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Abstract

Multi-cell cooperation (MCC) is an approach for mitigating inter-cell interference in dense cellular

networks. Existing studies on MCC performance typically rely on either over-simplified Wyner-type models

or complex system-level simulations. The promising theoretical results (typically using Wyner models)

seem to not materialize in either complex simulations or particularly in practice. To more accurately

investigate the theoretical performance of MCC, this paper models an entire plane of interfering cells

as a Poisson random tessellation. The base stations (BSs) are then clustered using a regular lattice,

whereby BSs in the same cluster mitigate mutual interference by beamforming with perfect channel state

information. Techniques from stochastic geometry and large-deviation theory are applied to analyze the

outage probability as a function of the mobile locations, scattering environment, and the average number

of cooperating BSs per cluster, `. For mobiles near the centers of BS clusters, it is shown that outage

probability diminishes as O(e−`
ν1 ) with 0 ≤ ν1 ≤ 1 if scattering is sparse, and as O(`−ν2) with ν2

proportional to the signal diversity order if scattering is rich. For randomly located mobiles, regardless

of scattering, outage probability is shown to scale as O(`−ν3) with 0 ≤ ν3 ≤ 0.5. These results confirm

analytically that cluster-edge mobiles are the bottleneck for network coverage and provide a plausible

analytic framework for more realistic analysis of other multi-cell techniques.

I. INTRODUCTION

Inter-cell interference limits the performance of cellular downlink networks but can be suppressed by

multi-cell cooperation (MCC). The existing high-speed backhaul links allow base stations (BSs) to exchange

data and channel state information (CSI). Thereby, cells can be grouped into finite clusters and BSs in a

same cluster cooperate to decouple the assigned mobiles [1]–[4]. Despite extensive research conducted on

MCC, the fundamental limits of cellular downlink networks with MCC remain largely unknown due to the

lack of an accurate and yet tractable network model. This paper addresses this issue by proposing a novel
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model constructed using a Poisson point process (PPP) for BSs and a hexagonal lattice for clustering said

BSs. Based on this model, techniques from stochastic geometry and large-deviation theory are applied to

quantify the relation between network coverage and the average number of cooperating BSs.

A. Modeling Multi-Cell Cooperation

Quantifying the performance gain by MCC requires accurately modeling the cellular-network architecture

and accounting for the relative locations of BSs and mobiles. These factors are barely modeled in Wyner-

type models where base stations are arranged in a line or circle, interference exists only between neighboring

cells and path loss is represented by a fixed scaling factor [5]. Due to their tractability, Wyner-type models

are commonly used in information-theoretic studies of MCC [4], [6], [7], but fail to account for mobiles’

random locations [8] and finite BS clusters in practice due to a constraint on the cooperation overhead

[1], [9], [10]. The traditional hexagonal-grid model provides a better approximation of a practical cellular

network, however, at the cost of tractability [11]. An alternative modeling approach is to model BSs using

a PPP and construct cells as a random spatial tessellation [12]. The random model captures cell irregularity,

is about as accurate as the hexagonal-grid model, and allows analysis using stochastic geometry [13], [14].

Building on [12] which assumes single-cell transmission, in this paper BSs are modeled as a homoge-

neous PPP that partitions the horizontal plane into Voronoi cells. Mobiles in each cell are randomly located

and time share the corresponding BS. BSs are then clustered using a larger hexagonal lattice 1 to cooperate

by interference coordination where BSs in the same cluster mitigate interference to each others’ mobiles

by zero-forcing beamforming that also achieves transmit-diversity gain [15]. Furthermore, to cope with

fading, channel inversion is applied such that received signal power is fixed. This scheme is considered

for simplifying analysis and can be implemented in practice by combining a transmit-diversity technique

and automatic gain control widely used in code-division-multiple-access systems. It is worth mentioning

that channel inversion is found in this research to reduce outage probability compared with fixed-power

transmission. Outage probability specifies the fraction of mobiles outside network coverage for a target

signal-to-interference ratio (SIR), assuming an interference limited network. This is the case of interest for

MCC and of operational relevance for cellular networks. Let the average number of BSs in a cluster be

denoted as `, called the expected BS-cluster size. This paper focuses on quantifying the asymptotic rate at

which outage probability diminishes as ` increases.

This and any other clustering methods with finite cluster sizes and only intra-cluster cooperation have the

drawback of cluster-edge mobiles exposed to strong inter-cluster interference as quantified in the subsequent

analysis. Intuitively, a better approach is to allow overlapping BS clusters for protecting cluster-edge

1 The hexagonal lattice is chosen arbitrarily for exposition. It is straightforward to extend the current analysis to BS clustering

using other types of regular lattice or random spatial tessellations by modifying the definitions of the variables ρ, ρ̃ and D (defined

in the sequel) based on the cell geometry.
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mobiles. BS cooperation based on this approach can be implemented efficiently using belief propagation

and message passing [16]–[18] but will eventually involve all BSs in the network and cause potential issues

including overwhelming backhaul overhead, excessive delay and network instability. For these reasons, BS

clusters in practice are usually disjoint [19]. This investigation suggests a much simpler approach for

suppressing inter-cluster interference for cluster-edge mobiles by combined the current method of BS

clustering with fractional frequency reuse [20] along cluster edges as discussed in the sequel.

There exists a rich literature on analyzing outage probability for wireless networks with Poisson dis-

tributed transmitters [21]–[24]. Given that outage probability has no closed-form expressions [25], [26], a

common analytical approach is to derive bounds on outage probability using probabilistic inequalities [27],

which are sufficiently simple and tight for evaluating network performance given specific transmission

techniques e.g., bandwidth partitioning [28] and multi-antenna techniques [29], [30]. The accuracy of

these outage-probability bounds requires the presence of strong interferers for mobiles; similar bounds

for cellular networks with MCC can be loose since interference is suppressed using MCC. Therefore,

this work deploys an alternative approach where large-deviation theory [31] is applied to quantify the

exponential decay of outage probability as `→∞. A similar approach was applied in [32] to analyze the

tail probability of interference in a wireless ad hoc network.

B. Summary of Contributions and Organization

To apply techniques from large-deviation theory, a new performance metric called the outage-probability

exponent (OPE) is defined as follows. Since the network is interference-limited and hence noise is neg-

ligible, the outage probability for an arbitrary mobile, denoted as Pout, is given as Pout = Pr (ω/I < θ)

where ω and I represent the fixed received signal power and random interference power, respectively, and

θ > 0 is the outage threshold. Then the OPE is defined as

ϕ(`) = − logPout (1)

= − log Pr
(
I > θ−1ω

)
(2)

where Pout and I are functions of ` with ` omitted for ease of notation. 2 It follows that deriving the scaling

of ϕ(`) as ` → ∞ yields the exponential decay rate of Pout. Using large-deviation theory, simple OPE

scalings are derived for different network configurations based on the rates at which the tail probabilities

of random network parameters diminish as `→∞.

The main contributions of this paper are summarized as follows.

2With interference being suppressed by increasing `, the network will eventually operate in the noise limited regime, for which

the outage-probability for a typical mobile is either zero or one depending on if the received signal-to-noise ratio ω/σ2 is below

or above θ. The value of ω depends on the average transmission power of BSs and channel distribution [see (9) in the sequel].

Therefore, the OPE becomes irrelevant for the case of a noise-limited network with channel inversion.
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1) Consider a mobile located at the center of an arbitrary BS cluster, called a cluster-center mobile, and

sparse scattering where beams have bounded amplitudes. Given MCC, the OPE for a cluster-center

mobile, denoted as ϕcc, is shown to scale 3 as follows:

a) for the path-loss exponent α > 4,

c1` � ϕcc(`) �
4c1

3
`, `→∞;

b) for 2 < α ≤ 4,

c2`
α

4 � ϕcc(`) � 4c1

3
`, `→∞

where c1 and c2 are constants.

