一种基于跟踪的全自动直线判别算法

任金昌1,赵荣椿1,冯大淦2,3

1.西北工业大学 计算机科学与工程系,陕西 西安 710072; 2.悉尼大学 计算机系,澳大利亚;
 3.香港理工大学 电子及资讯工程学系,香港

摘 要:由于曲线通常可以用直线段逼近,直线判别在图象分析、识别及测量等很多涉及形状匹配 的领域均有重要应用。由计算机视觉中直线判别的逆问题,即计算机图形学中直线生成的观点看, 除水平、垂直、斜率为±1的4个基本方向的直线外,所有数字直线均由短的阶梯状的基本直线段 构成。通过对数字直线特点进行理论分析,证明在其相互垂直方向象素长度分布不会同时超过1个 象素,并在此基础上,提出并设计了一种基于跟踪的全自动直线判别算法。和现有的一些代表性算 法相比,实验结果验证了本文方法在减少关键点数和时空开销方面具有显著优势。

关 键 词: 直线判别,方向象素长度,关键点 中图分类号: TP391.4 **文献标识码:** A

在计算机视觉和模式识别等很多领域,如图纸 理解或矢量化、遥感图象中道路或建筑物等人工目 标识别,以及医学图象分析等等,都需要在轮廓或骨 架基础上进行特定对象的形状识别或测量分析。由 于曲线往往可以由折线段逼近,所以直线检测是形 状识别的基础和核心所在,对于最终的图象分析和 识别至关重要^[1~3]。

直线判别就是在连续数字曲线段上检测直线段 的过程,该问题在离散象素级中变得困难.现有的直 线判别方法可分为两类:一类是变换域的方法,其思 想是将原始图象中象素通过变换,得到变换域参数, 然后将空间域直线判别问题转化为变换域参数判别 问题 比如,基于 Hough变换的方法可以将直线判 别问题转换为求参数域极值问题^[4],而基于小波变 换的方法则将问题转为一组小波描述子的判别 等^[5]。另一类是空间域的方法,也就是通过考察象素 的位置关系直接进行直线判别 典型的空间域方法 有基于最小二乘的拟合方法和基于关键点检测的方 法等^[6,7]。前者多用于离散点的拟合,而且一般每次 只能拟合一条直线,所以不能胜任可能存在多条直 线的直线判别问题.后者是通过计算曲率实现的,且 文章编号: 1000-2758(2001) 03-0426-04

在计算过程中还需考虑一定象素区域及其邻域,效 率比较低。

总的来说,变换域的方法虽然可能使问题得到 简化,但在变换前后往往需要大量的额外时间和存 储空间,所以实用性较差。空间域的方法虽然时空开 销较少,但在考虑象素关系时,由于考察象素的数目 过多或过少可能存在判别精度不足或效率低等缺 点

现有算法的一个共同缺点在于缺乏对数字直线 特点分析,所以算法设计缺乏直接的理论依据。本文 通过对数字直线邻域象素分布特点的理论分析,提 出的自动直线判别方法,用简单的规则在很小的时 空开销下有效地解决了连续象素中的直线检测问 题,具有理论和实验两方面的优势。

1 数字直线特点

从象素级观点看,数字直线上点不是无限小,所 以其形状和通常理解的不同—— 除垂直、水平及斜 率为+1 – 1方向外(这4个方向及其对应的数字

基金项目:西北工业大学科研启动基金及香港理工大学 UGC基金(编号 PolyU 119/96E和 PolyU 1. 42. 37. A050).

