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Abstract: The equations on the two— layer fire zone model ASET for a chamber with air supplied through leakage

are solved by the symbolic mathematics programme MATLAB and MAPLE V. Two key equations are considered.

A total number of 12 simulations were carried out on two design fires in six compartments with floor area varying

from 10 to 100 m?*.
FIREWIND.

The results are compared with those simulated by ASET itself and another software
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0 Introduction
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The use of symbolic mathematics
very popular in science and engineering. How this
technique can be applied in fire modeling is further
studied in this paper. The software developed for
handling matrices MATLAB!*) and MAPLE V! are
selected. It is a high — performance language for
technical computing, integrating computation, visu-
alization, and programming in an easy —to— use en-
vironment. Typical uses include mathematical anal-
ysis, computational process, modeling, simulation,
data analysis and visualization with scientific graph-
ics. A good graphical processor is available for pres-
enting the results.

Two — layer zone models are developed!®# 7!
for simulating building fires by taking into account
an upper hot smoke layer, a lower cool layer and a
plume. There should be 11 variables on the proper-
ties of the two layers and the compartment pressure

But

with 11 equations for solving them!®® **%

since there are seven physical constraints, the maxi-

mum numbergof _ondinarny; differential- equations| re-
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quired to be solved is only four. With intelligent use
of assumptions, the number of differential equations
to be solved can be less than four.

Available Safe Egress Time (ASET) is one of
the earliest zone models!” for calculating the tem-
perature and interface height of the hot smoke layer
in a single room with doors and windows closed. A-
vailable Safe Egress Time — BASIC (ASET—B) is
a compact and easy— to— run program which solves
the same equations as ASET but in BASIC'Y, In-
put data like the geometry of the room such as the
tloor area and ceiling height; heat loss fraction; the
height and heat release rate of the fire; and the
maximum time for the simulation are required for
predicting the transient smoke layer temperature
and interface height.
the equations for ASET!® are
put into MATLAB!®! and MAPLE V [4] to simulate
a typical room fire. The results are compared with
those by FIREWIND version 3. 4['% | which is a user

— friendly tool for fire engineers to carry out fire

In this paper,

hazard assessment.
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1 The Model ASET (9)

ASET is a two — layer zone model for a closed
chamber!”. There are no openings assigned in the
room with air supplied through leakage. In this
way, the equations for vent flow need not be
solved.

The following assumptions are made!"* ' .

« Room pressure is independent of height when the
conservation of mass and energy equations are ap-
plied to both zones.

The specific heat capacities of the gases in the

room are assumed to be constant and estimated
from the initial room temperature.

The model may not be reliable for enclosures with

a large length to width aspect ratio; or height to

minimum horizontal dimension ratiol® '/,

« The enclosure is assumed to be divided into two
layers with heat and mass transfer through the
plume. There might be problems when the upper

layer temperature increases to give strong enough

radiative heat flux to cause flashover.

2 Key Equations

A fire of heat release rate Q(t) in a room of
height H and cross—sectional area as shown in Fig-
ure 1 is considered. A smoke layer is formed with
interface height Z; above the floor. Equations for
smoke layer interface height and smoke layer tem-
perature are derived as shown in the literature and
not repeated in here. The set of ordinary differential
equations for such a two—layer zone model ASET
for Z; higher than the height of the fire are summa-
rized as:

dZy/dtx =— Ciq— Coq'* (D
d/dty = ¢[Cia— (b — 1)Cod" P ZX° )/ (Zno — Zn)

(2)

where C; and C, are constants and the following di-

mensionless quantities are defined as:

A —LoQt.

PG T AL )
_0.21t[ A —LoQeogl] v
c. = =34 P T, *

ZN - % lc ~ 1lm

tN =Lt t.~ 1s (6)
tC

T, ~ 300 K )

q = Q(t) Q, ~ 0.1 kW (8)

The equations are put into MATLAB and MAPLE
V for predicting the smoke layer temperature and

interface height.
3 Numerical Analysis

In this paper, equation (1) is solved by the
Runge—Kutta (RK) method. There are many ver-
sions of the RK method but the choice of the time

step is important. Rewriting the equation as:

CclliN = {(Zy. 0 (9
with
In(ty) = Z (10)
Advancing from the n™ time step to the (n+1)™
time step:
tw1 = ta T h (11

Zoo Zn+[%] (Pn T2 Xd, +2Xr, +5,) (12)

P, = f(ta, Zo) (13)

qn:ftn+£,zn+£><pn (14)
2 2

=il 6+ 2.z, 4+ R, (15)
2 2

s, = f(t, + h,Z, +hXr) (16)

In solving an ordinary differential equation (ODE),
the rate of convergence, the accuracy (or even valid-
ity) of the predicted results, and the completeness
of the response should be considered. Particularly,
convergence must be judged by some global criteria.

“ODE45” in MATLAB for solving non — stiff
differential equations is used in this paper to solve
the two ODEs!'®,

(4,5) pair of Dormand and Prince method with a

This is an explicit Runge— Kutta

17,18]

“free” interpolate of order four! with local ex-

trapolation.

The expression in MATLAB is:
[t. Z] = ode45 (" asetsub’, [1:1:te], [3.5;
300]7[],Tg’LC7Lr9A7pC1$Cpth7QO)
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tout = t frames.
yout = Z A set of differential equations 1is called
03,04,05,06 = null “stiff”['" ¥ when the maximum eigenvalue in its ja-
odefile = asetsub, asetsub2 cobian matrix is several orders of magnitude larger
tspan = 1:1.620 than the minimum eigenvalue. In such case, the
y0 = 3.5,300 step size of integration is determined by the largest
options = null eigenvalue, while the final time of integration usual-
varargin = Tg,Lc,Lr,A,pcl,Cp,Q0,Q,k ly depends on the smallest eigenvalue. There are

function [ tout, yout, 03, 04, 05, 06] = ode45 (ode- easier, but less precise, definitions of stiff differen-

file, tspan, y0, options, varargin)

Non-stiff differential equations would be solved
by ODE45 by the medium order method.

[T.Y] = ODE45('F', TSPAN, Y0) with

TSPAN = [ TO TFINAL] integrates the sys-
tem of differential equations y' = F(t,y) from time
TO to TFINAL with initial conditions YO.

'F' i{s a string containing the name of an ODE
file. The function F (T, Y) must return a column
vector. Each row in solution array Y corresponds to
a time returned in column vector T. To obtain solu-
., TFINAL (all
[ TO

tions at specific times TO, T1,
increasing or all decreasing), use TSPAN =
T1... TFINAL].
As an example, the commands
options=odeset('RelTol’, le-4,  AbsTol’, [le-4
le-4 le-57)
ode45( "asetsub’, [1:1:te],[3.5; 3007, options) ;

solve the system y' = rigidode(t,y) with rela-
tive error tolerance 107" and absolute tolerances of
10 * for the first two components and 10 ° for the
third. When called with no output arguments, as in
this example, ODE45 calls the default output func-
tion ODEPLOT to plot the solution as it is compu-
ted.

4 Stiff ODE

A stiff ODE means an ODE in which the solu-
tion function exhibits rapid and extreme changes in
the dependent variable with small variations in the

17191 As a result, a plot of the

independent variable!
solution function over long time frames (since time
is taken as the independent variable in this study)

will look quite different from a plot over short time

tial equations:

. A set of differential equations is “stiff” when
an excessively small step is needed to obtain
correct integration.

. A set of differential equations is “stiff” when
it contains at least two “time constants”
(where “time” is supposed to be the joint in-
dependent variable) that differ by several or-
ders of magnitude.

Integrating such equations using traditional ex-
plicit (Runge Kutta) methods may take very a long
computing time; implicit methods should be used to
reduce the computation time. However, implicit
methods are not very efficient in solving normal and
non-stiff equations.

A non-stiff ODE means an ODE in which the
solution function exhibits slow and smooth changes
in the dependent variable with small variations. As
a result, plotting the solution function over long
time frames (time is the independent variable) will
look quite the same as plotting over shorter time

frames.
5 Numerical Experiments

A fire is placed at the centre of six rooms of dif-
ferent areas but of the same height of 3. 5 m. Two
heat release rates Q(t) are considered:

. Fire F1. Steady burning with a constant heat
release rate of 0. 8 MW

« Fire F2. NFPA slow t*-fire!?, with a cut
off value of 0.8 MW

To cope with the rapid changes in the fire envi-
ronment, smaller time steps are required for correct

integration to ensure convergence and accuracy of
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the predicted results. Stiff ODE is selected to solve
the above equations.

The fraction of heat lost by conduction and ra-
diation L is taken to be 0. 35, the specific heat ca-
pacity of air C, is 1004 Jkg 'K ! and the cool layer
temperature Ty is 300 K.

The floor areas of the six rooms are:

« Room 1. 10 m®
« Room 2. 20 m?
« Room 3. 30 m?
« Room 4. 40 m?®
« Room 5. 50 m?
« Room 6. 100 m®

Typical examples of a MAPLE V program list-
ing and a MATLAB program listing are shown in
Appendices A and B.

The results predicted are compared with those
by FIREWIND HotLayer!'” and ASET!" ! jtself as
shown in Figures 2 to 7. There are differences in
the results predicted by the three models.

Floor area of the compartment is a key factor.
It is expected that the results of using MATLAB, 1.
e. curve A in all figures, should be similar to those
simulated by ASET itself as given by curves C.
However, there are many cases which the two do
not agree. The results of FIREWIND (i. e. curves
B) are used for comparison which agree with the re-

sults of MATLAB in some cases.

6 Conclusion

The following conclusion can be drawn from

this study:

. Symbolic mathematics is now a powerful tool
for doing mathematics with a computer. It
can be applied to simulate a building fire with
a two-layer model. A relatively simple model
like ASET can be put into the computer easi-

ly. Graphics outputs can be achieved easily.

It is easier to change the equations and pa-
rameters concerned for describing the physics
concerned in comparison with traditional
computer programming.

. The software is under active development,

both on the numerical schemes and graphical
presentation.
From the simulations, floor area should be
watched carefully in using two-layer zone models.
Symbolic mathematics should be put into the teach-

ing curriculum of engineering degree programmes.
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Appendix A: MAPLE V program listing

Al. Main program for constant fire:

> A.=10;

> H.=3.5;
= Q:=800000;
> Lc:=0.35,
= Cp:=1004
> k=600,

> Tg. =300,
> g.=9.8;

= pL.=1.293;
>

= TMAXI; =sqrt(Q/1000/1000) * k;

> TMAX:=trunc(TMAX1);

-~

> Cl:=(1—Lc)/(Cp* Tg*pL * A);

> (C2.=0.21 % ((1—Le) * g/(pL * Cp * Tg))"
(/3 /A

=

> with(share) ;

= with(ODE) ;

> S0.=[0.0,H];

>eq0.=(t,Z)y—>—C2% (Q)" (1.0/3.0) x Z"
(5.0/3.0)—Cl1 % Q;

> Z1.=rungekuttahf(eq0,S0,0.1,1);

> Zt.=7Z1[1];

> RS.=[Z{1],Z1[ 2], Tg]
> dppts3;=array(0..909);
= dppts3[1]:=RS;

= for n from 1 by 1 while RS[2]>=0. 001 do

> forifrom 1 by 1 while i<C=10 do

> eql2.=(t,Z, T)y—=>—C2% (Q)" (1.0/3.0)
* 72" (5.0/3.0)—Cl * Q;

> eq22:=(t,2, Ty —>T/(H—=Z) » (C1 ¥ (Q)
+C2 *

> (" (1.0/3.0)) * (1.0—T/300) * Z" (5. 0/
3.0));

’

> rkpts2: = rungekuttahf ([ eql2, eq22], RS,
0.1,1),

> RS: =rkpts2[1];

> od;

> dppts?)[n] ;:RS;

> Od;
> plot(makelist(dppts3)) ;

A2. Main program for t* fire.

> A.=10,;

> H.=3.5;

> Q.=800000,
> Lc:=0.35;
> Cp:=1004,
> k. =600,

> Tg.=300,

> g.=9.8;

> pL.=1.293,
>

= TMAXI:=sqrt(Q/1000,/1000) * k;

> TMAX:=trunc(TMAX1);

=

> Cl:=(1—Lec)/(Cp* Tg*pL*A);

> (C2.=0.21 % ((1—Lec) * g/(pL * Cp * Tg))"
(1/3)/A;

>

> with(share) ;

= with(ODE)

> S0.=[0.0,H];

>eq0: = (t,Z) — >—C2 % (1000 * (t/k)" 2.0 *
1000. 0y " (1. 0/3.0) * Z" (5. 0/3.0) —C1 % 1000 %
(t/k)" 2.0 % 1000.0;

> Z1:=rungekuttahf(eq0,S0,0.1,1);

> Zt.=71[1];

> RS.=[Zt[1],Zt[2].Tg]
> dppts3;=array(0..909);
= dppts3[1]:=RS;

= for m from 1 by 1 to TMAX while RS[2]> =
0.001 do

> forifrom 1 by 1 while i<C=10 do

> eqll.=(t,Z,T)—>—C2 % ((1000 * (t/k)"
2.0%1000.0)" (1.0/3.0)) * (2" (5.0/

= 3.0))—C1*1000 * (t/k)"2.0 % 1000. 0,

> eq2l:=(t,Z2, Ty —=>T/(H—2Z) * (C1 % 1000
* (t/k)" 2.0 % 1000. 0+ C1 *

= (1000 * (t/ky" 2.0 % 1000. 0)" (1. 0/3. 0)) *
(1.0—T/300) * (Z" (5.07/3.0)));

= rkptsl; =rungekuttahf([ eqll, eq21],RS,0.1,1);

’
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> RS: =rkptsl[1]
> od;

> dppts3[m];:=RS;
> od;

= for n from 1 by 1 while RS[2]>=0.001 do

> forifrom 1 by 1 while i<C=10 do

> eql2.;=(t,Z, T)—>—C2* (Q)" (1.0/3.0)
* 2" (5.0/3.0)—Cl * Q;

> eq22:=(t,2, Ty —>T/(H—=Z) » (C1 * (Q)
+C2x% ((Q)" (1.0/3.0)) * (1. 0—T/300) x Z"
(5.0/3.0));

> rkpts2 ; =rungekuttahf([ eql2, eq22],RS,0.1,1);
> RS: =rkpts2[ 1]
> od;

> dppts3[m+n—1]:=RS;
> od;

> plot(makelist(dppts3)) ;

)

’

Appendix B. MATLAB program listing

Bl. Main program for constant fire:
COMMAND—File

clear; clf;

% initial conditions

H = 3.5,
A = 10,
Tg = 300,
Q = 800,

g = 9.8;

Le = 0.35,
Cp = 1004;
pel = 1.293.
p = 1.013;
k = 600,

% C1 and C2
Cl=(1—Lc)/(pcl* Cp*Tg* A);

C2=0.21/A % ((1—Le) * g/(pcl x Cp* Tg))" (1/3);
% calculate first step for avoiding divided by zero
when Z(1) = H

Z0(1y=H,

[t,Z] = odel5s( asetsubl’,[1:1:800],[Z0].] ].
Tg. H.Q.k.C1,C2),

zrelt = [t,Z]

’

% time step of Z > 0, te
fori= 1.1:800
if zrelt(i,2)> 0.1 ta = i,
end
end
te = fix(ta);
% initial Z
Ze = zrelt(2,2);
% calculate other steps
Z0(1y="Ze,
Z0(2)=300;
[t.Z2] = odel5s( asetsub’, [1:1:te],[Z20].[].Tg,
H,Q.k,C1,C2),;
result = [t,Z];
% plot figures and ending
plot(t,Z(:, 1), 'k-");
figure
plot(t,Z(:,2),'k-"y;

save aset. dat Z-ascii

M — File

function dZ = asetsubl(t, Z, options, Tg, H, Q, k,
C1,C2)

% dZ/dtis dZ(1)

dZ = zeros(1l,1);

dZ(1y= —CIL % (1000 * Q) — C2 % (1000 * Q)"
(1/3) * Z(1)" (5/3) ;

function dZ = asetsub (t, Z, options, Tg, H, Q, k,
C1,C2)

% dZ/dtis dZ(1)

% dT/dt is dZ(2)

dZ = zeros(2,1);

dZ(ly = —C1 * (1000 * Q) — C2 * (1000 * Q)"
(1/3) * Z(1)" (5/3);

dZ(2y = Z2)/(H—Z(1)) * (C1 * (1000 * Q) +C2 *
(1000 % Q" (1/3) * Z(1)" (5/3) * (1—Z(2)/Tg));

B2. Main program for t* fire:
COMMAND—File

clear; clf;

% initial conditions
H = 3.5,
A = 100,

o
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Tg = 300;

Q = 800,

g = 9.8;

Le = 0.35;
Cp = 1004,
pcl = 1.293,
p = 1.013,
k = 600,

% C1 and C2
Cl=(1—Lc)/(pcl* Cp* Tg* A);
C2=0.21/A % ((1—Le) * g/(pcl x Cp* Tg))" (1/3);
% calculate first step for avoiding divided by zero
when Z(1) = H
Z0(1y=H,
[t,Z] = odel5s('aset2subl’, [1:1:800],[Z07],[ ],
Tg,H,Q,k,C1,C2);
zrelt = [t,Z];
% time step of Z > 0, te
fori = 1.1.800

if zrelt(i,2)>0

ta = 1;

end
end
te = fix(ta);
% initial Z
Ze = zrelt(2,2),

% calculate other steps

Z0(1y="Ze,
Z0(2)=300;

[t,Z2] = ode15s(/aset25ub’, [1:1:te],[Z07,

[1.Tg.H,Q.k,C1,C2);
result = [t,Z];

% plot figures and ending

plot(t,Z(:, 1), k")

figure

plot(t,Z(:,2), k")

save aset2. dat Z-ascii

M —File

function dZ = aset2subl(t, Z, options, Tg, H, Q, k,

C1,C2)
% dZ/dtis dZ(1)
dZ = zeros(1,1);

dZ(1)= —C1 * (1000 * (t/k)" 2 * 1000) — C2 *
(1000 % 1000 * (t/k)"2)" (1/3) * Z(1)" (5/3);
function dZ = aset2sub(t, Z, options, Tg, H, Q, k,

C1,C2)

% dZ/dtis dZ(1)
% dT/dt is dZ(2)
dZ = zeros(2,1);

dZ(1y= —C1 * (1000 * (t/k)" 2 % 1000) — C2 *
(1000 % 1000 * (t/ky"2)" (1/3) * Z(1)" (5/3);

dZ(2y=Z2)/(H—Z(1)) * (C1 * (1000 * 1000 *
(t/k)"2)+C2 % (1000 * 1000 * (t/k)"2)" (1/3) *

Z(H"M(5/3) ¥ (1—Z2(2)/Tg));
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