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Abstract: We propose a simple and cost-effective technique for modulation 
format identification (MFI) in next-generation heterogeneous fiber-optic 
networks using an artificial neural network (ANN) trained with the features 
extracted from the asynchronous amplitude histograms (AAHs). Results of 
numerical simulations conducted for six different widely-used modulation 
formats at various data rates demonstrate that the proposed technique can 
effectively classify all these modulation formats with an overall estimation 
accuracy of 99.6% and also in the presence of various link impairments. 
The proposed technique employs extremely simple hardware and digital 
signal processing (DSP) to enable MFI and can also be applied for the 
identification of other modulation formats at different data rates without 
necessitating hardware changes. 
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1. Introduction 

With the emergence of broadband data services such as video-on-demand (VoD), Internet 
Protocol television (IPTV), multimedia messaging service (MMS), online gaming etc., 
service providers are experiencing increasing demands to upgrade their networks in order to 
support these high data rate applications. On the other hand, the service providers are 
expected to keep supporting some of the existing voice and data services. Therefore, it is 
envisaged that the future fiber-optic networks will be heterogeneous in nature supporting a 
wide range of data traffic depending upon the end users’ demands [1]. In order to support 
these heterogeneous services and hence the data traffic, the future fiber-optic networks are 
anticipated to encompass mixed line rates (MLR) (such as 10/40/100 Gbps) as well as 
multiple modulation formats [2]. 

The management of available resources in complex heterogeneous networks will be a 
challenging task and would require the acquisition of incessant and real-time information 
about the quality of physical links as well as optical signals and passing on this information to 
the network management system possibly for impairment-aware routing and/or fault 
localization and diagnosis. Therefore, optical performance monitoring (OPM) is expected to 
play a crucial role in the efficient management of heterogeneous fiber-optic networks and 
fulfilling the quality-of-service (QoS) requirements of end users [3,4]. A plethora of OPM 
techniques has been proposed in recent years capable of monitoring various link impairments 
and the quality of optical signals [5]. Some of these techniques have demonstrated monitoring 
of multiple modulation formats and data rates and hence are suitable for OPM in 
heterogeneous fiber-optic networks. However, these techniques assume either a prior 
knowledge of the signal modulation format and data rate or the attainment of this information 
from the network management system [6–16]. In [17], a technique for the identification of 
data rates is proposed using asynchronous delay-tap sampling for a few modulation formats 
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types. However, not much work has been done for the recognition/identification of 
modulation formats in fiber-optic networks. With increasing heterogeneity and dynamics in 
optical networks, the modulation formats may differ across neighboring wavelength-division 
multiplexed (WDM) channels from time to time. Although the modulation format information 
can be obtained from the upper layer protocols in principle, it is practically not feasible to 
introduce or rely on additional cross-layer communication for the purpose of OPM at the 
intermediate network nodes. Therefore, MFI will be indispensable for the application of 
existing OPM techniques in future optical networks [1]. The information about the actual 
modulation format type of the signal (obtained through MFI) will enable the OPM devices 
deployed at the intermediate network nodes to apply a monitoring technique suitable for that 
specific modulation format. In addition to the need of MFI in OPM devices deployed at the 
intermediate network nodes, digital coherent receivers in next-generation cognitive 
heterogeneous fiber-optic networks supporting multiple modulation formats and data rates 
should also be equipped with MFI capabilities without any a priori information [1]. This will 
be especially important while choosing an appropriate carrier recovery module in a digital 
coherent receiver. In [18], the recognition of phase-shift keying (PSK) and quadrature 
amplitude modulation (QAM) signals in digital coherent receivers is demonstrated for radio-
over-fiber systems. Due to high cost of a full-fledged coherent receiver with symbol rate 
sampling, such technique may not be ideal for MFI in OPM devices deployed at the 
intermediate network nodes where cost is a major constraint. 