This result shows that outage probability diminishes exponentially as ` → ∞ for a high level of

spatial separation (α > 4) or at least sub-exponentially if the level is moderate-to-low (2 < α ≤ 4).

2) Consider a mobile with a randomly distributed location, called a typical mobile, 4 and also MCC

with sparse scattering. The scaling of the corresponding OPE is proved to be

1
2

(
1− 2

α

)
log ` � ϕ(`) � 1

2
log `, `→∞. (3)

This result implies that outage probability decays as `→∞ following a power law with an exponent

smaller than 0.5. This decay rate is much slower than the sub-exponential (up to exponential) rate

for a cluster-center mobile. The reason is that a typical mobile may lie near a cluster edge and

consequently is exposed to strong inter-cluster interference. Comparing the outage-probability decay

rates for cluster-center and typical mobiles suggests that cluster-edge mobiles are the bottleneck of

network coverage even with MCC and protecting them from inter-cluster interference (e.g., assigning

dedicated frequency channels) can significantly improve network coverage.

3) Consider MCC with rich scattering modeled as Rayleigh fading. Note that fading affects the

interference distribution but not received signal power that is fixed given channel inversion. The

OPE for a cluster-center mobile is shown to satisfy
(

1
2
αν − 1

)
log ` � ϕcc(`) � 1

2
αν log `, `→∞

where ν > 1 is the minimum signal diversity order over different cells. It follows that outage

probability decays as `→∞ following a power law with an exponent approximately proportional to

α and ν. By comparing the outage-probability decay rates for sparse and rich scattering, it is found

3Two functions f(z) and g(z) are asymptotically equivalent if f(z)
g(z)
→ 1 as z → ∞, denoted as f(z) ∼ g(z); the cases of

limz→∞
f(z)
g(z)
≥ 1 and limz→∞

f(z)
g(z)
≤ 1 are represented by f(z) � g(z) and f(z) � g(z), respectively.

4A typical point of a random point process is chosen from the process by uniform sampling such that all points are selected

with equal probability.
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that additional randomness in interference due to fading degrades the reliability of communications

near cluster centers significantly.

4) Last, the OPE scaling for a typical mobile with sparse scattering from (3) is shown to also hold

for a typical mobile with rich scattering. The OPE scaling is largely determined by the probability

that the mobile lies near cluster boundaries and outside network coverage due to strong inter-cluster

interference. As a result, the scaling is insensitive to if fading is present, which, however, impacts

the OPE scaling for a cluster-center mobile.

The remainder of the paper is organized as follows. The network model is described in Section II.

The OPEs with sparse scattering and with rich scattering are analyzed in Section III and Section IV,

respectively. Simulation results are presented in Section V followed by concluding remarks in Section VI.

The appendix contains the proofs of lemmas.

Notation: The complement of a set X is represented by X̄ . The operator | · | on a set gives its cardinality.

The superscripts T and † represent the matrix transpose and Hermitian transpose operations, respectively.

Last, the families of regularly varying and sub-exponential distributions are represented by RV(τ) and

S(τ), respectively, where τ > 0 is the index.5 Other notation is summarized in Table I.

II. NETWORK MODEL

A. Network Architecture

The BSs are modeled as a homogeneous PPP Φ = {Y } in the horizontal plane R2 with density λ where

Y ∈ R2 is the coordinates of the corresponding BS. The mobiles form a homogeneous point process

independent with Φ. By assigning mobiles to their nearest BSs, the horizontal plane is partitioned into

Voronoi cells as illustrated in Fig. 1. It is assumed that the mobile density is much larger than the BS density

such that each cell contains at least one mobile almost surely. Each BS Y serves a single mobile at a time,

denoted as u(Y ), selected from mobiles in the corresponding cell by uniform sampling. Consequently,

the distance between an arbitrary BS Y ∈ Φ to the intended mobile, denoted as LY , has the following

distribution function [12]:

Pr(LY > x) = e−πλx
2
, x ≥ 0. (4)

BSs are clustered using a hexagonal lattice Ω = {T} where T ∈ R2 denotes the coordinates of a lattice

point. Using the lattice points as cluster centers, the horizontal plane is partitioned into hexagonal cluster

regions as illustrated in Fig. 1. Let C(T, r) denote a hexagon centered at T ∈ R2 and having the distance r

5Define the distributions functions F and F̄ of a random variable (rv) X as F(x) = Pr(X ≤ x) and F̄ = Pr(X > x).

The distribution of X belongs to RV(τ) if F̄ = x−τP(x) as x → ∞ with P(x) being a slowly varying function, namely

limx→∞
P(tx)
P(x)

= 1 for all t > 0 [33]. If X is a S(τ) rv, X has support [0,∞) and F∗2(x) = 2F̄(x) with F∗2 represents the

two-fold convolution of F [33].
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TABLE I

SUMMARY OF NOTATION

Symbol Meaning

ϕ, ϕcc OPE for a (typical, cluster-center) mobile

I , Icc Received interference power for a (typical, cluster-center) mobile

` Expected BS-cluster size

M Number of BSs in a typical cluster

Φ, λ PPP of BSs, density of Φ

Ω Hexagonal lattice for clustering BSs

Y ∗, T ∗, U∗ Typical BS, BS-cluster center and mobile

U∗ Cluster of mobiles served by the typical BS cluster

C(T, r) Hexagon centered at T ∈ R2 and having the distance r from T to the boundary

ρ, ρ̃ Distance from the center of a cluster region to an (edge, vertex)

u(Y ) Mobile served by BS Y

LY Distance from BS Y to the affiliated mobile

PY Transmission power for BS Y

fY Beamformer used at BS Y

hUY Vector channel from BS Y to mobile U

α Path-loss exponent

θ Outage threshold

ω Fixed received signal power at a mobile

N , ν Signal diversity order for a typical mobile, the minimum value of N

D Distance from a typical mobile to the boundary of the corresponding cluster

from T to the boundary. Thus the cluster region centered at T ∈ Ω can be represented by C(T, ρ) where ρ

is specified in Fig. 1. Note that ρ determines the density of the lattice Ω. The area of C(T, ρ) is 2
√

3ρ2 and

hence the expected BS-cluster size is ` = 2
√

3ρ2λ. Let Y ∗ denote a typical point in Φ, called the typical

BS, and the mobile served by Y ∗ is called the typical mobile and represented by U∗. Moreover, define the

typical cluster center T ∗ ∈ Ω as one such that C(T ∗, ρ) contains Y ∗. The cluster of BSs lying in C(T ∗, ρ),

namely Φ ∩ C(T ∗, ρ), is called the typical BS cluster; the associated cluster of mobiles is represented by

U∗ = {u(Y ) | Y ∈ Φ ∩ C(T, ρ)}.

B. Multi-Cell Transmission

The cooperation in a BS cluster is realized using a practical interference-coordination approach that

requires no inter-cell data exchange [15]. Consider the typical BS cluster Φ ∩ C(T ∗, ρ) and the affiliated

cluster of mobiles U∗. Assume that each BS employs Q antennas and mobiles have single-antennas. Let M

denote the number of BSs and hence M = |Φ ∩ C(T ∗, ρ)| is a Poisson random variable (rv) with mean `.

