turn rotates the wheel,
tire and hub. Conventionally, all these branch groups are compiled and executed on the same computer; but as
the scene gets complicated, CPU load is quickly saturated. To solve this problem, individual nodes of a cluster can
be used to process individual or groups of branch groups. This can be achieved by using Java 3D’ s possibility to
pre— compile branch graphs. Each node is responsible for the follow ing tasks (the blueprint server and final node
are discussed in more detail in following sections):

M aintaining the objects it is responsible for as assigned by the blueprint server
Updating the state of the objects by querying the blueprint server
Compilation of the branch group

Serialization of the branch group

Sending the branch group in the form of byte code to the final node

Notifying the blueprint server of task accomplishment

Notifying the blueprint server of local errors and perform fallback actions

Any 3D object in Java 3D, be it as simple as a ball or complicated as a flying bird, ultimately belongs to a
branch group. A node of the cluster com piles the branch group into compiled format and transfers it over a net-
work to another node where this branch group is attached to a branch group with a higher position in the scene
graph hierarchy. A branch group usually makes references to other data objects. Thisis not a problem on a single
computer. However, these references will break if the branch group has to be sent to another computer. The rem-
edy is to make use of the Scene Graph 10 class that comes with the J3Dfly Demo package from Sun. How 3D ob-
jects are assigned to which node can be decided on an application specific basis. A node can for example be as-
signed to a portion of the virtual environment spatially, processing all objects that are assigned to that area, or to
individual users. At the end of the process, all branch groups are attached to a ”root” branch group. This root

branch group is attached to the virtual universe and is ready for rendering.

Loader Cluster
{Auto Load Balanced)

v

Blue Print Server 4—\

Final Node -

v

Render Client

Figure 3 Structure Overview of the Scene Graph Server
The blueprint server acts as a centralized information center of the virtual environment. It keeps a ”
blueprint” of the virtual environment and state of the objects but not the objects themselves. It has the follow ing
major functions:
M aintaining a database of the states of all objects.
Distributing 3D objects to their designated nodes.

A

% 4 7 Philip Wong, et al: Object-oriented clusters—A proposal for a new parallel processing paradigm 31

Detecting changes in the virtual universe.
Processing user input.
Answering requests from nodes.

The blueprint is essentially a database that keeps track of attributes like spatial positions, conditions and
ow nerships of all 3D objects. It also supplies the querying node with instructions on how to reconfigure its tasks.
For example, a node might need to send its output to a destination different from the one originally designated
one due to changes in the scene graph structure.

Users are able to upload (or create) 3D objects to the virtual environment. In such cases, the blueprint serv-
er determines which node should the object’ s databe sent to and maintained. It only keeps track of the object’ s
parameters and not a copy of the data itself. When changes are induced to a 3D object, either due to user input,
interaction with other objects or by its own behavior, the blueprint server updates the parameters of that object.
When queried by a node, these parameters are supplied. One advantage of using the blueprint approach is the a-
bility to implement global changes to the virtual environment effectively, since all the nodes look at the same
blueprint. Any changes and their effects are processed and reflected on the blueprint server before any node is
aw are of these changes. Depending on how data is distributed to the nodes, the database is structured according-
ly.

The blueprint server is connected to another cluster that handles user— uploaded files. These files are 3D
models created in other packages such as 3D Studio M ax or Alias Studio. The uploaded files are processed by dif-
ferent loaders and converted into native Java 3D format. The user accesses a web interface that provides upload-
ing services. The loading process is computation intensive so a load—balanced web server cluster is assigned to
handle the workload. One last function of the blueprint server is to maintain constant communication with the fi-
nal node. The function of the final node is to provide a “root” branch group for the other branch groups to attach
to.

Output from all the cluster nodes are sent to a final node w here the scene graphs is re— assembled. This final
node maintains constant communication during runtime with the blueprint server to dynamically generate the
root branch group. For example, if a user adds an object to the virtual environment, the final node creates a
branch group node on the fly for this object to attach to.

Theoretically, the final node can also be the rendering client, provided this node is pow erful enough. A nother
way for rendering is to employ a distributed rendering system such as VisAD developed by the Space Science and
Engineering Center at the University of Wisconsin— Madison. How ever, rendering systems are out of the scope of
this paper.

There are other methods of parallelizing an application with an object oriented program ming language such
as Java. For example, the DAMPP project employed applets to execute, on a remote computer, its tasks. Pseudo
Remote Threads, created by Aashish N. Patil (a final— year undergraduate student at the Mumbai University,
India) uses RMT to distribute Java threads over TCP/IP networks. These methods either require parallel pro-
gramming or create a bottleneck in the system. In an environment that objects are constantly being created or

deleted, these systems could become hard to manage due to their rigid design.
3 Conclusion

In a classic von Neumann architecture, bound by a CPU, only one process can be executed at any time and
the time— sharing paradigm for multi— tasking as well as multi— threading cannot escape this boundary . With an
object— oriented cluster architecture, the application achieves true multi— tasking with practically infinite scala-
bility. By mapping the Java 3D scene graph data structure (tree —structured) to the linear topology cluster

nodes, no parallel programming is required from -the developer, and a highly scalable structure can be provided.

