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Abstract: Transmission systems in regulated monopoly structure
were designed and operated so that conditions in close proximity
to security boundary were not frequently encountered. However,
in the new open access environment, operating conditions tend to
be much closer to security boundaries. Under this environment,
voltage instability may result when reactive power support is in-
sufficient. This paper proposes an algorithm for point of collapse
method to compute the static voltage stability limit point. The
point of collapse method, due to its special advantages, has at-
tracted many attentions. However, as the dimension of its equa-
tions is almost twice the ordinary power flow equations and it is
not easy to make use of the advantages of sparse matrix tech-
nique, it is difficult to apply the point of collapse method to large
systems. An algorithm is formulated in this paper to tackle this
problem. The program is built by modifying a standard power
flow program. The New England 39 bus test system is used as
examples to demonstrate the efficiency of the proposed algorithm.
The performance of this method is found to be accurate and com-
putational efficient.
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Transmission systems in regulated monopoly
structure were designed and operated so that conditions
in close proximity to security boundary were not fre-
quently encountered. One reason for this was the load
patterns and consequently the flow directions were fair-
ly predictable and not significantly different from that
for which they were originally designed. Another rea-
son is that companies could usually justify construction
of new {facilities that could alleviate operating con-
straints if they could show reliability would otherwise
be compromised. However, in the new open access en-
vironment, operating conditions tend to be much closer
to security boundaries. This is because transmission use
is increasing in sudden and unpredictable directions.
Transmission unbundling, coupled with other regulato-
ry requirements, has made new transmission facility
construction more difficult. So there is an acute need
for R&D work in the new market structure, especially
in the areas of voltage security and reactive power sup-
port.

With the evolvement of electric power market
throughout the world, large scale economic power
transmission is more and more prevail and transmission
systems are heavily loaded more frequently. Under this
environment, voltage instability may result when reac-
tive power support is insufficient.

Point of collapse method* ™3, also known as di-
rect method, is one of the methods (such as continua-

tion power flow method, multiple power flow solution
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method, etc) to compute static voltage collapse point.
The continuation power flow method is a rather reliable
method that traces the PV curve of the system until the
voltage collapse point is reached; however its major
shortcomings include slow calculation speed and large
computation burden. Multiple power flow solution can
get the voltage collapse point quickly but it needs a
suitable low voltage power flow solution in advance,

[4=5) " especially in

which is quite difficult to obtain
large systems. Contrast to the above methods, the con-
cise and straightforward point of collapse method can
obtain the desired voltage collapse point under specific

stress direction by solving the following equations:

f (x, ) =0 (1a)
fe (x, 2) -v=0 (1b)
v, —1=0 (1¢)

Equation (1a) represents a set of power flow equa-
tions, x is a vector of system state variables, such as
bus voltage magnitudes and angles, A € R!is a parame-
ter of load factor. Equation (1b) represents the power
flow Jacobian matrix f, is singular and has a zero eigen-
vector v corresponding to the zero eigenvalue. Equa-
tion (1lc¢) is a normalization condition that shows the
kth element of v, v;, isequal to 1, i. e., the eigen-
vector v is not a zero vector. The whole equation char-
acterizes the conditions of the generic static voltage col-
lapse point. If the total bus number is n + 1, the di-
mension of equation (1) will be about 4n + 1 which is
about twice that of power flow equations, and the size
of Jacobian matrix is approximately four times larger
than that of the power flow problem. Furthermore,
when using the popular Newton method to solve equa-
tion (1), its specific form and characteristics of the Ja-
cobian matrix make sparse matrix technique difficult to
apply directly.

From the mathematical viewpoint, equation (1)
describes the general conditions that its solution is a bi-
furcation point of one parameter A € R!. This kind of
bifurcation point has many types, for example, saddle
node (SN) bifurcation point, transcritical bifurcation
point, pitchfork bifurcation point, etc. Among them,
SN bifurcation point is a generic one that means it will
be encountered most frequently. The other types of one

parameter bifurcation point will disappear under generic

perturbations and degrade to SN bifurcation pointt® .

This paper takes advantages of a generic property of SN
bifurcation point to simply the solution procedures,
which can reduce the memory requirements and can be
implemented easily. This paper is organized as follows:
In section 1, the theory and formulation of the algo-
rithm are presented. Implementation issues and their
solutions are discussed in section 2. Examples and con-

clusions are provided in sections 3 and 4, respectively.

1 Problem Formulation

Normally, the load factor A can be decoupled from

the state variables x, i. e. equation (1) can be ex-

pressed as:
f(x) +2:d=0 (2)
fe (x) +v=0 (3)
V2, —1=0 (4)

where vector d € R?” is the system stress direction.
Without loss of generality, the subscript of vector v in
equation (4) is set to 27, because from the engineering
viewpoint, the probability of v,, equal to zero is negli-
gible.