It is assumed that Q ≥M so that each BS has sufficient antennas for suppressing interference to mobiles

served by other cooperating BSs. As a result, Q is a rv and varies over different clusters. The analysis in
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Fig. 1. (Left) The topology of the cellular network with Poisson distributed BSs clustered using a hexagonal lattice. The cells

are drawn using thin lines and the cluster regions thick lines; BSs are marked using black dots. (Right) A hexagonal cluster region

where ρ and ρ̃ denote the distances from the cluster center to an edge and a vertex, respectively, and ρ =
√

3
2
ρ̃. The cluster area

is 2
√

3ρ2 and hence the expected BS-cluster size is ` = 2
√

3ρ2λ.

the sequel focuses on the regime of a large average cluster size (M → ∞) corresponding to the regime

of large-scale antenna arrays (Q→∞). With expected deployment of large-scale arrays in future wireless

networks [34], such an assumption may be viable. Furthermore, the analytical results will be shown to

also be accurate for moderate numbers of antennas. For instance, it will be observed subsequently from

simulation results (see Fig. 4) that for sparse scattering the derived asymptotic bounds on the OPE are tight

for expected M smaller than 6 and Q equal to M plus several more antennas to achieve moderate array

gain. Let h[k]
UY ∈ C represent the coefficient of the scalar channel from the k-th antenna at Y to U and

define the channel vector hUY =
[
h

[1]
UY , h

[2]
UY , · · · , h

[Q]
UY

]T . Moreover, let fY ∈ CQ with ‖fY ‖ = 1 denote

the unitary transmit beamformer used at Y . The interference avoidance at Y ∗ is achieved by choosing

fY to be orthogonal to the (M − 1) interference channels and the remaining N = Q −M + 1 degrees

of freedom (DoF), called the diversity order, are applied to attain diversity gain [35]. It is assumed that

N ≥ ν with ν > 1 being the minimum diversity order over different cells, where the constraint ν > 1

ensures finite average transmission power under channel inversion for the case of rich scattering. Assuming

perfect channel-state information at BSs, their beamformers are designed using the zero-forcing criterion

as follows.
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Definition 1 (Interference coordination). The beamformer fY ∗ used at the typical BS Y ∗ solves:

maximize: |f †hU∗Y ∗ |

subject to: f †hUY ∗ = 0 ∀ U ∈ U∗\{U∗}

f ∈ CQ, ‖f‖ = 1.

(5)

This algorithm is also considered in [36] for mitigating inter-cell interference in a two-cell network.

Note that the computation of fY ∗ requires Y ∗ to have CSI of both the data channel and the (M − 1)

channels from Y ∗ to mobiles served by other cooperating BSs, which can be acquired by CSI feedback

[37]. Given that the network is interference limited, with the beamformer designed as in Definition 1, the

signal y received at U∗ is given as

y =
√
PY ∗f

†
Y ∗hU∗Y ∗xU∗ +

∑

Y ∈Φ∩C̄(T ∗,ρ)

√
PY f †Y hU∗Y xu(Y ) (6)

where PY denotes the transmission power of BS Y and xU is a data symbol with unit variance and intended

for U . Let S and I represent the signal and interference powers measured at U∗, respectively. It follows

from (6) that

S = PY ∗
∣∣f †Y ∗hU∗Y ∗

∣∣2 and I =
∑

Y ∈Φ∩C̄(T ∗,ρ)

PY
∣∣f †Y hU∗Y

∣∣2. (7)

Besides mitigating interference using MCC, channel inversion is applied at BSs to cope with data-link

fading. The transmission power PY of BS Y is chosen such that the signal power received by the intended

mobile is a constant ω > 0. Consequently, S = ω and

PY ∗ =
ω

|f †Y ∗hU∗Y ∗ |2
(8)

where ω satisfies the average power constraint E[PY ∗ ] ≤ P̄ with P̄ > 0 and hence is given as

ω =
P̄

E
[
|f †Y ∗hU∗Y ∗ |−2

] . (9)

It is found in this research that channel inversion increases OPE (reduces outage probability) compared

with fixed-power transmission. The reason is that fixed-power transmission causes fluctuation in received

signal power that increases outage probability, which can be removed by channel inversion. The analysis

for the scenario of fixed-power transmission is omitted to keep exposition precise.

C. Channel Models

The scattering environment affects the interference distribution and hence the OPE. For this reason, both

sparse and rich scattering are considered in the OPE analysis and their models are described as follows.
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1) Sparse Scattering: In an environment with sparse scatterers, there usually exists a line-of-sight

path between a transmitter and a receiver and fading is negligible compared with this direct path. Using

beamforming as in Definition 1, each multi-antenna BS forms a physical beam such that the main lobe

is steered towards the intended mobile, nulls towards mobiles served by cooperating BSs, and side-lobes

towards others [38]. This can be modeled such that the interference power I in (7) and transmission power

PY ∗ in (8) are given as

I =
∑

Y ∈Φ∩C̄(T ∗,ρ)

PYGU∗Y |Y − U∗|−α, (10)

PY ∗ = ωLαY ∗W
−1
Y ∗ (11)

where the path-loss exponent α > 2, WY is the main-lobe response of beamforming at Y , and GUY is its

side-lobe response in the direction from Y to U . In practice, the values of WY ∗ and GU∗Y depend on the

size and configuration of BS antenna arrays as well as transmission directions [38]. They are modeled as

random variables (rvs) with the following properties.

Assumption 1 (Sparse-scattering model). The rv WY has bounded support [δ, δ′] with δ′ ≥ δ > 0. For U

and Y associated with different BS clusters, the rv GUY has bounded compact support [0, γ] with γ > 0.
6 The set of rvs {GUY | U ∈ U∗, Y ∈ Φ ∩ C̄(T ∗, ρ)} are independently and identically distributed (i.i.d.).

2) Rich Scattering: The channel is assumed to be frequency non-selective and follows independent

block fading. Rich scattering is modeled by i.i.d. Rayleigh fading as follows.

Assumption 2 (Rich-scattering model). An arbitrary channel coefficient h[k]
UY is given as h[k]

UY = B
[k]
UY |U−

Y |−α where B
[k]
UY is a CN (0, 1) rv. Any two rvs B

[k]
UY and B

[k′]
U ′Y ′ with (k, U, Y ) 6= (k′, U ′, Y ′) are

independent.

It follows from Assumption 2 that an arbitrary channel vector hUY can be written as hUY = qUY |U −
Y |−α where qUY is a Q× 1 random vector comprising i.i.d. CN (0, 1) elements. Moreover, the sequence

{qUY } is i.i.d. The signal and interference powers measured at U∗ are given by (10) and (11) but with

the parameters WY ∗ and GU∗X re-defined as WY ∗ = |f †Y ∗qU∗Y ∗ |2 and GU∗Y = |f †Y qU∗Y |2. The lemma

below follows from [35, Lemma 1] that studies zero-forcing beamforming (see Definition 1) for mobile

ad hoc networks.

6The equality γ = δ′ holds in theory since it is possible for a transmitter to direct a beam towards both an intended and an

unintended receivers if they lie in the same direction. Nevertheless, given sufficiently sharp beams and randomly located nodes,

such an event occurs with negligible probability and hence it can be assumed that γ � δ, δ′. This assumption, however, is not

required for the current analysis.
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(a) Cluster-center mobile
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Fig. 2. The geometry of the interference zones (shaded regions) for (a) a cluster-center mobile and (b) a typical mobile, where

the interferers are Poisson distributed with density λ. The symbols T ∗, C(T ∗, ρ), Y ∗, and U∗ represent the typical cluster center,

cluster region, BS and mobile, respectively.

Lemma 1 ([35]). For rich scattering and conditioned on N = n, WY ∗ is a chi-square rv with 2n DoF and

{GU∗Y | Y ∈ Φ ∩ C̄(T ∗, ρ)} are i.i.d. exponential rvs with unit mean.

III. OPE WITH SPARSE SCATTERING

In this section, the OPE is analyzed for the environment of sparse scattering. Specifically, the OPE is

characterized for a cluster-center mobile and for a typical mobile separately. Thereby, mobiles near cluster

edges are shown to limit network coverage.