Modulation recognition has been a topic of extensive research in the digital 
communications field for the last two decades in applications like static modems, mobile 
telephony, software defined radio (SDR) etc. and several different techniques have been 
proposed [19–26]. These techniques can be classified into likelihood-based (LB) and feature-
based (FB) approaches. In the LB approach, probabilistic and hypothesis testing arguments 
are used to formulate the modulation classification problem. This method requires the 
formulation of correct hypotheses as well as a careful selection of the appropriate threshold 
values [22,23]. In the FB techniques, on the other hand, prominent features are extracted from 
the received signal and these features are then utilized for the identification of signal 
modulation format [24–26]. The LB techniques minimize the probability of false 
classification and hence provide optimal solution in the Bayesian sense. However, these 
techniques involve much higher computational complexity. The FB approaches, even though 
suboptimal, are usually simpler and these techniques can deliver near-optimal performance if 
designed properly [20]. Both of these approaches have been successfully employed for MFI 
in copper wire/wireless communications with reasonably good accuracies [19]. However, not 
much work has been done for MFI in heterogeneous fiber-optic communication networks. 

In this paper, we propose a simple and cost-effective FB classification technique for MFI 
in heterogeneous fiber-optic networks by using an ANN trained with the features extracted 
from AAHs [6] of the directly detected signals. Numerical simulations have been performed 
for six different widely-used modulation formats at various data rates, namely 10 Gbps 
return-to-zero (RZ) on-off keying (OOK), 40 Gbps non-return-to-zero (NRZ) differential 
phase-shift keying (DPSK), 40 Gbps optical duobinary (ODB), 40 Gbps RZ differential 
quadrature phase-shift keying (DQPSK), 100 Gbps polarization-multiplexed (PM) RZ 
quadrature phase-shift keying (QPSK) and 200 Gbps PM-NRZ 16 quadrature amplitude 
modulation (16QAM) for optical signal-to-noise ratio (OSNR) values as low as 12 dB and 

chromatic dispersion (CD) and differential group delay (DGD) in the ranges of 500500 

ps/nm and 010 ps respectively. The simulations results demonstrate successful identification 
of all modulation formats with an overall estimation accuracy as high as 99.6%. The proposed 
technique can be used in digital coherent receivers for the recognition of unknown transmitted 
modulation formats, which will be one of the major tasks in next-generation intelligent 
receivers. Due to its implementation simplicity, it can also be used for MFI in OPM devices 
deployed at the intermediate network nodes which can only afford limited complexity. Hence, 
the proposed technique can enable the application of existing OPM techniques in future 
heterogeneous fiber-optic networks. Furthermore, since only asynchronous amplitude samples  
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Fig. 1. Eye-diagrams and corresponding AAHs for (a) 10 Gbps RZ-OOK, (b) 40 Gbps NRZ-
DPSK, (c) 40 Gbps ODB, (d) 40 Gbps RZ-DQPSK, (e) 100 Gbps PM-RZ-QPSK and (f) 200 
Gbps PM-NRZ-16QAM formats after direct detection. The second column shows the AAHs 
for OSNR = 18 dB, neither CD nor PMD while the third column shows the AAHs for OSNR = 
18 dB, CD = 100 ps/nm and DGD = 5 ps when the signal’s state-of-polarization (SOP) is 45° 
with respect to the principal states-of-polarization (PSP) of the PMD emulator. 
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are needed, the proposed technique can enable the recognition of multiple modulation formats 
at various data rates without necessitating hardware changes. 

2. MFI using ANN trained with AAHs 

The eye-diagrams and corresponding AAHs of the directly detected signals for various 
commonly-used modulation formats in long-haul optical communication systems are shown 
in Fig. 1. It is clear from the figure that different modulation formats exhibit distinct pulse 
shapes after direct detection (as obvious from their eye-diagrams). Consequently, the AAHs 
of these modulation formats will also be unique and exhibit distinct signatures for various 
formats. The AAHs change significantly with various link impairments but they still remain 
different from each other and hence are distinguishable as evident from the second and third 
columns of Fig. 1. The characteristic features of AAHs can thus be exploited for the 
identification of respective modulation formats using the FB classification techniques 
employing ANNs, which are widely accepted as universal classifiers. ANNs are information 
processing systems and are comprised of several layers of processing elements called 
neurons. The neurons in two adjacent layers are interlinked and have variable strength (called 
weight) for each connection as shown in Fig. 2. 

 

Fig. 2. Structure of an MLP3-ANN with AAH bin-count vector x as input and estimated 
modulation format type vector y as output. 

Neural networks-based classification processes typically involve the selection of suitable 
ANN architectures and appropriate learning algorithms in order to achieve the desired 
classification accuracies. In our proposed technique, the AAHs of directly detected signals, 
which are represented by M x 1 vectors of bin-counts x, are used as inputs. In the training 
phase of ANN, each input vector x has a corresponding N x 1 binary vector y with only one 
non-zero element. The location of ‘1’ in y, or argmax{y}, indicates the signal modulation 
format type. Due to the analogue nature of ANN, the ANN output v can only be trained close 
to but not identical to y. In fact, various ANN parameters are optimized during the training 

process to minimize the mean-square-error (MSE) 
2

v y over the whole training data set. In 

the testing phase, argmax{v} is used as an identifier of the signal modulation format. An 
example showing the relationship between x, v, y and the signal modulation format type in the 
proposed ANN-based MFI technique is shown in Fig. 3. 

The ANN architecture used in our simulations is a 3-layer multilayer perceptron (MLP3) 
neural network consisting of an input layer, one hidden layer and an output layer as shown in 
Fig. 2. The selection of one hidden layer for the ANN is a practical choice since increasing 
the number of hidden layers results in an increase in computation time and it may also 
enhance the risk of over-fitting. Theoretically, an ANN with one hidden layer having a  
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Fig. 3. An example illustrating the relationship between x, v, y and the signal modulation 
format type. In the training phase, for each input x, the corresponding binary vector y contains 
a ‘1’ and all zeros. The location of ‘1’ in y, or argmax{y}, indicates the signal modulation 
format. The ANN attempts to minimize the MSE between y and the analogue ANN output v. In 
the testing phase, argmax{v} is used as an identifier of the signal modulation format. 

sufficient number of neurons can approximate any continuous function. This is the reason 
why ANNs comprised of one or occasionally two hidden layers are commonly used in 
practice [27]. In our case, the number of neurons in the input and output layers are determined 
by the number of AAH bins and the number of modulation formats types respectively and 
hence, we have chosen them to be 80 and 6 neurons respectively. A supervised learning 
method called back-propagation (BP) [27] is employed for the training of ANN. The number 
of neurons in the hidden layer is optimized to be 38 using the incremental-constructive 
approach where the number of neurons is increased iteratively until the MSE performance 
deteriorates. The activation functions f(.) and g(.), also referred to as transfer or threshold 
functions, are then selected for the hidden and output layers neurons. We have used a tangent 
sigmoid activation function given by f (z) = (e 

z
 – e 

-z
)/(e 

z
 + e 

-z
) for the hidden layer neurons 

and a linear activation function given by g(z) = z for the output layer neurons, where z is the 
input to a hidden or output layer neuron. The overall data set comprised of 26,208 
input/output vector pairs [X,Y] = {[x1,y1], [x2,y2], ..... [xS,yS]}, where S = 26,208 is the size of 
overall data set, is divided into three distinct subsets namely training, validation and testing 
data sets. The sizes of these three subsets are chosen to be 56%, 19% and 25% respectively of 
the overall data set while the individual input/output vector pairs of each of these three 
subsets are randomly selected from the overall data set. The training data set [XTrain,YTrain] is 

used to optimize the ANN parameters so as to minimize the MSE 
2

i iv y over the whole 

training data set. We have used the popular Levenberg-Marquardt algorithm (LMA) for the 
ANN training process due to its fast convergence speed, robustness and its suitability to 
medium-sized nonlinear models [28]. Figure 4 shows the MSE during the training phase as a 
function of number of epochs. An epoch is a step in the ANN training process in which the 
whole training data set is presented once to the ANN for learning and network parameters 
optimization. It is evident from the figure that the MSE decreases with an increase in number 
of epochs for the training data set. During the course of training, a check on the ANN 
performance is carried out by examining it against the validation data set [XValid,YValid] and the 
over-training of ANN is avoided by enforcing the early termination if the validation data set 

starts to give higher MSE. As shown in Fig. 4, the minimum MSE of 4.97 x 10
3

 is achieved 
for 53 epochs and the training process is aborted there. Once the training and validation 
phases are over, a testing phase is conducted using the testing data set [XTest,YTest] such that for 
each input vector xi, the identified modulation format type i.e. argmax{vi} is compared with 
the correct type and the number of erroneous identifications as well as overall success rate is 
determined. 
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Fig. 4. Dependence of MSE on the number of epochs for the training and validation data sets. 

Best validation performance at MSE = 4.97 x 103 is achieved for 53 epochs and the training 
process is then terminated. 

 

Fig. 5. (a) System configuration for MFI using ANN trained with AAHs. (b) Modified MFI 
configuration for distinguishing between the RZ-DQPSK and PM-RZ-QPSK formats for small 
CD and DGD values. 

3. System configuration, results and discussion 

To demonstrate the validity of the proposed MFI technique using ANN, numerical 
simulations are performed using the commercial software VPI [29]. The simulation setup is 
shown in Fig. 5. Six different commonly-used modulation formats at various data rates i.e. 10  
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Fig. 6. The six elements of the ANN outputs vi corresponding to (a) 10 Gbps RZ-OOK, (b) 40 
Gbps NRZ-DPSK, (c) 40 Gbps ODB, (d) 40 Gbps RZ-DQPSK, (e) 100 Gbps PM-RZ-QPSK 
and (f) 200 Gbps PM-NRZ-16QAM modulation formats for the testing data set containing 
6552 test cases randomly drawn from the overall data set and corresponding to different 
OSNR, CD, DGD and polarization angle values. 

Gbps RZ-OOK, 40 Gbps NRZ-DPSK, 40 Gbps ODB, 40 Gbps RZ-DQPSK, 100 Gbps PM-
RZ-QPSK and 200 Gbps PM-NRZ-16QAM are generated and transmitted over a single-mode 
fiber (SMF). An erbium-doped fiber amplifier (EDFA) is used to add amplified spontaneous 
emission (ASE) noise into the signal and a variable optical attenuator (VOA) is used to adjust 
the OSNR in the range between 12 and 26 dB. A CD and first-order polarization-mode 
dispersion (PMD) emulator is used to introduce variable amounts of CD and DGD into the 

signal respectively. The CD is introduced in the range between 500 and 500 ps/nm in steps 
of 80 ps/nm while DGD is introduced in the range between 0 and 10 ps in steps of 2 ps. The 
launching angle α of the transmitted signal’s SOP with respect to the PSP of the PMD 
emulator is varied randomly. For monitoring purposes, a fraction of the signal is tapped from 
the optical link and is fed into the MFI module where the desired channel is filtered using an 
optical band-pass filter (BPF) and afterwards directly detected using a photodetector (PD) 
(the optical and electrical bandwidths of the receiver in our simulations are 0.8 nm and 50 
GHz respectively). The resulting electrical signal is asynchronously sampled at a rate much 
slower than the symbol rates of all the modulation formats to obtain 200,000 amplitude 
samples, which are then used to form AAH containing 80 bins. A large data set comprised of 
26,208 such AAHs is generated corresponding to different OSNR, CD, DGD, α and 
modulation formats types and the randomly selected subsets of this large data set are then 
used for training, validation and testing of ANN as described in the previous section. 

The six elements of the ANN outputs vi for the testing data set comprised of 6552 
input/output vector pairs (randomly selected from the overall data set) are shown in Fig. 6. It 
is clear from the figure that one particular element in vi is considerably larger than the others 
in almost all the cases, thus suggesting that the modulation formats are clearly and easily 
identified. The differences in the elements of vi are larger for RZ-OOK, ODB and PM-NRZ-
16QAM formats as shown in Figs. 6(a), 6(c) and 6(f) and hence, better estimation accuracies 
can be predicted for these three modulation formats. For NRZ-DPSK format, though the 
differences in the ANN output values are not quite large, the values are not overlapping as 
shown in Fig. 6(b) and hence, we can also expect good estimation accuracy for this 

#167229 - $15.00 USD Received 23 Apr 2012; revised 11 May 2012; accepted 11 May 2012; published 16 May 2012
(C) 2012 OSA 21 May 2012 / Vol. 20,  No. 11 / OPTICS EXPRESS  12429



 

modulation format. On the other hand, the elements in vi corresponding to RZ-DQPSK and 
PM-RZ-QPSK formats are relatively close to the ones for other formats and there are also 
overlappings in some cases as shown in Figs. 6(d) and 6(e). Therefore, a few identification 
errors are anticipated for these two modulation formats. This is due to the fact that the pulse 
shapes and hence the AAHs of these two modulation formats are quite similar when CD and 
DGD are small as shown in Figs. 1(d) and 1(e). The overall results for the MFI configuration 
using the ANN-based classifier only (shown in Fig. 5(a)) are summarized in Table 1. It is 
clear from the table that all the modulation formats have been well classified with an overall 
accuracy of 99.06% despite a considerable range of OSNR, CD and DGD. It should be noted 
that as compared to other modulation formats, the estimation accuracies are relatively bad for 
RZ-DQPSK and PM-RZ-QPSK formats (i.e. 97.98% and 97.34% respectively) as anticipated. 

Table 1. Estimation accuracies of the proposed MFI technique using ANN trained with 
AAHs and using the setup shown in Fig. 5(a). The overall MFI accuracy is 99.06%. 

Actual  
Modulation 

Format 

Identified Modulation Format 

RZ-
OOK 

NRZ-
DPSK 

ODB 
RZ-

DQPSK 
PM-RZ-
QPSK 

PM-NRZ-
16QAM 

RZ-OOK 100% - - - - - 

NRZ-DPSK - 99.81% - 0.18% - - 

ODB - - 99.9% - - - 

RZ-DQPSK - 0.09% - 97.98% 2.47% - 

PM-RZ-QPSK - - - 1.83% 97.34% 0.64% 

PM-NRZ-16QAM - 0.09% 0.09% - 0.18% 99.35% 

Table 2. Estimation accuracies of the proposed MFI technique using ANN trained with 
AAHs and exploiting the polarization characteristics of the input signal using the 

modified MFI configuration shown in Fig. 5(b). The overall MFI accuracy is 99.6%. 

Actual  
Modulation 

Format 

Identified Modulation Format 

RZ-
OOK 

NRZ-
DPSK 

ODB 
RZ-

DQPSK 
PM-RZ-
QPSK 

PM-NRZ-
16QAM 

RZ-OOK 100% - - - - - 

NRZ-DPSK - 99.81% - 0.18% - - 

ODB - - 99.9% - - - 

RZ-DQPSK - 0.09% - 99.17% 0.54% - 

PM-RZ-QPSK - - - 0.64% 99.26% 0.64% 

PM-NRZ-16QAM - 0.09% 0.09% - 0.18% 99.35% 

In order to minimize the ambiguity in the recognition of RZ-DQPSK and PM-RZ-QPSK 
formats using the ANN-based MFI discussed above, we propose a slightly more sophisticated 
MFI configuration shown in Fig. 5(b). In this case, the input signal is split into two 
orthogonal polarization states using a polarization beam splitter (PBS) and the PBS outputs 
are directly detected independently and then sampled simultaneously but asynchronously to 