收稿日期: 2000-02-17

基本直线构成 (如图 1所示)

(a) k= 0
 (b) 0 < k < 1
 (c) 0 k> - 1
 (d) k= 1
 (e) k= -1
 (f) k> 1
 (g) k < -1
 (h) k= ∞
 图 1 象素级观点上的直线比较图(k为斜率)

在直线判别的逆问题,即计算机图形学中作图时,一般从 x, y 之间函数映射的观点将直线分为两类:一类直线中 y是 x的单值函数,对应图中 $|k| \le 1$ (图 1中 (a)~ (e));另一类直线中 x是 y的单值函数,对应图中 $|k| \ge 1$ (图 1中 (d)~ (h)),分别称之为 x直线和 y直线 虽然计算机屏幕坐标定义中纵 坐标方向 y_1 和图 1中方向 y_2 相反,但其结果相当于 取 $y_1 = -y_2$,斜率满足 $k_1 = -k_2$,不影响上面的分 类。

可以证明,x直线中相邻 $x \neq y$ 方向映射值变化 非 0即 1,同样,y直线中相邻 $y \neq x$ 方向映射值变化 也满足该条件。水平直线和垂直直线分别是 x直线 和 y直线中的特例,因为它们映射值始终不变;而 $|_k| = 1$ 的情况可以同时看作 x直线或 y直线

任一数字直线中水平、垂直、 45° 及 – 45° 方向 上直线段最大长度,定义为该方向的方向象素长度 (directional pixel length, DPL),并分别用 L_x , L_y , L_x 和 L_- 来表示 针对单个数字直线,有以下两个定 理性的结论:

定理 1 在单个数字直线中, *Lx* > 1和 *Ly* > 1 不能并存。

证 明 若 $L_x > 1$ 和 $L_y > 1$ 两者并存,由映射 函数关系,该直线将不能用 y = f(x)或 x = f(y)的 单值函数表示,所以也就不能用一个直线方程描述 证毕

定理 2 在单个数字直线中, L₊ > 1和 L₋ > 1 不能并存。

证 明 下面用反证法先证明不存在这样的 x
 直线 假设上面条件可以共存,则对应的 x 直线 y =
 kx + b中必存在点 x x x2,满足下面条件

$$(x_{1} - 1) \cdot 5 \leqslant kx_{1} + b < x_{1} \cdot 5 \qquad (1)$$

$$x_{1} \cdot 5 \leqslant k(x_{1} + 1) + b < (x_{1} + 1) \cdot 5 \qquad (2)$$

$$(y_{2} - 1) \cdot 5 \leqslant kx_{2} + b < y_{2} \cdot 5 \qquad (3)$$

$$(y_{2} - 2) \cdot 5 \leqslant kx_{2} + b < (y_{2} - 1) \cdot 5 \qquad (4)$$

的假设,(x1.5) 表示整数部分和小数部分分别为 x1 和 0.5的实数,其余类推。由(2)式有

 $x_1.5 - k \leqslant k x_1 + b < x_1.5 - k$ (5)

结合 (1)和 (5)式,有 x_1 . 5 - $k \le kx_1 + b < x_1$. 5,即 x_1 . 5 - $k < x_1$. 5,所以 k > 0,

同理,由(3)和(4)式,可得 *k* < 0,和上面的 *k* > 0 矛盾,所以假设不成立,也就是不存在同时满足 *L*₊ > 1和 *L*₋ > 1的 *x*直线,同理可证不存在这样的 *y*直线 证毕

上面定理 1 2说明数字直线在相互垂直方向上 不会同时存在超过 1个象素,这个结论虽然简单,但 却揭示了数字直线中邻域象素分布的特点,是设计 自动判别算法的理论依据。

2 全自动直线跟踪判别算法

为简化问题,假设用于直线判别的二值图象已 经细化,即直线判别算法输入的是骨架图像 基于跟 踪的直线判别过程就是自上而下,从左向右进行对 骨架图象扫描的过程,其结果将是如下的折线段集 合(*P_i*称之为折线 *L_i*中的关键点)

 $S = \{L_i \mid i = 1, 2, \cdots, N\}$

 $L_{i} = \{P_{j} = (x_{j}, y_{j}) | j = 1, 2, \cdots, M_{j} \}$ (6)