A. OPE for Cluster-Center Mobiles

Consider a mobile located at the typical cluster center T ∗ that is farthest from the interference zone

among all mobiles and hence has the smallest outage probability, where an interference zone for a mobile

refers to a region in the horizontal plane comprising interfering BSs. The OPE for a cluster-center mobile,

denoted as ϕcc, can be written by modifying (2) to account for the constraint U∗ = T ∗:

ϕcc(`) = − log Pr(Icc > θ−1ω | U∗ = T ∗) (12)

where Icc represents the interference power measured at T ∗. Asymptotic bounds on ϕcc for large ` are

derived in the sub-sections and then combined to give the main result of this section.
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1) Asymptotic Lower Bound on the OPE: First, a lower bound on ϕcc is obtained as follows. Slightly

abusing notation, let T ∗ also represent the typical cluster-center mobile. As illustrated in Fig. 2(a), C̄(T ∗, ρ)

is the complete interference zone for T ∗. Therefore, Icc can be obtained by modifying (10) as

Icc =
∑

Y ∈Φ∩C̄(T ∗,ρ)

PYGT ∗Y |Y − T ∗|−α (13)

which is a power-law-shot-noise process [26]. It can be observed from (12) that the OPE is determined

by the tail probability of Icc that, however, has no closed-form expression [26]. For the current analysis,

it suffices by deriving an upper bound on Icc. This relies on decomposing Icc into a series of compound

Poisson rvs inspired by the approach in [32]. To this end, the interference zone C̄(T ∗, ρ) is partitioned

into a sequence of disjoint hexagonal rings {An}∞n=1 with An = C(T ∗,
√
n+ 1ρ)\C(T ∗,√nρ). Note that

{An} have the same area as C(T ∗, ρ). The interference power measured at T ∗ due to interferers lying in

An is represented by

Iccn =
∑

Y ∈Φ∩An

PYGT ∗Y |Y − T ∗|−α. (14)

Therefore, Icc in (13) can be decomposed as Icc =
∑∞

n=1 I
cc
n . To facilitate analysis, define a compound

Poisson rv Zn as

Zn =
∑

Y ∈Φ∩An

PYGU∗Y (15)

where {PYGU∗Y } are i.i.d. and the number of terms in the summation, namely |Φ ∩An|, is a Poisson rv

with mean `. Based on the geometry of An, it can be obtained from (14) that Iccn ≤ (
√
nρ)−αZn. Since

` = 2
√

3ρ2λ, it follows that

Icc ≤
(

2
√

3λ
`

)α

2 ∞∑

n=1

n−
α

2 Zn. (16)

Combining (12) and (16) yields a lower bound on ϕcc:

ϕcc(`) ≥ − log Pr

( ∞∑

n=1

n−
α

2 Zn >
ω

θ(2
√

3λ)
α

2
`
α

2

)
. (17)

Next, an asymptotic lower bound on ϕcc as `→∞ can be derived by analyzing the large deviation of

the summation in (17) as follows. As Zn is a sum over the i.i.d. sequence {PYGT ∗Y | Y ∈ Φ∩An}, it is

necessary to characterize the large deviation of PYGT ∗Y as follows.

Lemma 2. For sparse scattering and an arbitrary BS Y ∈ Φ ∩ C̄(T ∗, ρ), E[PYGU∗Y ] is finite and

− log Pr(PYGU∗Y > x) ∼ πλ
(
δ

γω

) 2
α

x
2
α , x→∞. (18)

The proof of Lemma 2 is given in Appendix A. Analyzing the large deviation of Zn also requires the

following result from [39, Proposition 7.1].
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Lemma 3 ([39]). Consider a compound Poisson rv Z0 =
∑F

m=1Hm where F follows the Poisson

distribution and {Hm} are i.i.d. rvs independent with F . If the distribution of Hm is either RV(τ) with

τ > 0 or S(τ) with 0 < τ < 0.5,

Pr(Z0 − E[Z0] > x) ∼ E[F ] Pr(H1 > x), E[F ]→∞ (19)

if x > aE[Z0] for all a > 0, where E[Z0] = E[F ]E[H1].

Since {PYGU∗Y } ∈ S(τ) with 0 < τ < 0.5 from Lemma 2, using the definition of Zn in (15) and

applying Lemma 3 lead to the following result that is proved in Appendix B.

Lemma 4. For n = 1, 2, · · · , if α > 4,

− log Pr
(
Zn > `

α

2 x
)
∼ πλ

(
δ

γω

) 2
α

`x
2
α , `→∞, (20)

and if 2 < α ≤ 4,

− log Pr
(
Zn > `

α

2 x
)
� πλ

(
δ

γω

) 2
α

`
α

4
√
x, `→∞. (21)

Given Lemma 4, the application of the contraction principle from large-deviation theory (see e.g., [31,

Theorem 4.2.1]) yields 7

− log Pr

( ∞∑

n=1

n−
α

2 Zn > `
α

2 x

)
∼ − log Pr

(
Zn > `

α

2 x
)
, `→∞. (22)

Combining (17), (22) and Lemma 4 leads to an asymptotic lower bound on ϕcc as shown below.

Lemma 5. As `→∞, the OPE for a cluster-center mobile satisfies

ϕcc �





c1`, α > 4

c2`
α

4 , 2 < α ≤ 4
(23)

where the constants c1 and c2 are defined as

c1 =
π

2
√

3

(
δ

θγ

) 2
α

, c2 =
πλ1−α

4 δ
2
α

ω
4−α
2α

√
θ(2
√

3)
α

4 γ
2
α

.

2) Asymptotic Upper Bound on the OPE: The OPE ϕcc can be upper bounded by considering only the

interferers for T ∗ from a subset of the interference zone C̄(T ∗, ρ). For this purpose, define a “narrow”

hexagonal ring

Aε = C(T ∗,
√

1 + ερ)\C(T ∗, ρ) (24)

with ε > 0 and

Zε =
∑

Y ∈Φ∩Aε

PYGU∗Y . (25)

7The procedure is similar to that for obtaining (52) in Appendix B.
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Note that Zε is a compound Poisson rv where the Poisson distribution has mean ε`. Since |Y −T ∗| ≤ (1+ε)ρ̃

for all Y ∈ Φ ∩ Aε and Aε ∈ C̄(T ∗, ρ), Icc in (13) is lower bounded as

Icc ≥ [(1 + ε)ρ̃]−αZε. (26)

By combining (12) and (26) and using ρ̃ = 2√
3
ρ, the OPE ϕcc can be upper bounded as

ϕcc ≤ − log Pr

((
2√
3

(1 + ε)ρ
)−α

Zε > θ−1ω

)
. (27)

Analyzing the scaling of the right-hand side of (27) as `→∞ leads to an asymptotic upper bound on ϕcc

as shown in Lemma 6 that is proved in Appendix C.

Lemma 6. For sparse scattering and as `→∞, the OPE for a cluster-center mobile satisfies

ϕcc � 4c1

3
` (28)

where the constant c1 is as defined in Lemma 5.

3) Main Result and Remarks: Combining Lemma 5 and 6 leads to the following theorem.

Theorem 2. For sparse scattering and as `→∞, the OPE for a cluster-center mobile satisfies

1) for α > 4,

c1` � ϕcc(`) �
4c1

3
`, (29)

2) and for 2 < α ≤ 4,

c2`
α

4 � ϕcc(`) � 4c1

3
`, (30)

where c1 and c2 are as defined in Lemma 5.

Several remarks are in order.

1) Theorem 2 shows that ϕcc scales linearly with increasing ` for a large path-loss exponent (α > 4)

and at least sub-linearly for a moderate-to-small exponent (2 < α ≤ 4). These results suggest that

as ` → ∞, Pout diminishes exponentially and at least sub-exponentially for α > 4 and 2 < α ≤ 4,

respectively. The scaling of Pout depends on α because it determines the level of spatial separation.

Note that for α > 4, the asymptotic bounds on ϕcc have a ratio of 4/3 [see (29)] and hence are tight.

