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1 INTRODUCTION

Acoustic source data for fluid machines

such as pumps, fans etc, are of importance for

calculating the acoustic field generated in duct

systems and for the analysis of source-load in-

teraction effects. Methods for analysis and mea-

suring the relevant source data are therefore

of great interest.

The fluid machine, where the external acou-

stic load changes only at one opening, is mo-

deled as acoustic one-port source[1] that can be

completely described by a source strength and

a source reflection coefficient. When there is an

acoustic coupling between the outlet and inlet ,

and the conditions on both sides of the fluid

machine can be changed, it must be modeled as

a two-port source [2-6] that is usually described

by the scattering matrix and the source streng-

th matrix. Both of the one and twoport fluid

machines are defined as linear time-invariant

physical systems. In the previous work of se-

veral investigators, it was usually assumed that

the machines work in plane wave region, until

J. Lavrentjev and M. A" bom provided the mea-
surement method for the source with one open-

ing connected to a duct where N modes propa-

gate, and they named the system as an acou-

stic Nport source[7, 8].

However, a linear time-invariant source with

two openings connected to a duct where multi-

propagating modes exist , has more general ap-

plications and is defined here as the acoustic

2-port source with N modes. In this work, the

relationship among all of the propagating modes

in the outlet and inlet must be considered. It is

the extension of the source reflection matrix

for one opening described in the work of Lav-

rentjev and M. A" bom [8]. This source reflection
matrix for one opening is substituted here by

a scattering matrix to describe the acoustic

coupling between every mode in two openings.

The aim is therefore to propose a measurem-
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ent method for determining the source data

for the acoustic 2-port source with N modes.

2 GENERAL FROMULATION

2.1 Source descr ipt ion

An acoustic two-port source shown in Fig.1

can be described by a system of equations

that establish the relationship between its out-

put and input openings.

The state of the flow machine can be

completely described by 2N source state vari-

ables , one N for the output and another N for

the input. The pressure amplitudes of acoustic

modes p Sa+ and p Sb+, are chosen as the source

state variables, and can be written ( in the

frequency domain) as:

p a+
p b+
! "=S pa-
p b-
! "+ pSa+
p Sb+
! " ( 1)

or p+=Sp -+p
S
b+ ( 2)

where p a+, p a- , p b+, p b- are [N×1] state vectors of

output and input openings that contain the left-

and right-going acoustic pressure wave amplit-

udes for N modes, S is the [ 2N×2N] scatter-

ing matrix to describe the acoustic coupling

between every mode in two openings, p Sa+ and

p Sb+, are [N×1] source pressure vectors.

In order to characterize the two-port aco-

ustic source with N propagating modes in the

duct, the unknown matrices S and p S+ must be

determined.

2.2 Det erminat ion of t he scat t er ing mat r ix

For determination of the scattering matrix

S , the state vectors p + and p - should be obta-

ined first. Two external sources ( e.g., loudsp-

eakers ) which are uncorrelated to the source

under test are located to the left and right of

the fluid machine. They generate much higher

sound pressures to suppress the primary sour-

ce, so p S+ can be eliminated from Eq. ( 2) .

For opening a, the acoustic pressures are

measured at N points in cross-section 1a and

N points in cross-section 2a. The result of su-

ch measurements can be formulated as:

p a1
p a2
! "= Ma+ Ma-
Ma+T+ Ma-T-
! "pa1+

p a1-
! " ( 3a)

where p a1 and pa2 are [N×1] measured vectors,

Ma+ and Ma- are modal [N×N] matrices contai-

ning eigen functions for the N modes [8] , and

transfer matrices T± contain transfer functions

between cross-sections 1a and 2a. For a rigid

walled, the functions are given by ( T±) mn=exp

(#ikm±z s)!mn, where !mn is Kronecker′s delta, km±
are the axial wave numbers corresponding to

modes propagating in the positive/ negative z-

direction and z s is the separation between the

two cross-sections.

To eliminate the flow noise from the mic-

rophone signals and non-suppressed background

noise from the source, transfer functions are ta-

ken between the pressure signals and a refer-

ence signal correlated with the sound from the

external source. In this sense the electronic sig-

nale, driving the external loudspeaker, is a con-

venient choice. Based on the idea, Eq. ( 3a) is

rewritten

Ha1
Ha2
! "= Ma+ Ma-
Ma+T+ Ma-T-
! "Ha1+

Ha1-
! " ( 4a)

Fig.1 An acoustic two-port source with N propagating modes in the duct

pa+
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or

Ha=MaHa± ( 5a)

where the transfer function is equivalent to di-

viding the pressures in Eq. ( 3a) by e. To de-

termine the matrix S with size[2N×2N] , at least

2N different acoustical states must be tested,

which can be created by locating the external

source at different positions along the axis and

at different angles over the perimeter of the

duct. From Eq. ( 5a) , for 2N different states

( I, the left source “on”and the right one “off”;

II, the right source “on”and the left one “off”.