It is well known that, the static voltage collapse
point is generally corresponding to a SN bifurcation
point which has the properties of rank (f,) =2n -1
and f, & range (f,), 1. e., d&range (f,), which
means f; or d is not belonging to the space spanned by

[6] , where f; is the partial derivative

the columns of f,
of f (x) with respect to A. This means that at the
voltage collapse point the rank of f, is 2n — 1, and
some columns of f, are linear correlative. Note that f,
cannot be expressed as a linear combination of column
vectors of f,, and the augmented matrix [ f, | f; ] has
the rank of 2n. Further investigations of equation (4)
show that the last column of f, can be expressed as a
linear combination of the rest columns of f,. After re-
moving this column from f,, the remaining matrix still
has the rank of 2n — 1. Synthesizing the above obser-
vations, it can be found that at the voltage collapse
point, the square matrix resulting from substituting the
last column of f, by vector f, or d is full rank. We can
use this property to simplify the solution procedures of
equations (2) ~ (4) as follows:

To solve equations (2) ~ (4) by Newton
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method, the following linear equations must be solved,
f: 4 0 |rax ~f-A-d
Sy 0 f, | [DA|=] —frrv (5)
0 0 0.01 v 0

where, f.., is Hessian matrix of vector f(x). Equation (5)

can result the following two expressions:
fAx+tdAA=—f—-A-d (6)
fAv+ fov-Ax=—fv (7)
where Av,, =0 is known. We can firstly solve equa-
tion (6) and then use the results to solve equation (7).
However in equation (6), the numbers of unknown
variables are more than the equation numbers by one.
In order to use the conditions v,, =1 and Av,, =0,
we assume Ax,, is known, and replace the last column
of f, with a suitable vector. Reformulating equations

(6) and (7) as:

f. (Ax—Azyv+dAA=—f-2+-d—Axyfov  (8)
fAVv+dAX= — fv— fov:-Ax+dAX (9)
Obviously the last element of the vector (Ax — Ax;,v)
in equation (8) is zero, so we can replace this element
by AA and replace the last column of f, by the vector

d. Introducing the following notations:

A_:[fr(l)’ fo )5 o fe@a-nld]

Al‘l _A.Z‘z,,vl

Aa =

Axyq-1 — BX2V2-1

L AA

[ Av
Ab=

Avyn -y

L Al

where f,) is the first column of matrix f,, and

fe2u-1)is the (27 — 1) th column of the matrix f,.
Equations (8) and (9) can be written as:

AAa=~f—-2-d-Axy,.fv (10)

AAb=—fv— fov-Ax+dAA (11)

The left hand sides of equations (10) and (11)

have the same matrix A. Introducing two additional

unknown vectors ¢! and ¢?, equation (10) can be split

into the following two equations:

Acl=—f-xd (12)

A-c’=— [ (13)

Upon solving equations (12) and (13), the vector Aa

can be expressed by
Aa = c' + Axy,c?

That means
Az;=ct+Axy, (2+v;) i=1, =, 2n—-1
(14)
Ad=c) +Azyc3, (15)

Substituting expressions (14) and (15) into equa-
tion (11), rearranging it into two vectors relative and
irrelative to Ax,, and introducing two unknown vectors
¢3 and ¢*, equation (13) can be split into the following

two equations:
1

S
A=—fo—fuv| | |*cid (16)
Co2n—1
0
C%‘f‘ vy
Acct=—fov| +c3,d (17)
Cin-1F v2n-1
0

Similarly, after solving equations (16) and (17), the
vector Ab can be expressed as:
Ab=¢*+ Az, et
which means,
Av; =+ Az, et i=1, -, 2n—1 (18)
AA=c3, + Axy,ch, (19)
It can be proved that equations (15) and (19) can be
solved without numeric problem for SN bifurcation
point!%!. As a result Az,,and Acan be obtained. Az;
and Av; (i =1,..., 2n —1) can then be calculated
using equations (14) and (18).

At this stage all the corrective variables of Newton
iteration, i. e., Ax, Av, A, are known. All vari-
ables are then updated in the usual way. The above it-
erative process is repeated until the solution converges.

From above, we can see the features of this algo-
rithm. Firstly, it only needs to solve four equations
(12), (13), (16) and (17) which have the same ma-
trix A on the left hand side, and the only difference
between them is the vectors on the right hand side.
Hence matrix LU decomposition process only needs to
be performed once. Secondly, the structure of the ma-
trix A is the same as the load flow Jacobian f, except

the last column, both are of 2n X 2 dimensions, so
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the sparse matrix technique can be applied to matrix A
easily. Thirdly, the main computation burdens involve
forming matrix A and its LU decomposition, calculat-

ing f..v., and some minor vector manipulations.