32 ® oM I ok kK F F R AAHAFR 2002 4

Hence, parallel programming difficulties such as data synchronization, thread management and load balancing do
not need to be addressed.

Since a virtual environment has potentially no spatial limits, this scalability is essential. M oreover, additional
features like a terrain generation cluster, can easily be integrated into the system. It is important to note that
there is no centralized control throughout the system.All cluster nodes merely performs their own tasks but col-
laborate with each other. Since the cluster nodes query the blueprint server once a task is accomplished, maximum
throughput from that node can be guaranteed. At the moment, this architecture resembles other cluster architec-
tures in that it is highly purpose centered and does not easily accommodate other applications. However, assuming
that a development like the above proposed one would inspire other Java APIs to also make use of partial data

structure compilation, object oriented clusters promise more flexibility classic clusters can offer.

Acknowledgements: The authors gratefully acknowledge the support from the academic and research staff at
the School of Design, its Design Research and Technology Center, and the Interactive Systems Design stream at
The Hong Kong Polytechnic University. This research is supported by The Hong Kong Polytechnic University’
s Large Equipment Fund.

References:

[1] Card SK,]J D MacKinlay, B Sneiderman. Readings in Information Visualization. Using Vision to Think[M] . California;: M organ
Kaufmann Publishers, 1999.

[2] Eckel B. Thinking in Java. The Definitive Introduction to Object— Oriented Programming in the Language of the World Wide
Web(2nd ed)[M] . Englew ood cliffs; Prentice Hall 2000.

[3] Falk, L C Ceccato, C Hu et al. Towards a Networked Education in Design[A] . Beng— Tiang Tan, et al. CAADRIA2000 Proceed-
ings of the Fifth Conference on Computer Aided Architectural Design Research in Asid (] . Singapore: 2000. 157— 167

[4 Fischer T, C M Herr, C Ceccato. Tow ards Real Time Interaction Visualization in NED[A] . Clayton M J. ACADIA 2000 Confer-
ence Proceedingd (] . Washington: Catholic University, 2000.

% 4 7 Philip Wong, et al: Object-oriented clusters—A proposal for a new parallel processing paradigm 33

H bR R B — < T8 AT AL BEVG 1] A AT 7T

EAEH, D A B
(FAEIRF HitFE R FE &%)

A BT AR H hAe”, PC W IRBFEE sl —FP AR 3K 8 ik, AR T ik Ak 9% AR i dm
B HIUFE F R AR AR R ARG 7 B B A T4, d o ARG KR 4T 0 ey A
AW A AT AL P S Rk FE R KB RET o SE e s, Rm, X —T
A2F B A RATHOT, K 09T R 1A AL AE AL 32 Ae it LA HH4T 09 B AE bR (SRR 25 R
MILE F A BA) AR EZR F0 800 £ ZH A, 0t — A 4e41 2, X —s A FH AR
Java 3D #ABLEHPA FAE K F BALILE B LM, 12 2F KAV 50 5% b 4 TR A E AL
KT RMILFE A 6938t ik AT FX. Atax-FE AR A B Al & AP EAFXE
89 A PUT AL 9ZAT B DA BAR AR R GG 20 3 09 7T AU 2, XA ST L — AV L A %
B8g AL IR 3R, AR 3% 7 R 8G id, Mfn G ARSI AR, K B ML E6 A A .

: FAT A 325 4641 2 I 5 Java 3D

: TP311 A

(k326 T

BE BT AL 2 A BRI iE H

/2
(F B IRF Ut FR BAGHAR Po, FE &%)

R P AT b 4G — bR R LR I M FALHIE ARG A, X bR AiF A
Wit FFZ AL A AR F BT A, R dofedb 69 01 iR, L be) — Ak REE
53] M) 27 S SR T 4 iRty LB R G, AR BRI AR A RN B AR T R — AN e feis
F3) eyt AL, BMEE ZFAT AR RGRRN BORR, RIEAHZ0T iR 0% K Am ik
FAe B2 B A 093k SRARAE. AT P, A kiR R AT S RO TR, L LR R
T & ARG R B A8 RAT Ao S it it kiR sk, 2R RAF I B) T EAAR
AE BCBRIZ T KA X —AUR 49 s K 2 7, 4L e R BRIZ T K AT AR 180T K] PRI S R 69
AE . ESLRBT FR ot At IR0 P E) =AY Tk

AR T MBF 3] 5 iR

. TP311 :A