为有效解决直线判别问题,需要引入跟踪起始 方向 *D*。当前跟踪方向 *D*。最优跟踪方向 *D*。方向 改变度 *D*。及步差的概念。*D*。是指跟踪起点及其邻 域决定的直线方向,*D*。指直线在当前点相对于前一 象素的方向,而 *D*。是 DPL值最大的方向;*D*。则是衡 量 *D*。和 *D*。或 *D*。差异的量、定义为

$$D_{v} = \begin{cases} 0 & U = 0^{\circ} \\ \pm 1 & U = \pm 45^{\circ} \\ \pm 2 & U \pm 90^{\circ} \\ \pm 3 & U = \pm 135^{\circ} \end{cases}$$
(7)

其中 (1,2)式和 (3,4)式分别对应 L > 1和 L > 1 ?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.chki.net D。方向上连续访问的象素个数 假设黑象素为目标 点,其中 P 为当前跟踪点,Po为折线跟踪起点,并设 Po的邻点(最多有两点)为 Qa Qa 沿 PoQo方向跟踪 时,将依次顺序记录关键点,而沿 PoQo方向跟踪时, 其关键点将插在序列的前面。下面给出直线判别算 法:

(1) 在当前图象中搜索黑象素点 P₀ 若无,算法结束. 否则,转(2);

(2) 若 Po的 3 3邻域无点,删除孤立点 Po,转
(1), 否则,记录 Po为折线中关键点,取 Po的邻域点
Q,令 Dm, Do和 Da均为 PoQ方向, P = Q,并对 DPL
初始化(除 Da方向为 1外,其余均为 0),转(3);

(3) 以 3* 3邻域连续从 P 点跟踪该线,不断调整相应的 D_e 及 D_e 方向的 DPL值,并记录步差,取 D_m为 DPL值最大的方向。当且仅当下面条件之一满足时,转(4):

① P的邻域已经无点;

② *D*_c和 *D*_o方向改变度代数和的绝对值 *D*_{sum}大
 于 1(定理 1 2);

③ *D*_e和 *D*_e方向改变度代数和的绝对值 *D*_{sum}等于 1,但同时在两个不同方向上 DPL值大于某个阈

(a) 原始骨架图

图 2 直线判别对比恢复结果(黑点为关键点)

设 n为骨架图象黑象素数目,c为关键点数,下 面对本文算法进行效率分析:从时间复杂度看,象素 跟踪过程中的处理量,和黑象素数目相同,而且算法 不涉及乘除运算,所以本文算法的时间复杂度为 O(n)而 Zhu-Chirlian算法的时间开销为加法 6n - M,乘法 3M + 3k - 2c, k为「形点个数,此外还有诸 如计算「形点数等运算^[8],效率远比本算法低

从空间复杂度看,除折线关键点外,算法在执行 过程中只需要存储步差、起始跟踪点 Pa Po邻域点 Dm Da Do 及其 DPL值等,所以空间开销仅为 O(c),而关键点是必须另行记录的,所以本文算法 值 S⁽实验中取 S⁾为 3)

(4) 记录 P为折线中关键点。若 P的 3 3邻域 有点 Q,令 D_m D_c和 D_o均为 PQ方向, P = Q,并对 DPL初始化(除 D_o方向为 1外,其余均为 0),转(3); 否则,转(5);

(5) 若 P₀的 3* 3邻域无点,转(1), 否则,取 P₀
的邻域点 Q,令 D_c和 D_o均为 P₀Q方向, P = Q,转
(3)(这一步从 P₀的邻域进行反方向跟踪)

3 实验结果及分析

图 2给出了一幅标准骨架图象及其直线判别的 对比结果,其中原始图象 2(a)及 2(b) 2(c)图象均 来自文献 [8],2(b)算法则源于文献 [7]