Mathematically, the tightness of the bounds is due to the product rv PYGT ∗Y in the expression for

Icc in (13) having a distribution with a sufficiently heavy right tail, allowing accurate characterization

of the asymptotic tail probability of Icc. However, as α decreases, the tail probability of PYGT ∗Y

reduces. Consequently, the ratio of the asymptotic bounds on ϕcc in (30) diverge as ` increases.

2) It can be observed from Theorem 2 and the definitions of c1 and c2 that larger ϕcc results from

increasing the ratio δ/γ, namely the minimum ratio between the magnitudes of beam main-lobes
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and side-lobes. In other words, as `→∞, the outage probability diminishes faster for sharper beams,

agreeing with intuition.

3) Theorem 2 suggests that for fixed outage probability, the outage threshold θ should be proportional

to `
α

2 . Correspondingly, the throughput of a cluster-center mobile, defined as R = log(1 + θ), can

grow with increasing ` as

R ∼ α

2
log `, `→∞.

Note that R scales linearly with α because large α corresponds to more severe attenuation of inter-

cluster interference.

B. OPE for Typical Mobiles

Consider the typical mobile U∗ and the corresponding OPE ϕ as given in (2). The asymptotic bounds

on ϕ are derived in the following subsections.

1) Asymptotic Lower Bound on the OPE: First, a lower bound on ϕ is obtained as follows. For ease

of notation, the distance LY ∗ between the typical mobile and BS is re-denoted as L. As illustrated in

Fig. 2(b), the interfering BSs for U∗ are Poisson distributed in the region Λ = C̄(T ∗) ∩ Ō(U∗, L) where

O(A, r) represents a disk centered at A ∈ R2 and with the radius r ≥ 0, namely that O(A, r) = {X ∈
R2 | |X − A| ≤ r}. Note that Ō(U∗, L) encloses the complete interference zone for U∗ due to the fact

that any interfering BS for U∗ is farther than the serving BS Y ∗ at a distance of L from U∗. As a result,

the interference power for U∗ can be written as

I =
∑

Y ∈Φ∩Λ

PYGU∗Y |Y − U∗|−α. (31)

An upper bound on I is obtained based on (31) and the definition of Λ as

I ≤
∑

Y ∈Φ∩C̄(T ∗,ρ)

PYGU∗Y [max(|Y − U∗|, L)]−α

=
∞∑

n=1

∑

Y ∈An

PYGU∗Y [max(|Y − Y ∗| − L,L)]−α (32)

where (32) uses the triangular inequality |Y − U∗| ≥ |Y − Y ∗| − |Y ∗ − U∗| and C̄(T ∗, ρ) = ∪nAn with

{An} being the hexagonal rings defined in Section III-A1. Let D denote the distance from Y ∗ to the

boundary of C(T ∗, ρ): D = minX∈C̄(T ∗,ρ) |Y ∗ −X|. By the stationarity of the mobile and BS processes,

Y ∗ is uniformly distributed in C(T ∗, ρ), resulting in the following distribution of D:

Pr(D ≤ x) = 1−
(

1− x

ρ

)2

, 0 ≤ x ≤ ρ. (33)

Since the shortest distance between Y ∗ and a point in An is
√
nρ− ρ+D, it follows from (32) that

I ≤
∞∑

n=1

[
max(

√
nρ− ρ+D − L,L)

]−α
Zn (34)
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Y ⇤
D

T ⇤

C(T ⇤, ⇢)
H

L

30o

⇢
p (⇢

+ L)2 + u

Fig. 3. Geometric definition of the set H ⊂ R2 used in the proof of Lemma 9.

where Zn is defined in (15). From (2) and (34), ϕ can be lower bounded as

ϕ(`) ≥ − log Pr

( ∞∑

n=1

(
max(

√
nρ− ρ+D − L,L)

)−α
Zn > θ−1ω

)
. (35)

Next, an asymptotic lower bound on ϕ is derived by analyzing the scaling of the right-hand size of

(35) as `→∞. For this purpose, it is shown in the following lemma that ϕ can be asymptotically upper

bounded by an expression comprising a series of the i.i.d. compound Poisson rvs {Zn}, which facilitates

a similar approach as used for obtaining Lemma 5.

Lemma 7. For sparse scattering and as `→∞, the OPE for a typical mobile satisfies

ϕ(`) � min

(
min
y>0

(
− log Pr

( ∞∑

n=1

n−
α

2 Zn >
ωy

2αθ

)
,− log Pr (Dα ≤ y)

)
,− log Pr

(
L >

D

2

))
.

The proof of Lemma 7 is provided in Appendix D. By analyzing the scalings of the three terms in the

lower bound on ϕ, an asymptotic lower bound on the OPE is obtained as follows.

Lemma 8. For sparse scattering and as `→∞, the OPE for a typical mobile satisfies

ϕ(`) � 1
2

(
1− 2

α

)
log `. (36)

The proof of Lemma 8 is provided in Appendix E.

2) Asymptotic Upper Bound on the OPE: The analytical technique for deriving an upper bound on ϕ

essentially considers only interference to U∗ from interferers lying in a subset of the interference zone Λ

defined in the preceding section. Specifically, define a region H ⊂ Λ (see Fig. 3) as

H =
{
X ∈ C̄(T ∗, ρ+ L) ∩ C(T ∗,

√
(ρ+ L)2 + u) | −π

6
≤ ∠(X − Y ∗)− ∠(JY ∗ − Y ∗) ≤

π

6

}
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where u > 0 and JY ∗ is a point in C̄(T ∗, ρ) such that |JY ∗ − Y ∗| = D. Then the OPE ϕ in (2) can be

upper bounded as

ϕ ≤ − log
[
Pr
(∑

Y ∈H
PYGU∗Y |Y − U∗|−α > θ−1ω | Φ ∩H 6= ∅

)
Pr(Φ ∩H 6= ∅)

]
. (37)

Let Y0 denote an arbitrary BS in H conditioned on Φ ∩H 6= ∅. Since |Y0 − U∗| ≤ |Y0 − Y ∗|+ L by the

triangular inequality and

|Y0 − Y ∗| ≤
√

3
2

[√
(ρ+ L)2 + u− ρ+D

]
(38)

from the geometry of H (see Fig. 3), it follows from (37) that

ϕ ≤− log Pr

(
PY0GU∗Y0 >

ω

θ

(√
3

2

(√
(ρ+ L)2 + u− ρ+D

)
+ L

)α
| Φ ∩H 6= ∅

)
−

log Pr(Φ ∩H 6= ∅).
(39)

By inspecting the scalings of the two terms at the right-hand of (39) as ` → ∞, an asymptotic upper

bound on ϕ is obtained as shown in Lemma 9, which is proved in Appendix F.

Lemma 9. For sparse scattering and as `→∞, the OPE for a typical mobile satisfies

ϕ(`) � 1
2

log `. (40)

3) Main Result and Remarks: The following theorem results from combining Lemma 8 and Lemma 9.

Theorem 3. For sparse scattering and as `→∞, the OPE ϕ for a typical mobile satisfies

1
2

(
1− 2

α

)
log ` � ϕ(`) � 1

2
log `. (41)

Several remarks can be made.

1) The scaling of the OPE ϕ in Theorem 3 is largely determined by the left-tail probability [see (35) and

(39)] of the distance D from the typical BS to the boundary of the affiliated cluster. The dominance of

D in determining ϕ is due to that its distribution has a linear left tail [see (33)] that is heavier than the

distribution tails of other random network parameters. As can be observed from (41), the asymptotic

bounds on ϕ are tighter for larger α. The reason is that the right tail of the interference-power

distribution becomes lighter (with steeper slope) as α increases, which strengthens the mentioned

dominance of D and thereby tightens bounds on ϕ.