2 Implementation Issues

2.1 [Initial value

The point of collapse method, similar to the New-
ton method applying to nonlinear equations, needs ap-
propriate initial values. Normally, we can initiate sys-
tem state variables x as the flat start method in Newton
power flow calculation, or use converged power flow
result as the initial values. The scalar variable A can be
simply initiated as zero. The initial value of vector v is
a bit difficult to choose. The simplest method is to ini-
tiate the value of all its elements as one. A more effi-
cient means is to initiate it as the eigenvector of the
power flow Jacobian matrix corresponding to the mini-
mal eigenvalue by using inverse power method™® at the
current operating point, i. e., the operating condition
A=0. An alternative choice is to initiate v as a parallel
vector of f;'d calculated at the current operating
point, which can be interpreted as the tangent line of
the PV curve at the current operating point. The above
two initial values of v will normally converge to the ac-
tual value of v as the current operating point is ap-
proaching the voltage collapse point.

2.2 Critical subscript selection and data structure

The subscript in equation (4) is set to 2n from an
engineering viewpoint. To be more practical, we can
choose this subscript as 2m where i is the weakest
PQ load bus for voltage collapse. Reference [7] shows
that under this condition, the magnitude of v,,, is the
largest among all the elements of v, which means the
2mth column is strongly relevant to the rest columns of
[ However, we do not know which one is the weak-
est bus for voltage collapse in the current operating con-
ditions. As a result, we use the heaviest loaded bus or
the lowest voltage load bus which should also be a
member of the increased loading bus set.

This method avoids the arbitrariness in choosing
the special subscript. However it may produce many
fill-ins when performing LU decomposition of the re-
sulted matrix A and hamper the applicability of sparse

technique. To overcome this problem, we can adopt
some techniques of data structure. More precisely, we
move the 2m th row and the 2 th column of matrix A
to the last row and the last column respectively, and
rearrange the relevant entries of the equations corre-
spondingly. As a result, the ultimate form is similar to
power flow Jacobian matrix with exceptions in deleting
one row and one column, and at the same time one row
and one column are added which will be stored in two
extra vectors. By doing so, we pertain the well known
2 X 2 basic element structure of power flow Jacobian

matrix, almost without introducing any extra fill-ins.

3 Example

The New England 39-bus test system depicted in
Fig. 1 is used to demonstrate the validity and effective-
ness of the proposed algorithm. For simplicity, the
limits of reactive power generation are not considered in
these case studies. The algorithm can calculate the
point of collapses of the above two systems within 10
iterations when the initial value selection methods de-

scribed in section 2.1 are used.

@ﬁ
¥ 30

Fig.1 New England 39-bus test system

Fig.2 shows two PV curves of bus 8 in the New
England system under two different system stress
modes where A is load increasing ratio. These PV
curves are obtained by the continuation power flow
method. The collapse points calculated by the continu-
ation method are served as a comparison to the result of
our proposed algorithm. The results from the two
methods are very close, and they are within the conver-

gence tolerance. The stress mode of the dashed curve
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(called mode 1) is that the loadings of all pure load
buses (i.e. , buses only have loads but without genera-
tors) are increased proportional to its original real pow-
er with power factor of increased power kept at 0.9.
Another stress mode (mode 2) is that only the loadings
of buses 4, 8, 20 are increased with the ratio of 1:2:3
and the original power factor remains unchanged. From
Fig.2, we can see that the relative voltage stability
margin ( VSM aave) of mode 1 when expressed in per-

centage is 29 %, which is calculated as:
1.0

0 0.2 0.4 0.6
A

Fig.2 PV curves of bus 8
VSMrelative(%) = (Pmas—PO)/POX 100(%) (20)

where P, is total loadings of the loads at the voltage
collapse point. The relative voltage stability margin of
mode 2 is 43 %.

For mode 1, the real and reactive Joads increase by
1 421 MW and 663 MVar respectively from the current
operating point to the voltage collapse point, while the
system generations increase by 1 494 MW and 4 366
MVar. Compared with mode 2 which has 1 424 MW/
351 MVar increased loads and 1 503 MW /4 095 MVar
increased generations, we can see that the voltage sta-
bility margin of mode 1 when expressed in MW is simi-
lar to that of mode 2, but the relative voltage stability
margin is quite different. Another cbservation is that
reactive power losses are much larger than real power
losses, because voltage stability and reactive power

have close correlation.

4 Conclusions

Investigations in the example show the effective-
ness and efficiency of the proposed algorithm. Using a
set of appropriate initial values, the algorithm can cal-
culate the voltage collapse point reliably and computa-
tional efficiently. Compared with the standard point of
collapse method, the proposed algorithm requires less

memory and can make use of sparse matrix technique
easily. Its program code can be obtained with proper
modifications from a conventional power flow program.
All these features make it a promising algorithm for
voltage collapse point calculation for large systems.
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