文献 [7 定义了两种衡量判别精度误差的参数, 即最大象素误差 (maximum error)和累计平方误差 (integral square error),分别表示为 *E*max 和 *E*itsq 图 2中 3种算法处理结果为 0误差,即其 *E*max 和 *E*itsq均 为 0,但描述曲线的关键点数目不同, Ansari-Huang 算法为 53, Zhu-Chirlian算法为 52,而本文算法仅 为 36

的空间消耗几乎达到最优。

4 结 语

通过理论分析,给出了一种自动直线判别算法, 用于图象分析或识别中曲线的多边形逼近 和现有 的算法相比,本文算法在减少关键点数和时空开销 方面均有显著提高 结合文献 [9 的细化算法将本文 工作扩充到一般图象的边缘逼近,并最终进行复杂 曲线识别,将是进一步研究所在

参考文献:

- Alan J F, Robert F. Automated Conversion of Engineering Drawings to CAD Form. Proceedings of IEEE, 1992, 80 [1] (7): 1195~ 1209
- [2] Gordon D, Peterson M A, Reynolds R A. Fast Polygon Scan Conversion with Medical Applications. IEEE Computer Graphics and Applications, 1994, 14 (6): 20-27
- [3] Mokhtarian F, Mackworth A K. A Theory of Multiscale, Curvature-based Shape Representation for Planar Curves. IEEE Transactions on PAM I, 1992, 14 (8): 789-805
- [4] Pao D C W, Li H F, Jayakumar R. Shapes Recognition Using the Straight Line Hough Transform Theory and Generalization. IEEE Transactions on PAM I, 1992, 14 (11): 1076~ 1089
- [5] Chuang G C H, Kuo C C J. Wavelet Descriptor of Planar Curves Theory and Applications. IEEE Trans on Image Processing, 1996, 5 (1): 56~70
- [6] Zhu Y, Seneviratne L D. Optimal Polygonal Approximation of Digitized Curves- IEE Proceedings on Vision, Image and Signal Processing, 1997, 144 (1): 8~14
- Teh C, Chin R. On the Detection of Dominant Points on Digital Curves. IEEE Trans on PAMI, 1989, 11 (8): 859-[7] 872
- [8] Zhu P F, Chirlian P M. On Critical Point Detection of Digital Shapes. IEEE Transactions on PAMI, 1995, 17(8): 737 ~ 748
- [9] Ren Jinchang, Shi Weijie, Zhao Rongchun, Feng Dagan. A Parallel Thinning Method Based on Image Marking. Proc of ICSP'98, Beijing: 1998, (2): 1041~ 1044

An Automatic Algorithm for Line Judgment Based on Tracing

Ren Jinchang¹, Zhao Rongchun¹, David D. Feng^{2, 3} (1. Northwestern Polytechnical University, Xi'an 710072; 2. University of Sydney, Sydney NSW 2006; 3. The Hong Kong Polytechnic University, Kowloon, Hong Kong

Abstract As curves can be approached by polygons, line judgment is very important in image analysis, recognition, measurement, etc where shape matching is needed. Existing algorithms are not quite satisfactory for line judgment as they all lack theoretical analysis of the characteristics of digital lines. According to line generation in computer graphics, whose inverse problem in computer vision is line judgment, all digital lines consist of one or more of four basic lines horizontal (k=0), vertical ($k=\infty$), and \pm 45° lines (k= \pm 1) as shown in Fig. 1. In section 1, we propose what we call directional pixel length (DPL) and give two theorems on DPL. These two theorems enable us to propose an automatic algorithm for line judgment based on pixel tracing. Fig. 2 shows the comparison of results obtained with Ansari-Huang algorithm (Fig. 2(b)), Zhu-Chirlian algorithm (Fig. 2(c)) and our algorithm (Fig. 2(d)). This comparison shows that our algorithm appears to be better in that it can reduce the number of critical points and the expenditure of space and time.

Key words line judgment, directional pixel length (DPL), critical point