2) Theorem 3 shows that ϕ scales logarithmically with increasing `. In contrast, from Theorem 2, the

scaling of ϕcc for a cluster-center mobile is much faster, namely at least sub-linearly with increasing

`. The reason for this difference in the OPE scaling is that the typical mobile accounts for not only

cluster-interior mobiles but also cluster-edge mobiles that are exposed to strong interference and as

a result have much higher outage probability than the cluster-interior mobiles. This suggests that
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cluster-edge mobiles are the bottleneck of network coverage and should be protected from strong

inter-cluster interference by e.g., applying fractional frequency reuse [20] along cluster edges.

3) The OPE scaling in Theorem 3 is closely related to the fact that the fraction of mobiles that are

near cluster edges is approximately proportional to ρ−1 or equivalently `−
1
2 . Given the dominance

of the outage probabilities for the cluster-edge mobiles over those of the cluster-interior mobiles, the

outage probability for the typical mobile is expected to be approximately proportional to the fraction

of cluster-edge mobiles and hence `−
1
2 . Consequently, the resultant OPE should be proportional to

1
2 log `, which matches the result in Theorem 3.

4) Unlike Theorem 2 (see Remark 3), Theorem 3 does not reveal the throughput scaling for a typical

mobile. The reason is that the distribution of the distance D from a typical mobile to the boundary of

the corresponding cluster [see (33)] dominates the OPE but is independent with the outage threshold

θ that determines the throughput.

IV. OPE WITH RICH SCATTERING

Sparse scattering is assumed in the preceding section. In this section, rich scattering is considered and

the corresponding OPE is analyzed for cluster-center and typical mobiles separately. It is shown that rich

scattering decreases the OPE for cluster-center mobiles but has no effect on the OPE for the typical mobiles.

A. OPE for Cluster-Center Mobiles

1) Asymptotic Lower Bound on the OPE: The presence of rich scattering results in channel fading

and hence affects the OPE. In particular, the resultant distributions of transmission power given channel

inversion and interference-channel gains are characterized in Lemma 10 in the sequel. The effect of rich

scattering is reflected in the difference between Lemma 2 and Lemma 10.

Lemma 10. For rich scattering and an arbitrary BS Y ∈ Φ ∩ C̄(T ∗, ρ),

Pr(PYGU∗Y > x) ∼ Γ
(
αν
2 + 1

)
Pr(N = ν)

(πλ)
αν

2
x−ν , x→∞ (42)

where Γ(·) denotes the Gamma function.

The proof of Lemma 10 is given in Appendix G. Consider the lower bound on the OPE in (17) based

on the sequence of compound Poisson rvs {Zn}, which also holds for ϕcc with rich scattering. To analyze

the scaling of the lower bound as `→∞, the large deviation of Zn is characterized as follows.

Lemma 11. For rich scattering and as `→∞,

Pr
(
Zn > `

α

2 x
)
∼ Γ

(
αν
2 + 1

)
Pr(N = ν)

(πλ)
αν

2
`−

αν

2
+1x−ν , n = 1, 2, · · · . (43)
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The proof of Lemma 11 can be straightforwardly modified from that of Lemma 4 by applying Lemma 10

in place of Lemma 2; the details are omitted for brevity. It can be observed from (43) that the distribution

of Zn does not have a sub-exponential tail as for the case with sparse scattering. This makes it difficult to

apply the contraction principle as before to derive the scaling of the series
∑∞

n=1 n
−α

2 Zn, which is needed

for obtaining an asymptotic lower bound on ϕ. To overcome this difficulty, the current analysis applies the

following result from [40, Theorem 2.3].

Lemma 12 ([40]). Consider a sequence of i.i.d. rvs {Z̃n} whose distribution belongs to RV(β) with β > 0

and a sequence of nonnegative scalars {ρn} with
∑∞

n=1 ρ
v
n being finite for some 0 < v < min(1, β). The

tail probability of
∑∞

n=1 ρnZ̃n scales as

Pr

( ∞∑

n=1

ρnZ̃n > x

)
∼
∞∑

n=1

ρβn Pr(Z̃n > x), x→∞. (44)

Based on Lemma 11 and Lemma 12, it is proved in Appendix H that as `→∞, the OPE can be upper

bounded as shown in the following lemma.

Lemma 13. For rich scattering and as `→∞, the OPE for a cluster-center mobile satisfies

ϕcc(`) �
(

1
2
αν − 1

)
log `. (45)

2) Asymptotic Upper Bound on the OPE: The following lemma is proved using Lemma 10 and applying

a procedure similar to that for proving Lemma 6 with the details omitted to keep the exposition precise.

Lemma 14. For rich scattering and as `→∞, the OPE for a cluster-center mobile satisfies

ϕcc(`) � 1
2
αν log `. (46)

3) Main Result and Remarks: The following theorem follows directly from Lemma 13 and 14.

Theorem 4. For rich scattering and as `→∞, the OPE for a cluster-center mobile satisfies

(
1
2
αν − 1

)
log ` � ϕcc(`) � 1

2
αν log ` (47)

where ν is the minimum diversity order.

A few remarks are in order.

1) By comparing Theorem 4 with Theorem 2, one can see that channel fading caused by rich scattering

degrades ϕcc dramatically. To be specific, as ` → ∞, ϕcc can scale at least sub-linearly with ` for

sparse scattering but only logarithmically for rich scattering. Roughly speaking, fading increases the

randomness in interference and thereby reduces the level of spatial separation. This introduces a

larger number of significant interferers for the cluster-center mobiles with respect to the case of no
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fading and hence compromises the effectiveness of MCC. This is the key reason for the slower OPE

scaling in Theorem 4 compared with that in Theorem 2.

2) For single-cell transmissions over fading channels, increasing the BS density does not change the

outage probability for an interference-limited network, as shown in [12]. In contrast, Theorem 4

indicates that it is possible to reduce outage probability by deploying more BS so long as the

numbers of cooperating BSs increase proportionally.

3) It is well-known that the effect of fading can be alleviated by diversity techniques [41]. This is

reflected in Theorem 4 where ϕcc is observed to increase approximately linearly with the minimum

diversity order ν if αν is large. For this case, the asymptotic bounds on ϕcc are observed to be tight.

Moreover, ϕcc also grows approximately proportionally with increasing α as inter-cluster interference

is more severely attenuated.

B. OPE for Typical Mobiles

The type of scattering has no effect on the scaling of OPE for a typical mobile as `→∞ as stated in

the following theorem.

Theorem 5. For rich scattering and as ` → ∞, the OPE for the typical mobile scales as shown in

Theorem 3.

The proof of Theorem 5 can be easily modified from that of Theorem 3 based on the new distribution

of the rvs {PYGU∗Y } in Lemma 10. The detailed proof of Theorem 5 is omitted.

The insensitivity of ϕ with respect to the change on the scattering environment is due to that the

distribution of D is independent with scattering and has a dominant effect on ϕ compared with the

distributions of other network parameters (see Remark 1 on Theorem 3). Furthermore, since the distribution

function of D is also independent with the diversity order N , it can be observed by comparing Theorem 4

and 5 that unlike a cluster-center mobile, a typical mobile does not benefit from transmit diversity for

improving the OPE scaling. Therefore, the result in Theorem 5 reiterates the importance of suppressing

inter-cluster interference for cluster-edge mobiles to improve network coverage via MCC.

V. SIMULATION RESULTS

The simulation method and settings are summarized as follows. The infinite network region is approx-

imated by a disk centered at the origin, where BSs are Poisson distributed with density λ = 10−2 and

the disk area is chosen such that the expected number of BSs in the disk is 200 i.e., the disk area is

200/λ = 2 × 104. The typical cluster region is centered at the origin and the size is determined by the

expected BS-cluster size `. The main and side lobes of beams are uniformly distributed in the intervals
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Fig. 4. Outage probability versus expected BS-cluster size ` with (a) sparse scattering or (b) rich scattering. For comparison, the

outage probability for the case of no MCC is specified by dashed horizontal lines.