#167229 - $15.00 USD Received 23 Apr 2012; revised 11 May 2012; accepted 11 May 2012; published 16 May 2012
(C) 2012 OSA 21 May 2012 / Vol. 20,  No. 11 / OPTICS EXPRESS  12430



 

obtain 200,000 sample pairs (s1,s2). Next, the samples s1 and s2 are simply added and an AAH 
of the resulting samples is generated, which is similar to the AAH obtained using a single PD 
in MFI module shown in Fig. 5(a). In the event that the modulation format is identified to be 
RZ-DQPSK or PM-RZ-QPSK, the ANN estimates are subjected to further investigations by 
comparing the average power E[s1(2)] = P1(2) of the individual samples s1(2). In case of single-
polarization RZ-DQPSK signal, the splitting of power in PBS depends upon the relative angle 

between the signal’s SOP and the PBS axis (i.e. P1  P2 for all relative angles between the 
signal’s SOP and the PBS axis except when the angle is 45°) while the signal power will 

always split equally in PBS (i.e. P1 = P2) for PM-RZ-QPSK signal. Hence, if P1  P2, the 
modulation format is deduced to be RZ-DQPSK. On the contrary, if P1 = P2, then this could 
either (most likely) be a PM-RZ-QPSK signal or an RZ-DQPSK signal with 45° relative 
angle between the signal’s SOP and the PBS axis. In this scenario, the additional polarization 
information is not conclusive and hence, the estimations made by the ANN-based classifier 
are taken as the final one. Since the AAHs of RZ-DQPSK and PM-RZ-QPSK formats are 
significantly different from each other unless when CD and DGD are extremely small, the 
ANN-based classifier itself can well distinguish between these two modulation formats. 
Fortunately, the joint occurrence of very small CD and DGD and exactly 45° angle between 
the signal’s SOP and PBS axis (in case of RZ-DQPSK signal) is extremely rare and hence, 
the modified MFI configuration is able to discriminate between these two modulation formats 
in most of the cases. The results for the modified MFI configuration exploiting such signal 
polarization characteristics in addition to using the ANN-based classifier (as shown in Fig. 
5(b)) are summarized in Table 2. It is evident from the table that the estimation accuracies for 
RZ-DQPSK and PM-RZ-QPSK formats have been improved using the modified MFI 
configuration. The overall estimation accuracy for all six modulation formats is also increased 
to 99.6%, thus signifying the advantage of the modified MFI configuration. We would like to 
emphasize that the use of this slightly more sophisticated MFI configuration is beneficial only 
when both RZ-DQPSK and PM-RZ-QPSK modulation formats are present. For all other 
scenarios, the simple MFI configuration shown in Fig. 5(a) suffices. 

The response time of the proposed MFI technique, which is of vital significance in 
practical applications, is reasonably small. Using a low-cost sampler with 500 Msamples/s 
sampling rate, the data acquisition time (which takes a bulk of the whole processing time) for 
200,000 samples is 0.4 ms. The subsequent generation of AAH from the acquired samples as 
well as the estimation of modulation format type using ANN can be done comparatively 
much faster. Note that the training of ANN may take much longer time but such training is 
performed offline prior to actual MFI process. Hence, we believe that the whole MFI process 
using the proposed technique can be completed within a few ms at the most in real network 
settings. If a further reduction in processing time is desired then this can be accomplished by 
using more than one asynchronous sampling device for the acquisition of amplitude samples. 

4. Conclusions 

In this paper, we proposed a low-cost MFI technique for next-generation heterogeneous fiber-
optic networks by using an ANN trained with the features extracted from AAHs of the 
directly detected signals. Numerical simulation results demonstrate over 99% identification 
accuracy for six widely-used modulation formats for OSNR values as low as 12 dB and also 
in the presence of various levels of CD and PMD. The proposed technique can effectively 
enable the MFI feature in future receivers as well as in OPM devices deployed throughout the 
optical network. 
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