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New relationship between Young’s modulus and nonideally
sharp indentation parameters
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Both analysis and numerical calculations have been carried out to investigate the
relationship between Young’s modulus and nonideally sharp indentation parameters.
The results confirm that there exists an approximate one-to-one correspondence
between the ratio of nominal hardness/reduced Young’s modulus (Hn/Er) and the ratio
of elastic work/total work (We/W) for any definite bluntness ratio (�h/hm) of a
nonideally sharp indenter. Based on this relationship, the Young’s modulus of the
indented material can be determined just from the values of Hn, We, and W, which are
directly measurable quantities in an indentation test.

I. INTRODUCTION

Depth-sensing indentation techniques have been
widely used for determining the mechanical properties of
materials on small scales.1–5 Young’s modulus is one of
the most commonly concerned material properties meas-
ured by this kind of technique. Unlike the uniaxial tensile
test, the measurement of Young’s modulus by indenta-
tion is indirect and approximate because of the compli-
cated nonlinearity involved in an indentation process and
the difficulty in deriving the analytical relationship be-
tween Young’s modulus of the indented material and
indentation parameters. Accordingly, the accuracy of the
measurement would rely heavily on the concrete func-
tional form of the approximate relationship established
for the determination of Young’s modulus.

A well-known relationship developed by Oliver and
Pharr4 is given by

Er =
��

2�

Su

�A�hcm�
, (1)

where Su is the initial slope of unloading curve, Er is the
reduced modulus and related with the Young’s modulus
E and Poisson’s ratio � of the indented material and those
(Ei, �i) of the indenter by the equation 1/Er=(1 − �2)/E +
(1 − �i

2)/Ei, � is a constant depending on the shape of the

indenter, A(hcm) is the projected contact area at the maxi-
mum contact depth hcm corresponding to the maximum
indentation depth hm and load Pm. According to Oliver
and Pharr, A(hcm) needs to be estimated from the unload-
ing curve before relationship (1) is applied.

To eliminate the reliance on A(hcm), in recent years,
great efforts have been made to investigate the relation-
ship between hardness, Young’s modulus and indenta-
tion work on the basis of numerical analytical analysis. It
is found that for ideally sharp indenter,6–10 an approxi-
mate one-to-one correspondence exists between the ratio
of hardness to reduced Young’s modulus and the ratio of
elastic work to total work. A similar relationship for
spherical indentation11 with any definite ratio of inden-
tation depth to spherical radius in the range of 0.05–0.5
has also been revealed. These relationships can be ex-
pressed in an implicit form such as

H�Er = f�We�W� , (2)(2)

where H is the hardness and defined as the maximum
indentation load Pm divided by A(hcm), i.e., H = Pm /
A(hcm); We and W are the elastic work and total work,
which are equal to the areas under the unloading and
loading curves, respectively. By combining Eq. (1) with
Eq. (2) to eliminate A(hcm), Er can be determined as

Er = ����2��2� f�We�W��Su
2�Pm� . (3)(3)

It is obvious that when Eq. (3) is used for the deter-
mination of Young’s modulus, the estimate on the pro-
jected contact area is no longer needed. This feature dif-
ferentiates the relationship from that of Oliver and Pharr.
For the convenience of distinction, Eq. (1) is referred as
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the slope relationship, and Eq. (3) is referred as the
slope&energy relationship. Though being different in
principle, the two relationships are in common to rely on
the use of the initial unloading slope and Eq. (1). Con-
sidering the difficulty in getting accurate measurement of
the initial unloading slope, the precision of the determi-
nation of Young’s modulus remains still a fundamental
question.

In this paper, we reveal a new approximate relation-
ship between Young’s modulus and nonideally sharp in-
dentation parameters. The relationship relates the ratio of
nominal hardness/reduced Young’s modulus (Hn/Er)
with the ratio of elastic work/total work (We/W) for any
definite bluntness ratio of a nonideally sharp indenter.
Different from the definition of the conventional hard-
ness H = Pm/A(hcm), the nominal hardness Hn introduced
in this study is defined as Hn =Pm/A(hm), where hm and
A(hm) are the maximum indentation depth and the cross-
section area of the tip specified at hm. As a remarkable
feature of the relationship, neither the contact area nor
the initial unloading slope is needed. Instead, only the
indentation work, the maximum indentation load and depth,
and the bluntness quantity of the indenter are required.
Therefore, it is named as the pure energy relationship.

II. MODELING OF NONIDEALLY
SHARP INDENTER

In nanoindentation tests, a Berkovich indenter is the
most widely used type of indenter, and inevitably, it al-
ways exhibits some degree of bluntness near the tip. For
simplicity, the blunt or the nonideal Berkovich indenter
is approximated by a nonideally conical one with a
spherical cap at the tip. A schematic representation of the
indenter is shown in Fig. 1, where � is the half-included
angle of the modeling indenter and selected to be 70.3° to
ensure the modeling indenter with the same area-to-depth
ratio as that of the real Berkovich indenter at large in-
dentation depths, R is the radius of the spherical cap,
which can be evaluated by applying the same principle at
shallow indentation depths, �h is the distance between

the apex of the ideally conical shape and the bottom of
the spherical cap, and h0 is the distance from the bottom
of the spherical cap to the boundary between the spheri-
cal and conical contact, and h0 � �h sin�. It is obvious
that the nonideally conical indenter can be specified with
either � and R or � and �h. In fact, �h, R, and � are
related by the equation �h � (1/sin� − 1) R, so for a
definite �, the use of R or �h is equivalent. In this study,
�h is used in modeling the nonideally sharp indenter to
indicate the degree of its bluntness. Thus, �h is defined
to be the absolute bluntness of the modeled non-ideally
sharp indenter, and the ratio �h/hm is defined to be the
relative bluntness of the same indenter.

III. ANALYTICAL ANALYSIS

The relationship between Young’s modulus and inden-
tation parameters is investigated first by using an ana-
lytical method. Regarding to the nonideal indenter ge-
ometry, the following three situations are considered

A. 0 � �h/hm � 0.2

Under this condition, we apply the assumption sug-
gested by Cheng et al.12;

i.e. an indentation by a conical
indenter with spherical tip may be viewed as an inden-
tation by an ideally sharp indenter with its initial tip
position shifted by �h shown in Fig. 1. Therefore, the
indentation load P as a function of indentation depth h
during loading can be approximated by

P = C�h + �h�2 , (4)

where C is a constant, and its value only depends on the
elastoplastic properties of the indented material and the
indenter material. By integrating Eq. (4), the indentation
work W in the whole loading process can be given by

W = �
0

hm
Pdh = Pmhm

1

3

��1 + �h�hm�3 − ��h�hm�3�

�1 + �h�hm�2 ,

(5)

let

f�1��h�hm� =
1

3

��1 + �h�hm�3 − ��h�hm�3�

�1 + �h�hm�2 , (6)

then

W = Pmhmf�1��h�hm� . (7)

To investigate the unloading process, we start the
analysis from considering the contact pressure distribu-
tion between a nonideally conical indenter and a semi-
infinite solid. According to Yu and Blanchard’s model13

for elastic perfectly-plastic material, the contact pressure
should be a constant around the contact center, and

FIG. 1. Schematic representation of a nonideally conical indenter with
a spherical cap at the tip.
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gradually decreases to zero near the contact boundary.
We refer to this model and use a more general pressure
distribution, namely an elliptic pressure distribution, to
be the first approximation for a real case where the
sample is generally an elastic–plastic material. Conse-
quently, with the same pressure distribution the unload-
ing behavior of the nonideally conical indenter indented
into an elastoplastic solid is approximately equivalent to
that of an imaginary spherical indenter indented into an
ideal semi-infinite elastic solid. A schematic representa-
tion of the equivalence during unloading and the param-
eters used in the following discussion are shown in Fig. 2.
Applying Hertz’s solution14 to the elastic contact be-
tween a spherical body and a semi-infinite solid, the load
Pu in an unloading process is given by

Pu =
4

3
ErRV

0.5 �h − hr�
1.5 , (8)

where hr is the residual impression depth of a nonideally
conical indenter. h–hr is the distance between the apex of
the nonideally conical indenter and the position of its
completely unloading, and its quantity equals the pen-
etrating displacement of the imaginary spherical indenter
into a semi-infinite elastic solid. RV is the radius of the
imaginary spherical indenter, and it is related with the
contact radius a by the following equation

RV =
4Er

3Pu
a3 . (9)

Integrating Eq. (8), the elastic work We done in the
unloading process by load Pu can be obtained

We = �
hr

hm
Pudh =

1

2.5
Pm�hm − hr� . (10)

Let

hem = hm − hr . (11)

The equation (10) can be rewritten as

We =
1

2.5
Pmhem . (12)

Dividing the two sides of Eq. (12) by Eq. (7) yields

hem

hm
= 2.5 f�1��h�hm��We

W � . (13)

Substituting Eqs. (9) and (11) into Eq. (8), the maxi-
mum indentation load Pm, i.e., the load Pu at the moment
of initially unloading can be expressed as

Pm = Pu	h=hm
=

4

3
Eramhem , (14)

where am is the maximum contact radius, and related
with the maximum contact depth hcm by

am = �hcm + �h� tan � . (15)

There exist two expressions for estimating hcm

hcm = hm − 0.75
Pm

Su
, (16)

and

hcm = 1.2�hm −
Pm

Su
� . (17)

They are suggested by Oliver et al.4 and Loubet et
al.,15 respectively. By differentiating Eq. (8) at the maxi-
mum indentation depth hm, Su can be determined, and
Eqs. (16) and (17) can be rewritten as

hcm = hm − 0.5hem , (18)

hcm = 1.2hm − 0.8hem . (19)

In this analysis, we take the intermediate between the
two expressions

hcm = 1.1hm − 0.6hem . (20)

FIG. 2. Schematic representation of the equivalence between the unloading behavior of a nonideally conical indenter indented into an elastoplastic
solid and that of an imaginary spherical indenter indented into a semi-infinite elastic solid.
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Through combining Eqs. (14), (15), and (20), and con-
sidering the definition of nominal hardness, we obtain

Hn =
Pm

A�hm�
=

�4�3�Eramhem

24.5��h + hm�2

�4�3�Er�1.1 − 0.6�hem�hm�

=
+ ��h�hm�tan���hem�hm�

24.5�1 + �h�hm�2 . (21)

Substituting Eq. (13) into Eq. (21), a final relationship
between Young’s modulus and indentation parameters
corresponding to the condition of 0 � �h/hm � 0.2 is
obtained as

f�1��h�hm� tan��1.1 − 1.5f�1��h�hm�
Hn

Er
=

�We�W� + ��h�hm���We�W�

7.35�1 + �h�hm�2
. (22)

B. �h/hm 
 1/sin�

Under this condition, the spherical geometry domi-
nates the indentation responses. According to Tabor,16

two critical states exist in a spherical indentation test.
The one is the perfect elastic, and the other is the fully
plastic. For the perfect elastic indentation, the load P is
given by Hertz14 as

P =
4

3
ErR

0.5 h1.5 . (23)

For the fully plastic indentation, Alcala et al.17 showed
that the load P in a loading process is proportional to
h(1 + 0.5n)

P � h�1 + 0.5n� , (24)

where n is the strain hardening exponent of the indented
material. Considering a general intermediate case involv-
ing both elastic and partly plastic deformation, and no-
ticing that n in Eq. (24) falls in the range of 0–0.5 for
most metals and alloys, the power law index of the in-
dentation depth h should lie in the range of 1.0–1.5. This
allows us to take the mean value of 1.25, such that the
loading curve of a general spherical indentation can be
approximated by

P = Kh1.25 , (25)

where K is a constant and its value is only related to the
elastoplastic properties of the indented material and the
indenter material. Therefore, the indentation work W in
the whole loading process can be given as

W = �
0

hm
Pdh =

1

2.25
Pmhm . (26)

As for the unloading process, we apply the same
model as that used in Section III. A. Consequently, the

ratio of hem/hm can be determined by dividing Eq. (26) by
Eq. (12), that is

hem

hm
= � 2.5

2.25��We

W � . (27)

The determination of am depends on the ratio of hcm/
h0, i.e.,

am = � �hcm + �h�tan� , hcm�h0 � 1

�2Rhcm − hcm
2 , hcm�h0 	 1

. (28)

Considering Eq. (20) and h0 � �h sin�, we obtain

hcm

h0
=

1.1 − 0.6�hem�hm�

��h�hm�sin�
. (29)

Substituting Eq. (27) into Eq. (29) yields

hcm

h0
=

1.1 − �2�3��We�W�

��h�hm�sin�
. (30)

Let hcm/h0 � 1 and (We/W)1 represent the correspond-
ing value of We/W, then

�We�W�1 = �We�W�	hcm�h0=1

= 1.5�1.1 − ��h�hm�sin�� . (31)

Therefore, Eq. (28) can be rewritten as

am = � �hcm + �h�tan� , We�W � �We�W�1

�2Rhcm − hcm
2 , We�W 
 �We�W�1

. (32)

Combining Eqs. (14), (20), and (32), and considering
R�[sin�/(1 − sin�)]�h and the definition of the nominal
hardness, we obtain

Hn =
Pm

A�hm�
=

�4�3�Eramhem

��2Rhm − hm
2�

= �
�4�3�Er�1.1 − 0.6�hem

hm
� + ��h

hm
��tan��hem

hm
�

��2
sin�

1 − sin�
��h

hm
� − 1� , We�W � �We�W�1

�4�3�Er�
2

sin�

1 − sin�
��h

hm
�

�1.1 − 0.6�hem

hm
��

− �1.1 − 0.6�hem

hm
��2

�hem

hm
�

��2
sin�

1 − sin�
��h

hm
� − 1� , We�W 
 �We�W�1

.

(33)

Substituting Eq. (27) into Eq. (33), a final relationship
between Young’s modulus and indentation parameters
corresponding to the condition of �h/hm � 1/sin� is ob-
tained as
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Hn

Er

= �
�1.1 − �2�3��We

W � + ��h

hm
��tan��We

W �
0.675��2

sin�

1 − sin� ��h

hm
� − 1� , We/W � (We/W)1

�We

W ��2
sin�

1 − sin� ��h

hm
�

�1.1 − �2�3��We

W ��
− �1.1 − �2�3��We

W ��2

0.675��2
sin�

1 − sin���h

hm
� − 1�

, We�W 
 �We�W�1

.

(34)

C. 0.2 < �h/hm < 1/sin�

Under this condition, we take the linear combination
of indentation work derived in Section III.A and III.B as
the indentation work of the presently investigated load-
ing process, that is

W = �1�sin� − �h�hm

1�sin� − 0.2 �Pmhm f�1��h�hm�

+ �1 − �1�sin� − �h�hm

1�sin� − 0.2 �� 1

2.25
Pmhm

= Pmhm��1�sin� − �h�hm

1�sin� − 0.2 �f�1��h�hm�

+
1

2.25��h�hm − 0.2

1�sin� − 0.2�� . (35)

Let

f�2��h�hm� = �1�sin� − �h�hm

1�sin� − 0.2 � f�1��h�hm�

+
1

2.25 ��h�hm − 0.2

1�sin� − 0.2� . (36)

Then Eq. (35) can be rewritten as

W = Pmhm f�2��h�hm� . (37)

For the unloading process, applying the similar analy-
sis on Section III.B, the following results can be easily
derived

hem

hm
= 2.5 f�2��h�hm��We

W � , (38)

�We�W�2 = �We�W�	hcm/h0=1 =
1.1 − ��h�hm� sin�

1.5 f�2��h�hm�
,

(39)

and

Hn =
Pm

A�hm�
=

�4�3�Eramhem

24.5��h + hm�2

= �
�4�3�Er�1.1 − 0.6�hem

hm
� + ��h

hm
��tan��hem

hm
�

24.5�1 +
�h

hm
�2

, We�W � �We�W�2

�4�3�Er�
2

sin�

1 − sin�
��h

hm
�

�1.1 − 0.6�hem

hm
��

− �1.1 − 0.6�hem

hm
��2

�hem

hm
�

24.5�1 +
�h

hm
�2

, We�W 
 �We�W�2

.

(40)

Substituting Eq. (38) into Eq. (40), a final relationship
between Young’s modulus and indentation parameters
corresponding to the condition of 0.2 < �h/hm < 1/sin� is
achieved; that is

Hn

Er

= �
�1.1 − 1.5 f�2��h�hm��We

W � + ��h

hm
��tan� f�2��h�hm��We

W �
7.35�1 +

�h

hm
�2

, We�W � �We�W�2

f�2��h�hm��We

W ��
2

sin�

1 − sin�
��h

hm
�

�1.1 − 1.5 f�2��h�hm��We

W ��
− �1.1 − 1.5 f�2��h�hm��We

W ��2

7.35�1 +
�h

hm
�2

, We�W 
 �We�W�2

.