[δ, δ′] = [6, 10] and [0, γ] = [0, 1], respectively. Other parameters are sets as α = 4, N = 3 (rich scattering),

and θ = 3.

In Fig. 4, outage probability is plotted against increasing ` for different combinations of sparse/rich

scattering and a cluster-center/typical mobile. To evaluate the asymptotic results derived in the preceding

sections, Fig. 4 also displays curves obtained from the asymptotic bounds on the OPE as follows. Consider

a typical mobile and let ϕ+ and ϕ− represent the asymptotic upper and lower bounds on the OPE,

respectively. Note that outage probability can be approximated as Pout ≈ be−ϕ(`) if ` � 1 where b is a

constant. For this reason, the functions b1e−ϕ
+(`) and b2e

−ϕ−(`) are plotted in Fig. 4 and identified by
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Fig. 5. Outage capacity per mobile versus expected BS-cluster size ` for the maximum outage probability of 0.05. Note that the

outage capacity per mobile for the case of no MCC is approximately zero.

the legends “OPE asymptotic upper bound” and “OPE asymptotic lower bound”, respectively, where the

constants b1 and b2 are chosen such that the matching analytical and simulation curves overlap at their

rightmost points for ease of comparison. Similar curves are also plotted in Fig. 4 for a cluster-center mobile.

The curves based on analysis and simulation are observed to be closely aligned if ` is sufficiently large,

indicating that the derived asymptotic bounds on the OPE (especially the asymptotic lower bound) are

accurate. In particular, for the cluster-center mobile with sparse scattering, the curve from the asymptotic

lower bound on the OPE overlaps with the simulation curve and hence this bound is tight even for small

values of `.

Next, it can be observed from Fig. 4 that as ` increases, the outage probability for a cluster-center

mobile decreases rapidly but the outage probability for a typical mobile remains almost unchanged and

close to the result for the case of no MCC (specified in Fig. 4 using dashed lines). In other words, it is

verified that MCC benefits only cluster-interior mobiles and cluster-edge mobiles limit network coverage.

This observation is consistent with findings from implementing MCC in practical networks [19], [42], [43].

Furthermore, with respect to sparse scattering, rich scattering is observed to increase outage probability

for cluster-center mobiles by up to several orders of magnitude.

Fig. 5 compares the outage capacity of cluster-center and typical mobiles, namely their maximum

throughput given the maximum outage probability of 0.05. The observations from Fig. 5 are consistent

with those from Fig. 4. Specifically, the outage capacity for a typical mobile is marginal even as ` increases

while the outage capacity for mobiles without MCC is approximately zero. In contrast, the outage capacity

for a cluster-center mobile increases rapidly with growing ` and sparse scattering results in much higher

capacity than rich scattering.
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VI. CONCLUDING REMARKS

In this paper, a novel model was proposed for a cellular downlink network with MCC. The network cov-

erage was analyzed in terms of the outage-probability exponent. It was shown that though the performance

gain for cluster-interior mobiles from MCC is large, the gain for a typical mobile is small as it is likely to be

located near the edge of a base-station cluster and exposed to strong inter-cluster interference. This finding

provides an explanation for the marginal gain of MCC in practice, and suggests the need to design a new

medium-access-control protocol or apply fractional-frequency reuse for protecting cluster-edge mobiles.

This work opens several interesting directions for further research. In particular, instead of using a lattice,

base-stations can be clustered by a random process such as a Poisson random tessellation that gives non-

uniform expected BS-cluster sizes. Moreover, the current interference-coordination algorithm that requires

multi-antennas at base stations can be replaced with a network-MIMO algorithm that supports cooperation

between single-antenna base stations at the cost of inter-cell data exchange. Last, the proposed analytical

framework can be applied to study the performance of other MCC algorithms and heterogeneous networks

with MCC.
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APPENDIX

A. Proof of Lemma 2

Consider an arbitrary BS Y ∈ Φ. For convenience, define β = WY /GU∗Y with support [δ/γ,∞) and the

probability density function denoted as fβ . Using PY = ωLαY /WY from (11) and Pr(LαY > x) = e−πλx
2
α

from the distribution of LY in (4), given ε > 0,

Pr(PYGU∗Y > x) =
∫ ∞

(1+ε) δ
γ

e−πλ(τx/ω)
2
α fβ(τ)dτ +

∫ (1+ε) δ
γ

δ

γ

e−πλ(τx/ω)
2
α fβ(τ)dτ (48)

≤ e−πλ
“

(1+ε) δx
γω

” 2
α

Pr
(
β > (1 + ε)

δ

γ

)
+ e
−πλ

“
δx

γω

” 2
α

Pr
(
δ

γ
≤ β ≤ (1 + ε)

δ

γ

)
.

It follows that

− log Pr(PYGU∗Y > x) � πλ
(
δ

γω

) 2
α

x
2
α , x→∞. (49)

From (48),

Pr(PYGU∗Y > x) ≥ e−πλ
“

(1+ε) δx
γω

” 2
α

Pr
(
δ

γ
≤ β ≤ (1 + ε)

δ

γ

)
.

Thus,

− log Pr(PYGU∗Y > x) � (1 + ε)
2
απλ

(
δ

γω

) 2
α

x
2
α , x→∞. (50)

Combining (49) and (50) and letting ε → 0 gives the desired result in (18). Last, the finiteness of

E[PYGU∗Y ] follows from the fact that E[Lα], E[GU∗Y ] and E[W−1
Y ] are all bounded. �

B. Proof of Lemma 4

First, consider the case of α > 4. Since PYGU∗Y ∈ S(τ) with 0 < τ < 0.5 according to Lemma 2 and

E[Zn] = `E[PYGU∗Y ], applying Lemma 3 gives the desired result in (20).

Next, consider the case of 2 < α ≤ 4. It is claimed that there exists ε > 0 such that

− log Pr(Zn > `
α

2 x) � − log Pr

( ∑

Y ∈Φ∩An

(PYGU∗Y )
4(1+ε)
α > `

α

2 x

)
, `→∞ (51)

with x > 0. To prove this claim, let V1, V2, · · · , Vk denote k i.i.d. rvs following the same distribution as

PYGU∗Y for an arbitrary Y ∈ Φ ∩ C̄(T ∗, ρ). By using Lemma 2 and applying the contraction principle

from large-deviation theory [31, Theorem 4.2.1], for a set of nonnegative numbers {x1, x2, · · · , x`},

− log Pr

(
k∑

n=1

Vk > x

)
∼ πλ

(
δ

γω

) 2
α

infPk
n=1 xn>x

k∑

n=1

x
2
α

k , x→∞

∼ πλ
(
δ

γω

) 2
α

x
2
α (52)

where (52) results from the inequality
(∑k

n=1 xk

)p
≤∑k

n=1 x
p
k if 0 ≤ p ≤ 1. It can be obtained similarly

that given ε > 0,

− log Pr

(
k∑

n=1

V
4(1+ε)
α

k > x

)
∼ πλ

(
δ

γω

) 2
α

x
1+ε
2 , x→∞. (53)
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By comparing (52) and (53), if ε is sufficiently small,

− log Pr

(
k∑

n=1

Vk > x

)
� − log Pr

(
k∑

n=1

V
4(1+ε)
α

k > x

)
, x→∞. (54)

Since the inequality in (54) holds for arbitrary k, the claimed inequality in (51) is proved. It follows from

Lemma 2 that (PYGU∗Y )
4(1+ε)
α ∈ S(τ) with 0 < τ < 0.5 for all Y ∈ Φ ∩ C̄(T ∗, ρ). Therefore, it can be

derived similarly as (20) in the lemma statement that

− log Pr

( ∑

Y ∈Φ∩An

(PYGU∗Y )
4(1+ε)
α > `

α

2 x

)
∼ πλ

(
δ

γω

) 2
α

`
α

4(1+ε)x
1

2(1+ε) . (55)