N different states for I, and N for II)

[ H I1a ⋯ H INaH II1a ⋯ H IINa ] =

Ma[ (H±)
I
1a ⋯ ( H±)

I
Na ( H±)

II
1a ⋯ ( H±)

II
Na ] ( 6a)

in short

[ H IaHIIa ] =Ma[H
I
±a H II±a ] ( 7a)

or

H!a=MaH
!
±a ( 8a)

where H!a and H !
±a are [ 2N×2N] matrices. From

Eq. ( 8a) , H !
±a can be solved and then H !

+a , H !
- a

are obtained. Thus the load reflection matrix is

determined by

Ra=H
II
a- /H IIa+ ( 9a)

In the same way, acoustic pressures are

measured at N measurement points in cross-

section 1b and N points in cross-section 2b

for opening b , and 2N different acoustical sta-

tes are the same as that of opening a . The

analogy equations are as follows:

p b1
p b2
! "= Mb+ Mb-
Mb+T+ Mb-T-
! "pb1+

p b1-
! " ( 3b)

Hb1
Hb2
! "= Mb+ Mb-
Mb+T+ Mb-T-
! "Hb1+

Hb1-
! " ( 4b)

Hb=MbHb± ( 5b)

[H I1b ⋯ H INbH II1b ⋯ H IINb ] =

Mb[ (H±)
I
1b ⋯ ( H±)

I
Nb ( H±)

II
1b ⋯ ( H±)

II
Nb ] ( 6b)

[H IbHIIb ] =Mb[H
I
±bH II±b ] ( 7b)

H!b=MbH
!
±b ( 8b)

Rb=H
II
b- /H IIb+ ( 9b)

Matrices H!+=
H !a+

H !
b+

! "and H !- = H !a-
H !
b-

! "are defined,
so the scattering matrix is formally written as

S=H!+( H!- ) - 1 ( 10)

In order to reduce the influence of measure-

ment errors in the results , it is useful to use

more than 2N test states and obtain an over

determined problem.

2.3 Det erminat ion of t he source st r engt h

vect or

After knowing S, the source pressure pS+ is

found from Eq. ( 2) when external sources are

turned off. Defining the reflection matrix R =

Ra 0

0 Rb
! ", source pressure vectors can be exp-
ressed in measurable quantities obtained at mea-

surement points in reference cross-sections 1a

and 1b

p Sa+

p Sb+
! "=C pa 1
p b1
! " ( 11)

where C=(E - SR)
Ma+Ma-Ra 0

0 Mb+Mb-Rb
! "- 1 and E

is the unit matrix.

To get a formulation which is valid for

both random and periodic types of signals, the

source-spectrum matrix describing the source

strength is introduced

Gs=(Cp ) ( Cp ) C=C( ppC) CC=

C

Ga1a1 ⋯ Gana1 Gb1a1 ⋯ Gbna1

Ga1an ⋯ Gana1 Gb1an ⋯

Ga1b1 ⋯ Ganb1 Gb1b1 ⋯

Ga1bn ⋯ ⋯ Ganbn

#
$
$
$
$
$
$$
%

&
’
’
’
’
’
’’
(

CC ( 12)

where the superscript “c”denotes a transposed

and complex conjugated quantity. The pressure

cross-spectrum matrix G=( ppC) is a [ 2N×2N]

matrix and the values of its elements can be

measured directly from N microphones located

in crosssection 1a and N microphones in cross-

section 1b.

3 EXAMPLE

In order to demonstrate the use of the me-

asurement method for the two-port source with

multi-propagating modes, one case is simulated

by BEM software to obtain the measured data

⋯ ⋯ ⋯

⋯

⋯
⋯

⋯ ⋯ ⋯

⋯
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for the following calculations.

3.1 Descr ipt ion of t he model

The length of the duct model is 10m, and

the dimension of the square cross-section is

0.2m. It can been seen in Fig.1 that the mea-

surement points located at four positions ( i.e.

dotted cross-section lines 2a, 1a, 1b and 2b sh-

own in the figure) are 2.95m, 3m ( for open-

ing a ) and 7m, 7.05m ( for opening b ) dis-

tance away from the left exit. Fig.2 shows the

volume of the structure, which are meshed by

unit 0.04×0.04×0.04m3. It means that the dime-

nsions and the length of the duct are divided

into 5 segments and 250 segments respectively.

Vibra-tions of the units at corresponding posi-

tions in the duct are taken as the primary so-

urce and the external sources A and B. Differ-

ent test states are created by imposing dis-

placements of the vibration on different units.

3.2 Modal decomposit ion for r ect angular

cross-sect ion duct

J. Lavrentjev and M. A# bom [8] provided the
modal decomposition for circular cross-section

duct. However, it is necessary to have modal

decomposition of rectangular duct for this ex-

ample, as well as for more applications. The

acoustic pressure field in a uniform straight

rectangular duct can be generally written as

( in the frequency domain)

p( x, y, x) =
m
!
n
![ pmn+( z) coskm+xcoskn+y+
pmn- ( z) coskm-xcoskn-y] ( 13)

where z is a co-ordinate along the duct axis.

When N points in the sound field are sampled,

the equation for one of the points will be

pn=
m
!
n
![ pmn+( z) coskm+xncoskn+yn+
pmn- ( z) coskm-xncoskn-yn] ( 14)

In matrix notation, for all of the sampled

points,

p=M+p++M-p - ( 15)

where the pressures are written as [N×1] vec-

tors and M+, M- are [N×N] modal matrices g-

iven by (M±) mn=coskm+xncoskn+yn.

3.3 Measurement and resu lt

The frequency chosen for the simulation is

1360Hz, so the modes propagate in the duct are

( 0, 0) , ( 0, 1) , ( 1, 0) and ( 1, 1) . In that way, 4

points should be measured in every cross-sect-

ion, and their positions in X-Y plane are shown

in Fig.3.

In the first step, a vibrational displacement

is imposed to the external source A. After run-

ning the BEM software, the sound pressures

on measured points are obtained directly from

the result table. Change the position of the ex-

ternal source for different acoustical states

( marked by I) until four groups of the result

data are read. The same operation is done for

external source B (marked by II) .

When eight groups of sound pressures for

eight acoustical states are obtained, calculations

are ready to be carried. In this simulation, vi-

brations of external sources are driven by im-

posing vibrational displacements to planes re-

garded as sources, rather than electric signals

driving loudspeakers , so in equations below ,

the variable will be the sound pressure, inste-

ad of H=p/e. In fact, the receiver is not micr-

ophone in this simulation, so no flow noise will

affect the result, and then it is not necessary to

apply H as the variable.

[ p Iap IIa ] =Ma[ p
I
±a p II±a ] ( 16a)

[ p Ibp IIb ] =Mb[ p
I
±b p II±b ] ( 16b)

p I±a , p II±a and p I±b , p II±b can be obtained by sol-

ving Eqs. ( 16a) , ( 16b) , and the load reflection

matrices for two openings are Ra=p
II
a- /p IIa+ andFig.2 Surfaces are meshed by unit 0.04×0.04m2
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Fig.3 Positions of the measured points in X-Y plane

Rb=p
I
b-/p Ib+ respectively, thus the scattering matrix

S=
p Ia+ p IIa+

p Ib+ p IIb+
! "p Ia- p IIa-

p Ib- p IIb-
! "- 1 ( 17)

In the next step, a vibrational displacement

is imposed to the plane at the middle cross-

section of the duct which is regarded as the

flow machine. The sound pressures at measur-

ement points in cross-sections 1a and 1b are

read from the result of the BEM software, and

the final characterization of the given source

is
p Sa+

p Sb+
! "=C pa1
p b1
! ", where C has been defined in

section 2.3. All of the concerned data are list-

ed in appendix.

It is noted that the BEM software is inca-

pable to obtain the pressure cross-spectrum m-

atrix , although the source-spectrum matrix is

more general for both random and periodic

signals. However, the pressure cross-spectrum

can be measured in practical work , and then

the formulation of the source-spectrum matrix

will be obtained.

4 CONCLUSION

In this work, the measurement method of

acoustic two-port source is proposed and the

working region of fluid machines is extended

to frequencies above the first cut-off frequency

of the duct. Based on the method of J. Lav-

rentjev, M. A" bom and H. Bodén [3] , There are
two steps. In the first step, the external sound

source dominates the duct sound field, which is

uncorrelated with the field of the source under

test. To obtain the scattering matrix S , at least

2N different incident fields are created by usi-

ng movable external sources. In the second st-

ep, external sources are turned off, and the so-

urce strength matrix Gs is calculated from me-

asuring the pressure cross-spectrum matrix in

the sound field created by flow machine. An im-

portant part of the measurement method is a

modal decomposition procedure that is based

on the early the work of J. Lavrentjev and M.

A" bom[8, 9].
After the determination of the acoustic so-

urce data of fluid machines, further works can

be done. Calculation of the sound pressure in

every branch of the duct networks, where the

combination of the sound fields from branches

must be considered when they meet at a joint ,

and obviously more complex matrices should

be deduced. Part of the work has been done

by R. Glav and M. A" bom[10] for plane wave re-
gion, and more work is needed when higher or-

der modes propagate in duct. Moreover, it is

predictable that the measurement method for

fluid machines with more than two openings

can be settled in the same way as that with two

openings, either in plane wave region or with

higher order modes.
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