(41)

From Eqs. (22), (34), and (41), it is evident that for a
definite ratio of �h/hm the ratio of Hn/Er is dependent
only on the ratio of We/W.

IV. NUMERICAL ANALYSIS

We apply numerical analysis method to investigate the
response of the material indented by the nonideally coni-
cal indenter within the framework of continuum mechan-
ics. The indented material is assumed to behave as an
isotropic and rate-independent solid, and obeys Von
Mises yield criterion and pure isotropic hardening rule.
The uniaxial stress–strain relations take the form of lin-
ear elasticity combined with the Hollomon’s power law
hardening, which can be expressed as

� = �E � , � � �y

�y����y�n , � 
 �y
, (42)

where � and � are the true stress and true strain, �y and
�y � �y/E are the yield stress and yield strain. When the
indenter is considered as an elastic body, and the contact
interface between the indenter and the indented material
is assumed to be free of friction, the nominal hardness Hn
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and the work ratio We/W, which are taken as the inden-
tation responses, should be functions of the elastoplastic
properties (E,�,�y, n) of the tested material, the elastic
properties (Ei,�i) and the absolute bluntness (�h) of the
indenter, and the maximum indentation depth (hm). They
can be described as

Hn = fH�E, �, �y, n, Ei, �i, �h, hm� , (43)

We�W = fW�E, �, �y, n, Ei, �i, �h, hm� . (44)

As with the Dao et al. analysis of sharp indentation,10

these two functions may be simplified by introducing Er

to combine the overall elasticity effects of the indenter
and the indented material as

Hn = fH��y, n, Er, �h, hm� , (45)

We�W = fW��y, n, Er, �h, hm� . (46)

Applying ∏ theorem of dimensional analysis, func-
tions (45) and (46) can be rewritten in the following
dimensionless forms:

HnEr = 
H��y�Er, n, �h�hm� , (47)

We�W = 
W��y�Er, n, �h�hm� . (48)

It is obvious that to investigate the relationship be-
tween Hn/Er and We/W for a definite �h/hm, the explicit
solutions to the two functions (47) and (48) are required
to be determined first, and to achieve this, commercial
finite element code ABAQUS18 with the capability of
large deformation analysis was used to simulate the noni-
deally conical indentation process. Considering �y/Er is
an independent variable in Eqs. (47) and (48), so to vary
�y/Er, we may keep Er unchanged by assigning fixed
values to all the elastic properties (E,�, Ei,�i), and let �y

to vary alone. In particular, Ei and �i can be removed to

get further simplicity by assuming that the indenter is
rigid. The same way is applicable to vary �h/hm by fix-
ing hm and changing �h. As such, E, �, and hm are fixed
at 70 GPa, 0.3, and 1 �m, while �y, n, and �h are
scanned over the ranges of 35–10,500 MPa, 0–0.45, and
0–12.4336 �m, respectively. In addition, in the finite
element simulations, four-node axisymmetric elements
are used, and the sizes of the elements in contact with the
indenter are designed to be same and small to ensure that
at least 30 nodes are in contact with the indenter. Obvi-
ously, to match with the simulation processes involving
the use of non-ideally sharp indenters having different
bluntnesses �h varying from 0 to 12.4336 �m, the width
and height of the elements are needed to be adjusted
accordingly from 0.06 and 0.15 �m, to 0.4 and 1 �m
respectively.

The indentation responses corresponding to seven
relative bluntness values of �h/hm have been investigated
by using finite element simulations. These relative blunt-
ness values were selected as 0, 0.2, 0.5, 1.0, 1.5, 3.0, and
12.4336, and are represented by (�h/hm)j with j �
1,2,…,7. As an example, the results of Hn/Er and We/W
for different combinations of �y/Er and n obtained under
the condition of (�h/hm)3 � 0.5 are plotted in Figs. 3 and
4, respectively. Further, the relationship between Hn/Er

and We/W was examined by plotting all data points in
Fig. 5(c). The result confirms the existence of an approxi-
mate one-to-one correspondence between Hn/Er and We/
W. As for the other relative bluntness values of �h/hm

specified above, the same phenomena appeared, which is
shown in Figs. 5(a), 5(b), and 5(d)–5(g). Consequently,
seven approximate relationships between Hn/Er and
We/W are established, and each of them can be fitted by
a polynomial as

FIG. 3. Dependence of Hn/Er on �y/Er for different n when (�h/hm)3

� 0.5.
FIG. 4. Dependence of We/W on �y/Er for different n when (�h/hm)3

� 0.5.
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�HnEr�j = �j�We�W�

= 	
i=1,2,...,6

aij�We�W�i � j = 1,2,...,7� , (49)

where�j (j � 1,2,…,7) represents the functional rela-
tionship corresponding to a specific (�h/hm)j, and aij’s
(i � 1,2,…,6; j � 1,2,…,7) are the fitting coefficients,
which values are given in Table I. From above analysis,
it is easy to deduce that for any definite �h/hm within
the range of 0–12.4336, Hn/Er should be a function of
We/W, i.e.,

Hn�Er = ��We�W� , (50)

and the value of the function�(We/W) can be determined
from a series values of functions�j(We/W) (j � 1,2,…,7)
by interpolation.

Finally, for comparison, the analytical results calcu-
lated from the Eqs. (22), (34), and (41) for corresponding
ratios of (�h/hm)j (j � 1,2,…,7) are also plotted in the
Figs. 5(a)–5(g). Two kinds of results show that the rela-
tionship between Hn/Er and We/W revealed indepen-
dently from the numerical calculations and the analytical
analysis can be examined and supported by each other.

V. CONCLUSIONS

A new approximate relationship between Young’s
modulus and nonideally sharp indentation parameters has
been revealed by both numerical calculations and ana-
lytical analysis. The relationship relates the ratio of
nominal hardness/reduced Young’s modulus (Hn/Er)
with the ratio of elastic work/total work (We/W) for any

TABLE I. The values of the coefficients aij(i � 1, 2, . . . , 6; j � 1, 2, . . . , 7).

j (�h/hm)j a
1j

a2j a3j a4j a5j a6j

1 0 0.18408 −0.24835 0.50721 −0.86118 0.75187 −0.25388
2 0.2 0.17918 −0.29111 0.76403 −1.44113 1.34464 −0.47996
3 0.5 0.16352 −0.26383 0.65713 −1.13560 0.96922 −0.31700
4 1.0 0.12903 −0.21498 0.54428 −0.91821 0.76181 −0.24346
5 1.5 0.10377 −0.16829 0.39042 −0.60740 0.47293 −0.14430
6 3.0 0.07009 −0.10262 0.22412 −0.34838 0.27553 −0.08609
7 12.4336 0.03560 −0.06993 0.19772 −0.34292 0.28861 −0.09316

FIG. 5. Evidence illustrating the existence of an approximate one-to-one correspondence between Hn/Er and We/W under the condition of
(a) (�h/hm)1 � 0, (b) (�h/hm)2 � 0.2, (c) (�h/hm)3 � 0.5, (d) (�h/hm)4 �1.0, (e) (�h/hm)5 �1.5, (f) (�h/hm)6 � 3.0, and (g) (�h/hm)7 � 12.4336.
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definite ratio of the absolute bluntness to the maximum
indentation depth (�h/hm). Based on this relationship, the
determination of Young’s modulus requires only the
measurements of the nominal hardness and the indenta-
tion work. Unlike the initial unloading slope and the
projected contact area, the nominal hardness and the in-
dentation work can be measured with high precision.
Thus, the relationship established in the study forms the
basis of a method for determining Young’s modulus of
materials by nonideally sharp indentation, which is a
promising substitution for the present analysis models.
Results of detailed experimental investigations and com-
parison with different methods will be reported in a sepa-
rate paper.

According to the results of finite element analysis of
conical indentation using an indenter with an included
half angle of 70.3° performed by Bucaille et al.,19 and
spherical indentation performed by Mesarovic and
Fleck,20 it is shown that the influence of any friction
between an indenter and indented material on the load–
displacement relationship, and hence the indentation
work We or W are just negligibly small, so that the va-
lidity of the newly revealed relationship between Hn/Er

and We/W would not be affected by presence of any
interfacial friction within normal range.
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