Substituting (55) into (51) and letting ε→ 0 gives (21) in the lemma statement. �

C. Proof of Lemma 6

From (27),

ϕcc ≤ − log

[
Pr

((
2√
3

(1 + ε)ρ
)−α

PYGT ∗Y > θ−1ω | Y ∈ Φ ∩ Aε
)

Pr(Φ ∩ Aε 6= ∅)
]
. (56)

Since Pr(Φ ∩ Aε 6= ∅) =
(
1− e−ε`

)
and ` = 2

√
3ρ2λ, using (56) and applying Lemma 2 give

ϕcc � 2π(1 + ε)2

3
√

3

(
δ

θγ

) 2
α

`, `→∞. (57)

The desired result follows from (57) by letting ε→ 0. �

D. Proof of Lemma 7

By expanding outage probability, it can be shown that

Pout ≤ Pr
(
I > θ−1ω | L ≤ D

2

)
+ Pr

(
L >

D

2

)
. (58)

The substitution of (34) yields

Pout ≤ Pr

( ∞∑

n=1

Zn
(
max(

√
nρ− ρ+D − L,L)

)−α
> θ−1ω | L ≤ D

2

)
+ Pr

(
L >

D

2

)
(59)

≤ Pr

( ∞∑

n=1

Zn

(√
nρ− ρ+

D

2

)−α
> θ−1ω

)
+ Pr

(
L >

D

2

)
. (60)

Since D ≤ ρ, the replacement of ρ in (60) with D/2 further upper bounds Pout as

Pout ≤ Pr

( ∞∑

n=1

n−
α

2 Zn >
Dαω

2αθ

)
+ Pr

(
L >

D

2

)
. (61)

Applying the similar method as for obtaining (60) results in an upper bound on the first term at the

right-hand side of (61):

Pr

( ∞∑

n=1

n−
α

2 Zn >
Dαω

2αθ

)
≤ min

y>0

[
Pr

( ∞∑

n=1

n−
α

2 Zn > 2−αθ−1ωy

)
+ Pr(Dα ≤ y)

]
. (62)
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By combining (61) and (62),

Pout ≤ min
y>0

[
Pr

( ∞∑

n=1

n−
α

2 Zn > 2−αθ−1ωy

)
+ Pr(Dα ≤ y)

]
+ Pr

(
L >

D

2

)
. (63)

As ` → ∞, the term at the right-hand size of (63) that decays at the slowest rate dominates the other

two terms. Specifically, given (63) and the definition of ϕ in (1), applying [31, Lemma 1.2.15] yields the

desired result in the lemma statement. �

E. Proof of Lemma 8

Consider the three terms in the asymptotic lower bound on ϕ in Lemma 7. By setting 2−αθ−1ωy =

E[Zn] + ρ2(1+ε) with ε > 0, the procedure similar to that for obtaining Lemma 4 can be applied to derive

the following asymptotic lower bound on the first term:

− log Pr

( ∞∑

n=1

n−
α

2 Zn > 2−αθ−1ωy

)
� πλ

(
δ

γω

) 2
α
(

`

2
√

3λ

) 1+ε
2

, `→∞. (64)

The scaling of the second term is obtained using (33) as

− log Pr(Dα ≤ y) ∼ 1
2

(
1− 2(1 + ε)

α

)
log `, `→∞. (65)

Using the distributions of L and D in (4) and (33) respectively,

Pr
(
L >

D

2

)
=

2
ρ

∫ ρ

0
e−

πλτ2

4

(
1− τ

ρ

)
dτ

∼ 2√
λρ
− 4
πλρ2

, ρ→∞.

By substituting ` = 2
√

3ρ2, the third term is proved to scale as

− log Pr
(
L >

D

2

)
∼ 1

2
log `, `→∞. (66)

Last, the substitution of (64), (65) and (66) into the asymptotic lower bound on ϕ in Lemma 7 and letting

ε→ 0 leads to the result in the lemma statement. �

F. Proof of Lemma 9

As the area of H is 2
√

3u, the number of BSs in H, namly |Φ ∩ H|, follows the Poisson distribution

with mean 2
√

3uλ. Using this fact and (39), as ρ→∞,

ϕ ≤ − log Pr

(
PY0GY0 >

ω

θ

(√
3

2
D +

(√
3

2
+ 1

)
L+O

(
u

ρ+ L

))α)
+ 2
√

3uλ

≤ − log Pr

(
PY0GY0 >

ω

θ

(√
3

2
x+

(√
3

2
+ 1

)
L+O

(
u

ρ+ L

))α)
−

log Pr(D < x) + 2
√

3uλ, x > 0. (67)
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By keeping u and x constant and letting ρ→∞,

ϕ � − log Pr(D < x)

∼ log ρ (68)

where (68) uses the distribution function of D in (33). The substitution of ` = 2
√

3λρ2 into (68) proves

the desired result. �

G. Proof of Lemma 10

Consider an arbitrary BS Y ∈ Φ and the corresponding parameters {PY , GY ,WY , LY }. The subscripts

of these parameters are omitted in the remainder of this proof to simplify notation. Given P = Lα/W

from channel inversion and x > 0, it follows from Lemma 1 that

Pr(PG > x) = Pr
(
G > WL−αx

)

= E
[
e−WL−αx

]

= E

[∫ ∞

0
e−xL

−αw wN−1

(N − 1)!
e−wdw

]

= E

[
1

(1 + xL−α)N

]
(69)

≥ E

[
1

(1 + xL−α)N
| xL−α > log x

]
Pr(xL−α > log x)

≥ E


 1
(

1 + 1
log x

)N
xN

LαN | xL−α > log x


Pr(xL−α > log x)

= E



(

1 +
1

log x

)−N
x−N

∫ “
x

log x

” 1
α

0
yαNe−πλy

2
d(πλy2)




∼ E

[
Γ
(
αN
2 + 1

)

(πλ)
αN

2

x−N

]
, x→∞

∼ Γ
(
αν
2 + 1

)
Pr(N = ν)

(πλ)
αν

2
x−ν , x→∞. (70)

Next, from (69),

Pr(PG > x) ≤ E
[
x−NLαN

]

∼ Γ
(
αν
2 + 1

)
Pr(N = ν)

(πλ)
αν

2
x−ν , x→∞. (71)

Combining (70) and (71) gives the result in the lemma statement. �
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H. Proof of Lemma 13

To apply Lemma 12, define Z ′n = Zn/`
1
ν and z = `

α

2
− 1
ν (2
√

3λ)−
α

2 x and rewrite (43) as

Pr(Z ′n > z) ∼ Γ
(
αν
2 + 1

)
Pr(N = ν)

(πλ)
αν

2
z−ν , z →∞. (72)

It can be observed from (72) that Z ′n ∈ RV(ν). Moreover, given α > 2, the sum
∑∞

n=1 n
−α

2 can be checked

to be finite. Therefore, using (72) and applying Lemma 12,

Pr

( ∞∑

n=1

n−
α

2 Z ′n > z

)
∼ Γ

(
αν
2 + 1

)
Pr(N = ν)

(πλ)
αν

2
z−ν

∞∑

n=1

n−
α

2 . (73)

The substitution of the definitions of Z ′n and z into (73) yields

Pr

( ∞∑

n=1

n−
α

2 Zn >

(
`

2
√

3λ

)α

2

x

)
∼ Γ

(
αν
2 + 1

)
Pr(N = ν)(2

√
3λ)

1
2
αν

(πλ)
ν

α

`−( 1
2
αν−1)x−ν

∞∑

n=1

n−
α

2 . (74)

The desired asymptotic lower bound on the OPE follows from (17) and (74). �




