GLOBAL CONVERGENCE OF A NEW HYBRID GAUSS–NEWTON STRUCTURED BFGS METHOD FOR NONLINEAR LEAST SQUARES PROBLEMS

WEIJUN ZHOU† AND XIAOJUN CHEN‡

Abstract. In this paper, we propose a hybrid Gauss–Newton structured BFGS method with a new update formula and a new switch criterion for the iterative matrix to solve nonlinear least squares problems. We approximate the second term in the Hessian by a positive definite BFGS matrix. Under suitable conditions, global convergence of the proposed method with a backtracking line search is established. Moreover, the proposed method automatically reduces to the Gauss–Newton method for zero residual problems and the structured BFGS method for nonzero residual problems in a neighborhood of an accumulation point. A locally quadratic convergence rate for zero residual problems and a locally superlinear convergence rate for nonzero residual problems are obtained for the proposed method. Some numerical results are given to compare the proposed method with some existing methods.

Key words. nonlinear least squares, Gauss–Newton method, BFGS method, structured quasi-Newton method, global convergence, quadratic convergence

AMS subject classifications. 90C06, 65K05

DOI. 10.1137/090748470

1. Introduction. This paper is devoted to solving the following nonlinear least squares problems:

\begin{equation}
\min f(x) = \frac{1}{2} \sum_{i=1}^{m} r_i^2(x) = \frac{1}{2} \|r(x)\|^2, \quad x \in \mathbb{R}^n,
\end{equation}

where \(r(x) = (r_1(x), \ldots, r_m(x))^T\), \(r_i : \mathbb{R}^n \to \mathbb{R}\) are twice continuously differentiable for \(i = 1, \ldots, m\), and \(\|\cdot\|\) denotes the Euclidean norm. It is clear that

\begin{equation}
\nabla f(x) = J(x)^T r(x), \quad \nabla^2 f(x) = J(x)^T J(x) + \sum_{i=1}^{m} r_i(x) \nabla^2 r_i(x),
\end{equation}

where \(J(x)\) is the Jacobian matrix of \(r(x)\). Throughout the paper, we denote

\[g(x) = \nabla f(x), \quad S(x) = \sum_{i=1}^{m} r_i(x) \nabla^2 r_i(x), \]

\[g_k = g(x_k), \quad J_k = J(x_k), \quad r_k = r(x_k), \quad s_k = x_{k+1} - x_k. \]

Received by the editors February 2, 2009; accepted for publication (in revised form) April 18, 2010; published electronically June 18, 2010.

http://www.siam.org/journals/siopt/20-5/74847.html

†Department of Mathematics, Changsha University of Science and Technology, Changsha 410004, China (weijunzhou@126.com). This author’s research was supported by the Hong Kong Polytechnic University Postdoctoral Fellowship Scheme, the NSF foundation (10901026, 10771057, and 10701018) of China, and the project 09B001 of the Scientific Research Fund of the Hunan Provincial Education Department.

‡Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China (maxjchen@polyu.edu.hk). This author’s research was supported by the Hong Kong Research Grant Council.
Nonlinear least squares problems have wide applications such as data fitting, parameter estimation, function approximation, etc. [2, 30]. Most iterative methods using a line search are variants of Newton’s method, which can be written in a general form:

\[x_{k+1} = x_k + \alpha_k d_k, \]

where \(\alpha_k > 0 \) is a stepsize given by some line search and \(d_k \) is a search direction satisfying \(B_k d = -g_k \), where \(B_k \in \mathbb{R}^{n \times n} \) is an approximation of \(\nabla^2 f(x_k) \).

The aim of this paper is to design a globally and locally fast convergent structured quasi-Newton algorithm with a backtracking line search for nonlinear least squares problems. Although trust region methods have been used to solve nonlinear least squares problems [6, 8, 30], they do not require a positive definite iteration matrix. For example, Dennis, Gay, and Welsch [8] presented a quasi-Newton algorithm NL2SOL with trust region strategy. Numerical experiments show that quasi-Newton algorithm NL2SOL is efficient for large residual problems and the performance of NL2SOL is similar to that of the Levenberg–Marquardt algorithm for small residual problems [30]. However, in this paper, we focus only on line search approaches. Hence the need for \(B_{k+1} \) to be positive definite is necessary.

Traditional structured quasi-Newton methods are focused on the local convergence analysis. Their global convergence results have not been established. Li and Fukushima [22, 23] proposed two globally convergent modified BFGS methods for nonconvex unconstrained optimization. However, the Li–Fukushima methods have no quadratic convergence rate for least squares problems with zero residual problems, and the special structure of \(\nabla^2 f(x_k) \) is not considered in their methods.

We recall some existing methods, especially structured quasi-Newton methods for solving nonlinear least squares problems. Nonlinear least squares problems can be regarded as a special case for unconstrained minimization with a special structure and hence may be solved by unconstrained minimization methods. However, the cost of providing the complete Hessian matrix is often expensive. To reduce the cost, some methods use only the first derivative information, such as the quasi-Newton method, in which \(B_{k+1} \) is given by

\[
B_{k+1} = B_k + \text{Update}(s_k, y_k, B_k, v_k)
\]

and satisfies the quasi-Newton equation \(B_{k+1} s_k = y_k \) with

\[
\text{Update}(s, y, B, v) = \frac{(y - Bs)v^T + v(y - Bs)^T}{v^T s} - \frac{(y - Bs)^T s}{v^T s} vv^T.
\]

If \(y_k = g_{k+1} - g_k \) and \(v_k = y_k + \sqrt{\frac{y_k s_k}{s_k^T B_k s_k}} B_k s_k \), then \(B_{k+1} \) in (1.3) reduces to the standard BFGS formula for unconstrained optimization, that is, \(B_{k+1} = \text{bfgs}(s_k, B_k, y_k) \), where

\[
\text{bfgs}(s, B, y) = B - \frac{Bss^T B^T}{s^T B s} + \frac{yy^T}{y^T s}.
\]

The BFGS formula has been regarded as one of the most efficient quasi-Newton methods in practical computations [5, 7, 11, 22, 23, 24]. A very nice property of the BFGS update is that if \(B \) is symmetric and positive definite, then \(B_+ = \text{bfgs}(s, B, y) \) is also
an efficient hybrid method for solving (1.1); that is, the matrix
for instance, hybrid methods in [1, 17, 18]. Specifically, Fletcher and Xu [18] proposed
lems and the efficiency of the BFGS method for general unconstrained optimization,
2424
symmetric and positive definite whenever $y^T s > 0$. However, this method ignores the
special structure of the Hessian and does not use the available term $J_k^T J_k$ in $\nabla^2 f(x_k)$.

Past methods improve local convergence properties by exploiting the presence
of the first order term $J_k^T J_k$ in the Hessian; for example, the Gauss–Newton-type
methods (or the Levenberg–Marquardt-type methods) [16, 19, 30, 36] are typical
methods using the special structure of the Hessian matrix, whose iterative matrix is
given by $B_k = J_k^T J_k + \mu_k I$ with $\mu_k \geq 0$. It is well known that these methods have a
locally quadratic convergence rate for zero residual problems and a linear convergence
rate for small residual problems. However, these methods may perform poorly, even
diverge for large residual problems [1], since they use only the first order information
of f.

There are two ways to overcome this difficulty. One way is to combine the term
$J_k^T J_k$ with the BFGS formula to improve the convergence rate for zero residual prob-
lems and efficiency of the BFGS method for general unconstrained optimization,
for instance, hybrid methods in [1, 17, 18]. Specifically, Fletcher and Xu [18] proposed
an efficient hybrid method for solving (1.1); that is, the matrix B_{k+1} is updated by
the following rule: for a given constant $\epsilon \in (0, 1),

\begin{equation}
B_{k+1} = \begin{cases}
J_k^T J_k + ||r_{k+1}|| I & \text{if } (f(x_k) - f(x_{k+1}))/f(x_k) \geq \epsilon, \\
\text{bfgs}(s_k, B_k, y_k) & \text{otherwise},
\end{cases}
\end{equation}

where

$\hat{y}_k = J_k^T J_k s_k + (J_{k+1} - J_k) r_{k+1} \approx \nabla^2 f(x_{k+1}) s_k$.

Suppose that $x_k \rightarrow x^*$ and $\nabla^2 f(x^*)$ is positive definite. If $f(x^*) \neq 0$, then

$$\lim_{k \rightarrow \infty} (f(x_k) - f(x_{k+1}))/f(x_k) = 0.$$

If $f(x^*) = 0$ and $x_k \rightarrow x^*$ superlinearly, then

$$\lim_{k \rightarrow \infty} (f(x_k) - f(x_{k+1}))/f(x_k) = 1.$$

Hence, the role of the term $(f(x_k) - f(x_{k+1}))/f(x_k)$ is to switch between zero resid-
ual and nonzero residual problems. This method converges quadratically for zero
residual problems and superlinearly for nonzero residual problems. However, global
convergence results for this method have not been given in [18].

The other way is to use the second order information of f sufficiently. Take, for
instance, the structured quasi-Newton methods in [9, 13]. An important concept for
structured quasi-Newton methods for nonlinear least squares problems is the structure
principle [9].

- **Structure principle:** Given $B_k = J_k^T J_k + A_k$ as an approximation to $\nabla^2 f(x_k)$,
we want $B_{k+1} = J_{k+1}^T J_{k+1} + A_{k+1}$ to be an approximation of $\nabla^2 f(x_{k+1})$.
Because $\nabla^2 f(x_k) = J_k^T J_k + S(x_k)$ from (1.2), by the structure principle, A_k and A_{k+1}
are approximations of $S(x_k)$ and $S(x_{k+1})$, respectively. A popular way to compute
B_{k+1} was given in [9], that is,

$$B_{k+1} = B_k^* + \text{Update}(s_k, y_k^*, B_k^*, v_k),$$

$$B_k^* = J_k^T J_k + A_k, \quad y_k^* = \hat{y}_k + J_{k+1}^T J_{k+1} s_k,$$
where \(\bar{y}_k \) is an approximation of \(S(x_{k+1})s_k \) and is often chosen as \(\bar{y}_k = (J_{k+1} - J_k)^T r_{k+1} \), and \(\text{Update}(s_k, \bar{y}_k, B^+_k, v_k) \) is given by (1.4). The structure principle can be achieved by updating \(A_{k+1} \) with the following secant update formula:

\[
A_{k+1} = A_k + \text{Update}(s_k, \bar{y}_k, A_k, v_k).
\]

The structured quasi-Newton methods possess only a locally superlinear convergence rate for both zero and nonzero residual problems. In order to improve the convergence rate of the structured quasi-Newton method for zero residual problems, Huschens [21] proposed a product structure type update; that is, \(B_k \) and \(B_{k+1} \) are defined by

\[
B_k = J_k^T J_k + \| r_k \| A_k, \quad B_{k+1} = J_{k+1}^T J_{k+1} + \| r_{k+1} \| A_{k+1}.
\]

This update formula was proved to have a quadratic convergence rate for zero residual problems and a superlinear convergence rate for nonzero residual problems. Although these methods possess a locally fast convergence rate, the iterative matrix \(B_{k+1} \) cannot preserve positive definiteness even if \(B_k \) is positive definite. Hence the search direction may not be a descent direction of \(f \). Particularly, the Wolfe line search and the Armijo line search [30] cannot be used directly. Therefore, global convergence is not easily obtained.

To guarantee the positive definite property of \(J_k^T J_k + A_k \), some factorized structured quasi-Newton methods were proposed in [26, 32, 33, 34], where

\[
B_k = (J_k + L_k)^T (J_k + L_k),
\]

and \(L_k \) is updated according to a certain quasi-Newton formula. Then \(B_k \) is at least semipositive definite.

Under suitable conditions, the matrix \((J_k + L_k)^T (J_k + L_k) \) is positive definite if the initial point is close to a solution point. These methods also have a locally superlinear convergence rate for both zero and nonzero residual problems, but they do not possess a quadratic convergence rate for zero residual problems. In [37], Zhang, Chen, and Deng proposed a family of scaled factorized quasi-Newton methods based on the idea of [21]

\[
B_k = (J_k + \| r_k \| L_k)^T (J_k + \| r_k \| L_k),
\]

which has not only a superlinear convergence rate for nonzero residual problems but also has a quadratic convergence rate for zero residual problems. However, global convergence has not been studied in [21, 37].

There are two main obstacles for the global convergence of the above structured quasi-Newton methods with some line search. One is that the iterative matrices \(B_k \) may not be positive definite if the point \(x_k \) is far from the solution points. Another is that the iterative matrices \(B_k \) and their inverses \(B_k^{-1} \) are not uniformly bounded. So far, the study of structured quasi-Newton methods is focused on the local convergence rate [33, 34, 35, 37], but global convergence results have not been established.

In this paper, we propose a globally and locally fast convergent hybrid structured BFGS method. The idea of the paper is to approximate the second term in the Hessian, \(S(x_k) \), by a positive definite BFGS matrix. The proposed strategy uses a combination of [18] and [9, 13], i.e., seeks not only to reduce to the Gauss–Newton method for zero residual problems as in [18] using a hybridization scheme but also uses the BFGS method to estimate the second order term \(S(x) \) within the Hessian as
in [9, 13]; i.e., we apply the structure principle. Further, a novel switch between the Gauss–Newton method and the BFGS method is being proposed.

In the next section, we explain the approach in our method and present the algorithm in detail. Moreover, we prove that this method converges not only globally but also converges quadratically for zero residual problems and superlinearly for nonzero residual problems. We present numerical results to compare its performance with the Gauss–Newton method and the Fletcher–Xu hybrid method in section 3 and the appendix.

2. Algorithm and convergence analysis. In this section, we present a new hybrid Gauss–Newton structured BFGS method for the problem (1.1) and give global and local convergence analysis for the method. We first illustrate our approach, which is based mainly on the following consideration.

Since \(J_k^T J_k \) is available in \(\nabla^2 f(x_k) \), we hope to preserve this term unchanged in \(B_k \). According to the structure principle, we approximate \(S(x_k) \) using first order information and BFGS updates. From the observation that

\[
S(x_{k+1})s_k = \left(\sum_{i=1}^{m} r_i(x_{k+1})\nabla^2 r_i(x_{k+1}) \right) s_k \approx (J_{k+1} - J_k)^T r_{k+1} ||r_{k+1}||/||r_k||,
\]

we have the following lemma.

Lemma 2.1. Let

\[
(2.1) \quad z_k = (J_{k+1} - J_k)^T r_{k+1} ||r_{k+1}||/||r_k||;
\]

then \(z_k \approx S(x_{k+1})s_k \).

The first order term \(z_k \) was also used as a good approximation of \(S(x_{k+1})s_k \) in [21, 37]. Moreover, in our numerical experiments, using \(z_k \) is more efficient than using the standard term \(\tilde{y}_k = (J_{k+1} - J_k)^T r_{k+1} \). Hence we construct

\[
A_{k+1} = \text{bfgs}(s_k, A_k, z_k), \quad B_{k+1} = J_k^T J_{k+1} + A_{k+1}.
\]

Lemma 2.2. Suppose \(\nabla^2 r_i(x_k) \) is bounded for \(i = 1, 2, \ldots, m \) and \(x_k \to x^* \). If \(f(x^*) = 0 \), then \((z_k^T s_k)/(s_k^T s_k) \to 0 \) as \(k \to \infty \). If \(f(x^*) \neq 0 \) and \(S(x^*) \) is positive definite, then there is a positive constant \(\epsilon \) such that \((z_k^T s_k)/(s_k^T s_k) \geq \epsilon \) for sufficiently large \(k \).

Proof. If \(f(x^*) = 0 \), then from \(f(x_{k+1}) < f(x_k) \) we have that

\[
(z_k^T s_k)/(s_k^T s_k) = ||r_{k+1}||/||r_k|| \sum_{i=1}^{m} r_i(x_{k+1})(\nabla r_i(x_{k+1}) - \nabla r_i(x_k))^T s_k/s_k^T s_k \to 0.
\]

If \(f(x^*) \neq 0 \) and \(S(x^*) \) is positive definite, then for sufficiently large \(k \)

\[
(z_k^T s_k)/(s_k^T s_k) \geq \epsilon,
\]

where \(0 < \epsilon \leq \frac{1}{2} \lambda_{\text{min}}(S(x^*)) \) is a constant and \(\lambda_{\text{min}}(S(x^*)) \) is the smallest eigenvalue of the matrix \(S(x^*) \).

Lemma 2.2 implies that the term \((z_k^T s_k)/(s_k^T s_k) \) plays a role similar to the term \((f(x_k) - f(x_{k+1}))/f(x_k) \) in (1.6). Therefore we can use the term \((z_k^T s_k)/(s_k^T s_k) \) to construct some hybrid methods. Moreover, the condition \((z_k^T s_k)/(s_k^T s_k) \geq \epsilon \) also gives a way to ensure the positive definiteness of the update matrix \(B_{k+1} \). Now we give the definition of the update matrix.
DEFINITION 2.1.

(2.2) \[B_{k+1} = \begin{cases} J_{k+1}^T J_{k+1} + A_{k+1} & \text{if } (z_k^T s_k)/(s_k^T s_k) \geq \epsilon, \\ J_{k+1}^T J_{k+1} + \|r_{k+1}\| I & \text{otherwise}, \end{cases} \]

where

(2.3) \[A_{k+1} = \begin{cases} A_k - \frac{A_k s_k s_k^T A_k}{s_k^T A_k s_k} + \frac{z_k z_k^T}{s_k^T s_k} & \text{if } (z_k^T s_k)/(s_k^T s_k) \geq \epsilon, \\ A_k & \text{otherwise}. \end{cases} \]

Since \(A_{k+1} s_k = z_k \) when \((z_k^T s_k)/(s_k^T s_k) \geq \epsilon\), \(A_{k+1} \) is an approximation of \(S(x_{k+1}) \).

Algorithm 2.1 (GN-SBFGS method).

Step 1. Give a starting point \(x_0 \in \mathbb{R}^n \), a symmetric and positive definite matrix \(A_0 \in \mathbb{R}^{n \times n} \), scalars \(\delta, \rho \in (0, 1) \), and \(\epsilon > 0 \). Set \(B_0 = J_0^T J_0 + A_0 \). Let \(k := 0 \).

Step 2. Compute \(d_k \) by solving the following linear equations:

(2.4) \[B_k d = -g_k. \]

Step 3. Compute the stepsize \(\alpha_k \) by the following backtracking line search, that is, \(\alpha_k = \max\{\rho^0, \rho^1, \ldots\} \) satisfying

(2.5) \[f(x_k + \rho^m d_k) \leq f(x_k) + \delta \rho^m g_k^T d_k. \]

Step 4. Let \(x_{k+1} = x_k + \alpha_k d_k \).

Step 5. Update \(B_{k+1} \) by the formulas (2.2) and (2.3).

Step 6. Let \(k := k + 1 \) and go to Step 2.

Remark 2.1. Since \(A_0 \) is symmetric and positive definite and \(A_{k+1} \) is defined by the BFGS formula, \(A_{k+1} \) is also symmetric and positive definite whenever \(z_k^T s_k > 0 \). Therefore for every \(k \), \(A_k \) and \(B_k \) in Algorithm 2.1 are symmetric and positive definite. Hence the search direction \(d_k \) is a descent direction, that is, \(g_k^T d_k < 0 \). This also shows that Algorithm 2.1 is well defined.

In the global convergence of Algorithm 2.1, we use the following assumption.

Assumption A.

(I) The level set \(\Omega = \{x \in \mathbb{R}^n | f(x) \leq f(x_0)\} \) is bounded.

(II) In an open set \(N \) containing \(\Omega \), there exists a constant \(L_1 > 0 \) such that

(2.6) \[\|J(x) - J(y)\| \leq L_1\|x - y\| \quad \forall x, y \in N. \]

It is clear that the sequence \(\{x_k\} \) generated by Algorithm 2.1 is contained in \(\Omega \), and the sequence \(\{f(x_k)\} \) is a descent sequence and has a limit \(f^* \), that is,

(2.7) \[\lim_{k \to \infty} f(x_k) = f^*. \]

In addition, we get from Assumption A that there are two positive constants \(L \) and \(\gamma \) such that

(2.8) \[\|g(x) - g(y)\| \leq L\|x - y\|, \quad \|g(x)\| \leq \gamma \quad \forall x, y \in \Omega. \]

Now we give the following useful lemmas for our global convergence analysis.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
LEMMA 2.3. Let Assumption A hold. Then we have

\begin{equation}
\lim_{k \to \infty} \alpha_k g_k^T d_k = 0.
\end{equation}

Proof. It follows directly from the line search (2.5), (2.7), and $g_k^T d_k < 0$. \qed

LEMMA 2.4 (see [4, Lemma 4.1]). There exists a constant $c_1 > 0$ such that

\begin{equation}
\alpha_k = 1 \quad \text{or} \quad \alpha_k \geq c_1 \frac{(-g_k^T d_k)}{\|d_k\|^2}.
\end{equation}

LEMMA 2.5. Let Assumption A hold. Then, for any $p \in (0, 1)$, there are positive constants $\beta_i, i = 1, 2, 3, 4$, such that

\begin{equation}
\beta_1 s_j \leq \|A_j s_j\| \leq \beta_2 s_j, \quad \beta_3 s_j^2 \leq s_j^T A_j s_j \leq \beta_4 s_j^2
\end{equation}

hold for at least $\lfloor pk \rfloor$ values of $j \in [1, k]$.

Proof. By (2.6) and $\|r_{k+1}\| < \|r_k\|$, there exists a positive constant c_2 such that $(z_k^T s_k)/(s_k^T s_k) \leq c_2$. Then the conclusion follows directly from the update formula A_{k+1} in (2.3) and Theorem 2.1 in [4]. \qed

THEOREM 2.1. Let Assumption A hold, and let the sequence \{x_k\} be generated by Algorithm 2.1. Then we have $\lim_{k \to \infty} \|g_k\| = 0$.

Proof. Suppose the conclusion is not true; then there exist three positive constants η_1, η_2, and ε_0 such that, for all k,

\begin{equation}
\eta_1 \geq \|r_k\| \geq \eta_2, \quad \|g_k\| \geq \varepsilon_0.
\end{equation}

In fact, if $\liminf_{k \to \infty} \|r_k\| = 0$, then $\liminf_{k \to \infty} \|g_k\| = 0$.

Denote $K = \{k | z_{k-1}^T s_{k-1}/s_{k-1}^T s_{k-1} < \varepsilon\}$. Since for any $k \in K$, $B_k = J_k^T J_k + \|r_k\| I$, by (2.4) we have

\begin{equation}
-g_k^T d_k = \|J_k d_k\|^2 + \|r_k\| \|d_k\|^2 \geq \eta_2 \|d_k\|^2.
\end{equation}

If K is infinite, then by Lemma 2.3 we have $\lim_{k \to \infty, k \in K} \alpha_k g_k^T d_k = 0$.

If $\lim\inf_{k \to \infty, k \in K} \alpha_k > 0$, then $\lim_{k \to \infty, k \in K} g_k^T d_k = 0$. Hence from (2.13) we get that $\lim_{k \to \infty, k \in K} \|d_k\| = 0$. On the other hand, from (2.4) and the first inequality of (2.12) we have that, for $k \in K$,

\begin{equation}
\|g_k\| \leq \|J_k^T J_k\| \|d_k\| + \eta_1 \|d_k\| \to 0.
\end{equation}

This leads to a contradiction to the second inequality of (2.12). If $\lim\inf_{k \to \infty, k \in K} \alpha_k = 0$, then from Lemma 2.4 we have that $-g_k^T d_k/\|d_k\|^2 \to 0$, contradicting (2.13).

Now we assume K is finite; then there exists an integer k_0 such that, for all $k > k_0$, $B_k = J_k^T J_k + A_k$. By Lemma 2.5 and $s_k = \alpha_k d_k$, we have, for infinite $k > k_0$,

\begin{equation}
-g_k^T d_k = \|J_k d_k\|^2 + d_k^T A_k d_k \geq \beta_3 \|d_k\|^2,
\end{equation}

\begin{equation}
\|g_k\| \leq \|J_k^T J_k\| \|d_k\| + \|A_k d_k\| \leq \|J_k^T J_k\| \|d_k\| + \beta_2 \|d_k\|.
\end{equation}

Using the argument similar to that above, we can also get the same contradiction as in the case where K is infinite. This finishes the proof. \qed

Theorem 2.1 shows that Algorithm 2.1 is globally convergent for nonlinear least squares problems (1.1). Now we turn to discussing the local convergence rate of Algorithm 2.1. To do this, we need the following assumptions.
\textbf{Assumption B.}

(I) \(\{x_k\} \) converges to \(x^* \), where \(g(x^*) = 0 \) and \(\nabla^2 f(x^*) \) is positive definite.

(II) \(\nabla^2 f \) is Lipschitz continuous near \(x^* \); that is, there exists a constant \(L_2 \) such that

\begin{equation}
\| \nabla^2 f(x) - \nabla^2 f(y) \| \leq L_2 \| x - y \|
\end{equation}

for any \(x, y \) in a neighborhood of \(x^* \).

We first present the following local convergence theorem of Algorithm 2.1

\textbf{Theorem 2.2.} Let Assumption B hold. Suppose problem (1.1) is a zero residual problem; then Algorithm 2.1 reduces to the Gauss–Newton method and \(x_k \) converges to \(x^* \) quadratically.

\textbf{Proof.} Because \(f(x^*) = 0 \), we have \(r(x^*) = 0 \). By (2.1) and \(f(x_{k+1}) < f(x_k) \), we have

\[||z_k|| = \left(||r_{k+1}|| / ||r_k|| (J_{k+1} - J_k)^T r_{k+1} \right) < ||r_{k+1}|| L_1 ||s_k||. \]

Hence

\begin{equation}
(z_k^T s_k) / (s_k^T s_k) \leq L_1 ||r_{k+1}|| \to 0,
\end{equation}

which shows that there exists an integer \(k_1 \) such that, for all \(k > k_1 \),

\[(z_k^T s_k) / (s_k^T s_k) < \epsilon. \]

This implies that \(B_k = J_k^T J_k + ||r_k|| I \) for \(k > k_1 \); that is, Algorithm 2.1 reduces to the Gauss–Newton method. Since

\[\nabla^2 f(x^*) = J(x^*)^T J(x^*) + S(x^*) = J(x^*)^T J(x^*) + \sum_{i=1}^m r_i(x^*) \nabla^2 r_i(x^*) = J(x^*)^T J(x^*), \]

Assumption B implies that \(J(x^*)^T J(x^*) \) is positive definite. Therefore the quadratic convergence of the proposed method follows directly from the corresponding theory of the standard Gauss–Newton method; for example, see [30]. This completes the proof. \(\square \)

In the rest of this section, we assume \(f(x^*) \neq 0 \); that is, the problem (1.1) is a nonzero residual problem. First, we give the following result on the boundedness of \(B_k \).

\textbf{Lemma 2.6.} There exist some positive constants \(\beta_i, i = 5, 6, 7 \), such that

\begin{equation}
\| B_j s_j \| \leq \beta_5 ||s_j||, \quad \beta_6 ||s_j||^2 \leq s_j^T B_j s_j \leq \beta_7 ||s_j||^2
\end{equation}

hold for at least \(\left\lceil \frac{k}{2} \right\rceil \) values of \(j \in [1, k] \).

\textbf{Proof.} Denote \(K = \{ j \in [1, k] | z_j^T s_{j-1} / s_{j-1}^T s_{j-1} < \epsilon \} \). Then, for all \(j \in K \), \(B_j = J_j^T J_j + \|r_j\| I \) is uniformly positive definite since \(f(x^*) \neq 0 \) implies that there exist two positive constants \(\eta_3 \) and \(\eta_4 \) such that \(\eta_3 \leq \|r_j\| \leq \eta_4 \). Hence the inequalities in (2.16) hold for all \(j \in K \) from the semipositive definiteness of \(J_j^T J_j \). If \(|K| \geq \left\lceil \frac{k}{2} \right\rceil \), then we obtain the desirable results.

Now we suppose \(|K| < \left\lceil \frac{k}{2} \right\rceil \). For \(j \notin K \), we have \(B_j = J_j^T J_j + A_j \). It follows from Lemma 2.5 that the inequalities in (2.16) hold for at least \(\left\lceil \frac{k-|K|}{2} \right\rceil \geq \left\lceil \frac{k}{2} \right\rceil - |K| \) indices \(j \) in \([1, k]\).
\begin{align*}
\text{Lemma 2.7.} \quad & \text{There exist two positive constants } \eta_5 \text{ and } \eta_6 \text{ such that at each iteration either} \\
& f(x_k + \alpha_k d_k) \leq f(x_k) - \eta_5 (g_k^T d_k)^2 \|d_k\|^2 \\
& \text{or} \\
& f(x_k + \alpha_k d_k) \leq f(x_k) + \eta_6 g_k^T d_k.
\end{align*}

\text{Proof.} \quad \text{The proof follows from Lemma 2.4, the line search (2.5), and } g_k^T d_k < 0 \text{ directly.}

\begin{align*}
\text{Lemma 2.8 (see [4, Theorem 3.1]).} \quad & \text{Let Assumption B hold. Then we have} \\
& \sum_{k=0}^{\infty} \|x_k - x^*\| < \infty.
\end{align*}

\begin{align*}
\text{Lemma 2.9.} \quad & \text{Let Assumption B hold. We also suppose that } S(x^*) \text{ is positive definite and } \nabla^2 r_i(x) \text{ is Lipschitz continuous near } x^* \text{ for } i = 1, 2, \ldots, m. \text{ Then for sufficiently large } k \text{ there exists a positive constant } M \text{ such that} \\
& \|z_k - S(x^*) s_k\|/\|s_k\| \leq M \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}.
\end{align*}

\text{Proof.} \quad \text{By (2.1), we have} \\
\begin{align*}
& \|z_k - S(x^*) s_k\| \\
& = \left\| \frac{r_{k+1}}{\|r_k\|} \sum_{i=1}^{m} r_i(x_{k+1}) (\nabla r_i(x_{k+1}) - \nabla r_i(x_k)) - \sum_{i=1}^{m} r_i(x^*) \nabla^2 r_i(x^*) s_k \right\| \\
& \leq \left\| \left(\frac{\|r_{k+1}\|}{\|r_k\|} - 1 \right) \sum_{i=1}^{m} r_i(x_{k+1}) (\nabla r_i(x_{k+1}) - \nabla r_i(x_k)) \right\| \\
& + \left\| \sum_{i=1}^{m} (r_i(x_{k+1}) - r_i(x^*)) (\nabla r_i(x_{k+1}) - \nabla r_i(x_k)) \right\| \\
& + \left\| \sum_{i=1}^{m} r_i(x^*) ((\nabla r_i(x_{k+1}) - \nabla r_i(x_k)) - \nabla^2 r_i(x^*) s_k) \right\| \\
& \triangleq A_1 + A_2 + A_3.
\end{align*}

\text{From the assumptions, there exist a small positive number } \delta_0 \text{ and some constants } c_i > 0, i = 0, 1, 2, 3, 4, \text{ such that } \|r(x)\| > c_0, |r_i(x)| \leq c_1, \|r(x) - r(y)\| \leq c_2 \|x - y\|, \\
\|\nabla r_i(x) - \nabla r_i(y)\| \leq c_3 \|x - y\|, \|\nabla^2 r_i(x) - \nabla^2 r_i(y)\| \leq c_4 \|x - y\| \text{ for all } x, y \in \{u\|u - x^*\| \leq \delta_0\}, \text{ and } i = 1, \ldots, m. \text{ Therefore for sufficiently large } k \text{ we have} \\
A_1 & \leq \frac{\|r_{k+1} - r_k\|}{\|r_k\|} \sum_{i=1}^{m} |r_i(x_{k+1})| \|\nabla r_i(x_{k+1}) - \nabla r_i(x_k)\| \\
& \leq \frac{mc_1 c_2 c_3}{c_0} \|x_{k+1} - x_k\|^2 \\
& \leq \frac{2mc_1 c_2 c_3}{c_0} \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\} \|s_k\|,
\end{align*}
Moreover, the sequences

\[A_2 \leq mc_2c_3 \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}\|s_k\|, \]

\[A_3 \leq c_1 \sum_{i=1}^m \|\nabla r_i(x_{k+1}) - \nabla r_i(x_k) - \nabla^2 r_i(x^*)s_k\| \]

\[= c_1 \sum_{i=1}^m \left\| \int_0^1 (\nabla^2 r_i(x_k + ts_k) - \nabla^2 r_i(x^*))s_k dt \right\| \]

\[\leq 2mc_1c_4 \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}\|s_k\|. \]

Set \(M = \frac{2mc_1c_2c_3}{c_0} + mc_2c_3 + 2mc_1c_4 \); then we have

\[\|z_k - S(x^*)s_k\|/\|s_k\| \leq M \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}. \]

This finishes the proof. \(\Box \)

Lemma 2.10 (see [4, Theorem 3.2]). *Under the assumptions of Lemma 2.9, we have*

\[\lim_{k \to \infty} \|(A_k - S(x^*))s_k\|/\|s_k\| = 0. \]

Moreover, the sequences \(\{\|A_k\|\} \) and \(\{\|A_k^{-1}\|\} \) are uniformly bounded.

The following lemma shows that the Dennis–Moré condition holds.

Lemma 2.11. *Suppose the assumptions of Lemma 2.9 hold and the positive constant \(\epsilon \) in Algorithm 2.1 satisfies \(\epsilon < \frac{1}{2} \lambda_{\min}(S(x^*)) \). Then we have*

\[\lim_{k \to \infty} \|(B_k - \nabla^2 f(x^*))s_k\|/\|s_k\| = 0. \]

Moreover, the sequences \(\{\|B_k\|\} \) and \(\{\|B_k^{-1}\|\} \) are uniformly bounded.

Proof. It is clear that the assumptions imply that for all sufficiently large \(k \),

\[B_k = J_k^T J_k + A_k; \]

that is, Algorithm 2.1 reduces to a structured BFGS method. Hence, from Lemma 2.10 we have

\[\lim_{k \to \infty} \|(B_k - \nabla^2 f(x^*))s_k\|/\|s_k\| \]

\[= \lim_{k \to \infty} \|(J_k^T J_k - J(x^*)^T J(x^*))s_k + (A_k - S(x^*))s_k\|/\|s_k\| \]

\[\leq \lim_{k \to \infty} \|(J_k^T J_k - J(x^*)^T J(x^*))\| + \lim_{k \to \infty} \|(A_k - S(x^*))s_k\|/\|s_k\| \]

\[= 0. \]

Moreover, the sequences \(\{\|B_k\|\} \) and \(\{\|B_k^{-1}\|\} \) are uniformly bounded since \(J_k^T J_k \) is semipositive definite. The proof is then finished. \(\Box \)

The following theorem shows that Algorithm 2.1 converges superlinearly.

Theorem 2.3. *Suppose the assumptions of Lemma 2.11 hold. If the parameter \(\delta \) in the line search (2.5) is chosen to satisfy \(\delta \in (0, \frac{1}{2}) \), then \(\{x_k\} \) converges to \(x^* \) superlinearly.*

Proof. By Lemma 2.11, we need only to prove \(\alpha_k = 1 \) for all sufficiently large \(k \) in the line search (2.5). In fact, by Lemma 2.11, we have \(\|d_k\| = \|B_k^{-1} g_k\| \to 0. \) From Taylor’s expansions, we have

\[f(x_k + d_k) - f(x_k) = -\delta g_k^T d_k \]

\[= (1 - \delta)g_k^T d_k + \frac{1}{2} d_k^T \nabla^2 f(x_k + \theta_k d_k)d_k \]
where $\theta_k \in (0, 1)$ and the last equality follows from the Dennis–Moré condition (2.18). Thus $f(x_k + d_k) - f(x_k) - \delta d_k^T d_k \leq 0$ for all sufficiently large k, which implies that $\alpha_k = 1$ for all sufficiently large k. Therefore, according to the well-known characterization result of Dennis and Moré [10], we conclude that the proposed method converges superlinearly.

3. Numerical experiments. In this section, we compare the performance of the following three methods with the same line search (2.5) for some nonlinear least squares problems:

- the Gauss–Newton method: $B_k = J_k^T J_k + \|r_k\| I$;
- the hybrid Gauss–Newton structured BFGS method: Algorithm 2.1 with $\epsilon = 10^{-6}$;
- the Fletcher–Xu hybrid (FXhybrid) method: B_k is specified by (1.6) with $\epsilon = 0.2$, which was recommended in [17, 18].

All codes were written in MATLAB 7.4. We set $\delta = 0.1$ and $\rho = 0.5$ in the line search (2.5). For the three methods, we set the initial matrix $B_0 = J_0^T J_0 + 10^{-4} \|r_0\| I$. We stopped the iteration if one of the following conditions was satisfied:

(i) $\|g_k\| \leq 10^{-5}$;
(ii) $f(x_k) - f(x_{k+1}) \leq 10^{-15} \max(1, f(x_k))$;
(iii) $f(x_k) \leq 10^{-8}$;
(iv) the total number of iterations exceeds 500.

Tables 2–5 in the appendix list numerical results of these three methods, where “Iter” and “Nf” stand for the total number of BFGS update/all iterations and the function evaluations, respectively; $f(x_k)$ and r_k mean the functional evaluation and the residual at the stopping point, respectively. In Tables 2–5, λ_{\min} is the smallest eigenvalue of $S(x)$ at the stopping point.

Table 2 reports the numerical results of the three methods for 28 zero or small residual problems [25] and the biochemical oxygen demand (BOD) problem [2] with six different initial points. Table 3 lists the numerical results of the three methods for solving 40 large residual problems, where “Froth,” “Jensam,” and “Cheb” are from [25] and the others are given as follows.

- **Trigonometric problem** (Trigo) [1]:
 \[r_i(x) = -d_i + \tilde{r}_i(x)^2, \quad i = 1, 2, \ldots, m, \]

where

\[\tilde{r}_i(x) = -e_i + \sum_{j=1}^{n} (a_{ij} \sin x_j + b_{ij} \cos x_j), \quad i = 1, 2, \ldots, m, \]

with $x = (x_1, \ldots, x_n)^T$, a_{ij}, b_{ij} are random integers in $[-10, 10]$, e_i are random numbers in $[0, 1]$, and $d = (d_1, d_2, \ldots, d_m)^T = (1, 2, \ldots, m)^T$. We choose the initial point x_0 as a random vector whose elements are in $[-100, 0]$.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
NEW HYBRID GAUSS–NEWTON STRUCTURED BFGS METHOD

\begin{itemize}
 \item Signomial problem (Sig) [1]:
 \begin{equation}
 r_i(x) = -e_i + \sum_{k=1}^{l} c_{ik} \prod_{j=1}^{n} x_j^{a_{ijk}}, \quad i = 1, 2, \ldots, m,
 \end{equation}
 where a_{ijk} are random integers in $[0, 3]$, and c_{ik} and e_i are random numbers in $[-100, 100]$ and $[-10, 10]$, respectively. We choose $l = 8$ and choose the initial point x_0 as a random vector whose elements are in $[-5, 5]$.
 \item Parameterized problem (Para) [21]:
 \begin{align*}
 r_1(x) &= x_1 - 2, \quad r_2(x) = (x_1 - 2\psi)x_2, \quad r_3(x) = x_2 + 1, \\
 \end{align*}
 where $x = (x_1, x_2)^T$ and ψ is a parameter. If $\psi \neq 1$, then this problem is a nonzero residual problem. We choose different values of ψ and initial points x_0 in our test. For details, see Table 3.
 \item Nonlinear regression problem (BOD) [2, p. 305]: The nonlinear regression model based on the data on BOD can be converted into the nonlinear least square problem (1.1), where $r(x) = (r_1(x), \ldots, r_8(x))^T$, $x = (x_1, x_2)^T$, and
 \begin{align*}
 r_1(x) &= x_1(1 - e^{x_2}) - 0.47; \quad r_2(x) = x_1(1 - e^{2x_2}) - 0.74; \\
 r_3(x) &= x_1(1 - e^{3x_2}) - 1.17; \quad r_4(x) = x_1(1 - e^{4x_2}) - 1.42; \\
 r_5(x) &= x_1(1 - e^{5x_2}) - 1.60; \quad r_6(x) = x_1(1 - e^{7x_2}) - 1.84; \\
 r_7(x) &= x_1(1 - e^{9x_2}) - 2.19; \quad r_8(x) = x_1(1 - e^{11x_2}) - 2.17.
 \end{align*}
 Tables 4 and 5 list some numerical results of the three methods for solving a special class of nonlinear least square problems.
 \item Convex variational regularization problem: Suppose that $F : R^n \rightarrow R^m$ is a map. The convex variational regularization problem is the following minimization problem:
 \begin{equation}
 \min_{x \in R^n} f(x) = \frac{1}{2}\|F(x)\|^2 + \frac{\mu}{2} h(x),
 \end{equation}
 where $h : R^n \rightarrow R$ is a convex function and μ is a regularization parameter. Many practical problems can be converted into solving this problem, such as ill-posed problems, inverse problems, some constrained optimization problems, and model parameter estimation [27, 31, 28, 29, 14, 15]. Ill-posed problems occur frequently in science and engineering. Regularization methods for computing stabilized solutions to the ill-posed problems have been extensively studied [20]. In this paper, we chose two convex variational regularization problems which come from ill-posed problems. In our test, we chose $h(x) = \sum_{i=1}^{n} (x_i^2)^2$ in (3.1). Therefore (3.1) reduces to the nonlinear least squares problem (1.1) with the form
 \begin{equation}
 r(x) = (F(x), \sqrt{\mu}x_1^2, \ldots, \sqrt{\mu}x_n^2)^T.
 \end{equation}
 Now we chose two ill-posed problems as follows. One is linear and the other is nonlinear.
\end{itemize}
Algorithm 2

\[FX_{\text{hybrid}} \]

Table 1

Summary of the data in Tables 2–5 in the appendix.

<table>
<thead>
<tr>
<th>#Bestiter</th>
<th>Gauss–Newton</th>
<th>Algorithm 2.1</th>
<th>FX_{\text{hybrid}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>(\frac{23}{138} \approx 20%)</td>
<td>(\frac{85}{138} \approx 62%)</td>
<td>(\frac{49}{138} \approx 36%)</td>
</tr>
<tr>
<td>#BestNf</td>
<td>23</td>
<td>108</td>
<td>26</td>
</tr>
<tr>
<td>Probability</td>
<td>(\frac{23}{138} \approx 17%)</td>
<td>(\frac{108}{138} \approx 78%)</td>
<td>(\frac{26}{138} \approx 19%)</td>
</tr>
<tr>
<td>#Bestfv</td>
<td>92</td>
<td>100</td>
<td>81</td>
</tr>
<tr>
<td>Probability</td>
<td>(\frac{31}{138} \approx 67%)</td>
<td>(\frac{108}{138} \approx 72%)</td>
<td>(\frac{26}{138} \approx 58%)</td>
</tr>
</tbody>
</table>

(i) **Ill-posed problem 1** (the linear ill-conditioned problem): \(F(x) = Ax - b \), where \(A = (a_{ij})_{n \times n} \) with \(a_{ij} = \frac{1}{i + j - 1} \) being the Hilbert matrix. In our code, we set \(b = A \ast \text{ones}(n,1) + 10^{-4} \ast \text{ones}(n,1) \) and the initial point \(x_0 = (10,\ldots,10)^T \).

(ii) **Ill-posed problem 2** (the nonlinear inverse problem): The Fredholm integral equation of the first kind has the following version:

\[
\int_a^b K(t, s, u(s))ds = g(t), \quad c \leq t \leq d,
\]

where the right-hand side \(g \) and the kernel \(K \) are given, and \(x \) is an unknown solution. We use the composite quadrature method to approximate the integral by a weighted sum:

\[
\int_a^b K(t, s, u(s))ds \approx I_n(t) = \sum_{i=1}^{n} w_i K(t, s_i, u(s_i)).
\]

Collocation in the \(m \) points \(t_1,\ldots,t_m \) leads to the requirements \(I_n(t_j) = g(t_j), j = 1,\ldots,m \). It is a finite dimensional nonlinear ill-posed problem. To obtain a meaningful solution, it is often converted into solving a regularization solution of (3.1), where

\[
F_j(x) = I_n(t_j) - g(t_j), \quad j = 1,\ldots,m, \quad x = (u(s_1),\ldots,u(s_n))^T.
\]

In our test, we chose the following data [3]:

\[
[a, b] = [c, d] = [0, 1], \quad K(t, s, u(s)) = se^{(t+1)u(s)}, \quad g(t) = \frac{e^{t+1} - 1}{2(t+1)}.
\]

Integral equation (3.2) with these data has an analytical solution as \(u(s) = s^2 \) on \([0,1]\). In our numerical experiment, we chose \(t_j = \frac{j-1}{m-1} \) for \(j = 1,\ldots,m \). We set the initial point \(x_0 = (0.1,\ldots,0.1)^T \).

Table 1 summarizes the data in Tables 2–5, in which “#Bestiter,” “#BestNf,” and “#Bestfv” are the number of test problems that the method wins over the rest of the methods on the number of iterations, the number of function evaluations, and the best final objective function value performance in all 138 test problems, respectively; “Probability” roughly means the probability that the method wins over the rest of the methods.

It is clear from Table 1 that Algorithm 2.1 is the best method among these three methods. In order to show the performance of the number of iterations or function evaluations of the three methods more clearly, we plotted Figures 1–2 according to the data in Tables 2–5 in the appendix by using the performance profiles of Dolan and Moré [12].
Since the top curve in Figures 1–2 corresponds to Algorithm 2.1, it is clear that Algorithm 2.1 is the most efficient for solving these 138 test problems among the three methods. We see from Figure 1 that Algorithm 2.1 solves about 62% and 78% (85 and 108 out of 138) of the test problems with the fewest number of iterations and function evaluations, respectively. Figure 1 also shows that the FXhybrid method performs better than the Gauss–Newton method. However, Figure 2 shows that the FXhybrid method needs more function evaluations than the Gauss–Newton method within $0.3 < \tau < 3.5$. Table 2 shows that the Gauss–Newton method is efficient for zero residual problems and using the BFGS update can improve numerical performance. We also note from Table 1 that Algorithm 2.1 has the best final objective value for most problems, which has about 72% (100 out of 138) probability with the
is established. Under suitable conditions, the proposed method possesses a quadratic convergence rate for zero residual problems and a superlinear convergence rate for nonzero residual problems. Numerical results show that the proposed method is efficient for nonlinear least squares problems compared with the Gauss–Newton method and the FXhybrid method.

Appendix.

Table 2

Test results for 28 zero or small residual test problems from [25] and the BOD problem with six different initial points.

<table>
<thead>
<tr>
<th>Prob</th>
<th>n</th>
<th>m</th>
<th>Iter</th>
<th>NF</th>
<th>f(x_k)</th>
<th>Iter</th>
<th>NF</th>
<th>f(x_k)</th>
<th>Iter</th>
<th>NF</th>
<th>f(x_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rose</td>
<td>2</td>
<td>15</td>
<td>24</td>
<td>18/19</td>
<td>27</td>
<td>7.89e-011</td>
<td>21</td>
<td>87</td>
<td>3.48e-010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bads</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>11</td>
<td>2.35e-013</td>
<td>9</td>
<td>10</td>
<td>4.40e-011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Badsb</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>10</td>
<td>4.40e-011</td>
<td>2</td>
<td>6</td>
<td>2.37e-013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beale</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>10</td>
<td>2.35e-013</td>
<td>11</td>
<td>12</td>
<td>2.37e-013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helix</td>
<td>2</td>
<td>3</td>
<td>11</td>
<td>12</td>
<td>3.27e-013</td>
<td>66/71</td>
<td>490</td>
<td>3.17e-009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bard</td>
<td>3</td>
<td>14</td>
<td>148</td>
<td>149</td>
<td>4.11e-003</td>
<td>6/6</td>
<td>7</td>
<td>3.65e-011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gauss</td>
<td>15</td>
<td>1</td>
<td>3</td>
<td>2.54e-009</td>
<td>0/1</td>
<td>1</td>
<td>5.64e-009</td>
<td>2</td>
<td>2.54e-009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gulf</td>
<td>3</td>
<td>10</td>
<td>500</td>
<td>502</td>
<td>1.96e-003</td>
<td>13/17</td>
<td>31</td>
<td>1.26e-008</td>
<td>27</td>
<td>61</td>
<td>2.10e-006</td>
</tr>
<tr>
<td>Box</td>
<td>3</td>
<td>10</td>
<td>50</td>
<td>51</td>
<td>6.27e-008</td>
<td>4/8</td>
<td>9</td>
<td>7.12e-011</td>
<td>30</td>
<td>31</td>
<td>4.14e-008</td>
</tr>
<tr>
<td>Sing</td>
<td>4</td>
<td>4</td>
<td>11</td>
<td>12</td>
<td>4.99e-009</td>
<td>8</td>
<td>9</td>
<td>4.99e-009</td>
<td>11</td>
<td>12</td>
<td>6.95e-009</td>
</tr>
<tr>
<td>Kowos</td>
<td>4</td>
<td>11</td>
<td>24</td>
<td>26</td>
<td>1.54e-004</td>
<td>1/31</td>
<td>33</td>
<td>1.54e-004</td>
<td>24</td>
<td>26</td>
<td>1.54e-004</td>
</tr>
<tr>
<td>Osbl</td>
<td>6</td>
<td>11</td>
<td>65</td>
<td>356</td>
<td>357</td>
<td>2.01e-002</td>
<td>31/34</td>
<td>43</td>
<td>2.01e-002</td>
<td>247</td>
<td>380</td>
</tr>
<tr>
<td>Watson</td>
<td>20</td>
<td>31</td>
<td>14</td>
<td>14</td>
<td>2.18e-007</td>
<td>5/8</td>
<td>10</td>
<td>5.39e-008</td>
<td>13</td>
<td>14</td>
<td>2.18e-007</td>
</tr>
<tr>
<td>Cheby</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>2.95e-009</td>
<td>2/4</td>
<td>6</td>
<td>1.66e-015</td>
<td>3</td>
<td>5</td>
<td>2.95e-009</td>
</tr>
<tr>
<td>Rosex</td>
<td>20</td>
<td>20</td>
<td>22</td>
<td>27</td>
<td>6.34e-011</td>
<td>20/21</td>
<td>32</td>
<td>9.61e-013</td>
<td>22</td>
<td>47</td>
<td>1.23e-009</td>
</tr>
<tr>
<td>Singx</td>
<td>20</td>
<td>20</td>
<td>14</td>
<td>15</td>
<td>6.68e-008</td>
<td>8</td>
<td>9</td>
<td>2.05e-008</td>
<td>14</td>
<td>15</td>
<td>6.68e-008</td>
</tr>
<tr>
<td>Vard</td>
<td>22</td>
<td>22</td>
<td>11</td>
<td>12</td>
<td>2.15e-017</td>
<td>10/11</td>
<td>12</td>
<td>2.18e-010</td>
<td>11</td>
<td>12</td>
<td>2.15e-017</td>
</tr>
<tr>
<td>Trig</td>
<td>20</td>
<td>20</td>
<td>39</td>
<td>37</td>
<td>2.32e-006</td>
<td>5/8</td>
<td>17</td>
<td>2.40e-012</td>
<td>9</td>
<td>55</td>
<td>2.83e-009</td>
</tr>
<tr>
<td>Rosex</td>
<td>100</td>
<td>100</td>
<td>39</td>
<td>44</td>
<td>3.45e-014</td>
<td>20/22</td>
<td>32</td>
<td>2.42e-012</td>
<td>44</td>
<td>67</td>
<td>6.62e-010</td>
</tr>
<tr>
<td>Singx</td>
<td>100</td>
<td>100</td>
<td>23</td>
<td>24</td>
<td>6.34e-008</td>
<td>8/10</td>
<td>11</td>
<td>1.65e-008</td>
<td>23</td>
<td>24</td>
<td>6.34e-008</td>
</tr>
<tr>
<td>Vard</td>
<td>100</td>
<td>102</td>
<td>15</td>
<td>16</td>
<td>4.42e-010</td>
<td>15/16</td>
<td>17</td>
<td>2.43e-011</td>
<td>15</td>
<td>16</td>
<td>4.42e-010</td>
</tr>
<tr>
<td>Trig</td>
<td>100</td>
<td>100</td>
<td>7</td>
<td>17</td>
<td>4.16e-010</td>
<td>5/9</td>
<td>31</td>
<td>8.54e-012</td>
<td>196</td>
<td>3026</td>
<td>1.28e-011</td>
</tr>
<tr>
<td>Rosex</td>
<td>500</td>
<td>500</td>
<td>76</td>
<td>81</td>
<td>4.63e-012</td>
<td>20/21</td>
<td>31</td>
<td>6.57e-012</td>
<td>22</td>
<td>73</td>
<td>8.32e-012</td>
</tr>
<tr>
<td>Singy</td>
<td>500</td>
<td>500</td>
<td>42</td>
<td>43</td>
<td>1.39e-007</td>
<td>9/11</td>
<td>12</td>
<td>3.55e-008</td>
<td>42</td>
<td>43</td>
<td>1.39e-007</td>
</tr>
<tr>
<td>Vardx</td>
<td>500</td>
<td>500</td>
<td>20</td>
<td>21</td>
<td>1.93e-014</td>
<td>19/21</td>
<td>22</td>
<td>2.81e-012</td>
<td>20</td>
<td>21</td>
<td>1.93e-014</td>
</tr>
<tr>
<td>Trig</td>
<td>500</td>
<td>500</td>
<td>7</td>
<td>16</td>
<td>1.62e-009</td>
<td>11/14</td>
<td>74</td>
<td>3.96e-010</td>
<td>62</td>
<td>1192</td>
<td>5.09e-011</td>
</tr>
</tbody>
</table>

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
Table 3
Test results for 40 large residual problems.

<table>
<thead>
<tr>
<th>Prob</th>
<th>n</th>
<th>m</th>
<th>Iter</th>
<th>Nf</th>
<th>$|r_k|$</th>
<th>Iter</th>
<th>Nf</th>
<th>$|r_k|$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Froth</td>
<td>2</td>
<td>2</td>
<td>187</td>
<td>188</td>
<td>6.70</td>
<td>31/89</td>
<td>90</td>
<td>6.70</td>
</tr>
<tr>
<td>Jensam</td>
<td>2</td>
<td>4</td>
<td>93</td>
<td>349</td>
<td>2.05</td>
<td>14/46</td>
<td>143</td>
<td>2.05</td>
</tr>
<tr>
<td>Jensam</td>
<td>2</td>
<td>6</td>
<td>268</td>
<td>1436</td>
<td>4.39</td>
<td>18/18</td>
<td>26</td>
<td>4.39</td>
</tr>
<tr>
<td>Jensam</td>
<td>2</td>
<td>8</td>
<td>500</td>
<td>3281</td>
<td>7.44</td>
<td>19/19</td>
<td>25</td>
<td>7.45</td>
</tr>
<tr>
<td>Jensam</td>
<td>2</td>
<td>10</td>
<td>500</td>
<td>3796</td>
<td>11.16</td>
<td>49/49</td>
<td>65</td>
<td>11.20</td>
</tr>
<tr>
<td>Cheb</td>
<td>8</td>
<td>8</td>
<td>130</td>
<td>502</td>
<td>0.0593</td>
<td>17/34</td>
<td>78</td>
<td>0.0593</td>
</tr>
<tr>
<td>Cheb</td>
<td>10</td>
<td>10</td>
<td>17</td>
<td>23</td>
<td>0.0806</td>
<td>2/13</td>
<td>20</td>
<td>0.0806</td>
</tr>
<tr>
<td>Cheb</td>
<td>8</td>
<td>16</td>
<td>22</td>
<td>23</td>
<td>0.2428</td>
<td>2/21</td>
<td>22</td>
<td>0.2428</td>
</tr>
<tr>
<td>Trigo</td>
<td>3</td>
<td>6</td>
<td>19</td>
<td>21</td>
<td>8.10</td>
<td>2/12</td>
<td>13</td>
<td>4.10</td>
</tr>
<tr>
<td>Trigo</td>
<td>3</td>
<td>12</td>
<td>57</td>
<td>67</td>
<td>159.23</td>
<td>13/53</td>
<td>57</td>
<td>159.24</td>
</tr>
<tr>
<td>Trigo</td>
<td>3</td>
<td>15</td>
<td>21</td>
<td>23</td>
<td>179.21</td>
<td>1/22</td>
<td>24</td>
<td>179.21</td>
</tr>
<tr>
<td>Trigo</td>
<td>4</td>
<td>8</td>
<td>27</td>
<td>31</td>
<td>49.36</td>
<td>15/20</td>
<td>25</td>
<td>49.36</td>
</tr>
<tr>
<td>Trigo</td>
<td>4</td>
<td>20</td>
<td>117</td>
<td>119</td>
<td>352.11</td>
<td>17/71</td>
<td>73</td>
<td>353.68</td>
</tr>
<tr>
<td>Trigo</td>
<td>4</td>
<td>40</td>
<td>47</td>
<td>49</td>
<td>607.09</td>
<td>20/45</td>
<td>47</td>
<td>607.55</td>
</tr>
<tr>
<td>Trigo</td>
<td>6</td>
<td>12</td>
<td>48</td>
<td>69</td>
<td>24.23</td>
<td>8/35</td>
<td>37</td>
<td>21.14</td>
</tr>
<tr>
<td>Trigo</td>
<td>6</td>
<td>20</td>
<td>49</td>
<td>51</td>
<td>211.39</td>
<td>25/46</td>
<td>49</td>
<td>211.47</td>
</tr>
<tr>
<td>Trigo</td>
<td>8</td>
<td>8</td>
<td>95</td>
<td>350</td>
<td>4.99</td>
<td>18/31</td>
<td>77</td>
<td>1.01</td>
</tr>
<tr>
<td>Trigo</td>
<td>8</td>
<td>16</td>
<td>26</td>
<td>34</td>
<td>135.27</td>
<td>7/25</td>
<td>27</td>
<td>135.27</td>
</tr>
<tr>
<td>Trigo</td>
<td>8</td>
<td>40</td>
<td>61</td>
<td>63</td>
<td>698.26</td>
<td>25/30</td>
<td>32</td>
<td>698.46</td>
</tr>
<tr>
<td>Trigo</td>
<td>10</td>
<td>20</td>
<td>69</td>
<td>75</td>
<td>74.91</td>
<td>9/45</td>
<td>47</td>
<td>74.02</td>
</tr>
<tr>
<td>Trigo</td>
<td>10</td>
<td>40</td>
<td>142</td>
<td>144</td>
<td>770.00</td>
<td>51/117</td>
<td>119</td>
<td>678.06</td>
</tr>
<tr>
<td>Trigo</td>
<td>10</td>
<td>50</td>
<td>45</td>
<td>50</td>
<td>1041.07</td>
<td>26/36</td>
<td>38</td>
<td>1043.10</td>
</tr>
<tr>
<td>Sig</td>
<td>2</td>
<td>6</td>
<td>187</td>
<td>825</td>
<td>52.10</td>
<td>28/75</td>
<td>244</td>
<td>52.10</td>
</tr>
<tr>
<td>Sig</td>
<td>2</td>
<td>10</td>
<td>47</td>
<td>80</td>
<td>79.36</td>
<td>19/40</td>
<td>61</td>
<td>79.36</td>
</tr>
<tr>
<td>Sig</td>
<td>2</td>
<td>30</td>
<td>50</td>
<td>52</td>
<td>269.10</td>
<td>17/40</td>
<td>42</td>
<td>269.10</td>
</tr>
<tr>
<td>Sig</td>
<td>4</td>
<td>8</td>
<td>28</td>
<td>30</td>
<td>11.47</td>
<td>4/24</td>
<td>25</td>
<td>11.47</td>
</tr>
<tr>
<td>Sig</td>
<td>4</td>
<td>10</td>
<td>251</td>
<td>252</td>
<td>15.56</td>
<td>78/82</td>
<td>84</td>
<td>14.78</td>
</tr>
<tr>
<td>Sig</td>
<td>4</td>
<td>20</td>
<td>81</td>
<td>84</td>
<td>24.24</td>
<td>9/72</td>
<td>74</td>
<td>24.24</td>
</tr>
<tr>
<td>Sig</td>
<td>4</td>
<td>30</td>
<td>56</td>
<td>59</td>
<td>26.22</td>
<td>9/40</td>
<td>44</td>
<td>26.22</td>
</tr>
<tr>
<td>Sig</td>
<td>4</td>
<td>40</td>
<td>52</td>
<td>116</td>
<td>88.51</td>
<td>18/26</td>
<td>28</td>
<td>88.54</td>
</tr>
<tr>
<td>Sig</td>
<td>6</td>
<td>12</td>
<td>338</td>
<td>893</td>
<td>13.88</td>
<td>50/144</td>
<td>491</td>
<td>14.04</td>
</tr>
<tr>
<td>Sig</td>
<td>6</td>
<td>24</td>
<td>46</td>
<td>50</td>
<td>21.19</td>
<td>18/24</td>
<td>27</td>
<td>22.64</td>
</tr>
<tr>
<td>Sig</td>
<td>6</td>
<td>30</td>
<td>96</td>
<td>164</td>
<td>28.22</td>
<td>64/68</td>
<td>73</td>
<td>28.28</td>
</tr>
<tr>
<td>Prob</td>
<td>ψ</td>
<td>x_0^0</td>
<td>Iter</td>
<td>Nf</td>
<td>$|r_k|$</td>
<td>Iter</td>
<td>Nf</td>
<td>$|r_k|$</td>
</tr>
<tr>
<td>Para</td>
<td>10</td>
<td>(0, 0)</td>
<td>8</td>
<td>9</td>
<td>1.00</td>
<td>0/8</td>
<td>9</td>
<td>1.00</td>
</tr>
<tr>
<td>Para</td>
<td>10</td>
<td>(1, 1)</td>
<td>14</td>
<td>15</td>
<td>1.00</td>
<td>1/12</td>
<td>13</td>
<td>1.00</td>
</tr>
<tr>
<td>Para</td>
<td>10</td>
<td>(10, 10)</td>
<td>25</td>
<td>26</td>
<td>1.00</td>
<td>8/8</td>
<td>10</td>
<td>1.00</td>
</tr>
<tr>
<td>Para</td>
<td>100</td>
<td>(0, 0)</td>
<td>7</td>
<td>8</td>
<td>1.00</td>
<td>0/7</td>
<td>8</td>
<td>1.00</td>
</tr>
<tr>
<td>Para</td>
<td>100</td>
<td>(1, 1)</td>
<td>13</td>
<td>14</td>
<td>1.00</td>
<td>1/7</td>
<td>8</td>
<td>1.00</td>
</tr>
<tr>
<td>Para</td>
<td>100</td>
<td>(10, 10)</td>
<td>20</td>
<td>21</td>
<td>1.00</td>
<td>4/5</td>
<td>6</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Table 4

Test results for ill-posed problem 1 with the initial point \(x_0 = (10, 10, \ldots, 10)^T \) and different regularization parameters.

<table>
<thead>
<tr>
<th>(\mu)</th>
<th>(m = n)</th>
<th>Gauss–Newton</th>
<th>Algorithm 2.1</th>
<th>FXhybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>6</td>
<td>55</td>
<td>2.12e+000</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>23</td>
<td>301</td>
<td>1.06e+001</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>15</td>
<td>95</td>
<td>2.12e+000</td>
</tr>
<tr>
<td>1</td>
<td>150</td>
<td>23</td>
<td>218</td>
<td>3.18e+001</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td>24</td>
<td>239</td>
<td>4.23e+001</td>
</tr>
<tr>
<td>1</td>
<td>250</td>
<td>32</td>
<td>233</td>
<td>5.29e+001</td>
</tr>
<tr>
<td>10^-2</td>
<td>10</td>
<td>44</td>
<td>75</td>
<td>4.61e-002</td>
</tr>
<tr>
<td>10^-2</td>
<td>50</td>
<td>63</td>
<td>268</td>
<td>2.10e-001</td>
</tr>
<tr>
<td>10^-2</td>
<td>100</td>
<td>118</td>
<td>307</td>
<td>4.60e-001</td>
</tr>
<tr>
<td>10^-2</td>
<td>150</td>
<td>133</td>
<td>235</td>
<td>6.91e-001</td>
</tr>
<tr>
<td>10^-2</td>
<td>200</td>
<td>138</td>
<td>247</td>
<td>9.21e-001</td>
</tr>
<tr>
<td>10^-2</td>
<td>250</td>
<td>136</td>
<td>201</td>
<td>1.15e+000</td>
</tr>
<tr>
<td>10^-4</td>
<td>10</td>
<td>251</td>
<td>252</td>
<td>4.97e-004</td>
</tr>
<tr>
<td>10^-4</td>
<td>50</td>
<td>500</td>
<td>501</td>
<td>2.50e-003</td>
</tr>
<tr>
<td>10^-4</td>
<td>100</td>
<td>500</td>
<td>501</td>
<td>5.30e-003</td>
</tr>
<tr>
<td>10^-4</td>
<td>150</td>
<td>500</td>
<td>501</td>
<td>8.87e-003</td>
</tr>
<tr>
<td>10^-4</td>
<td>200</td>
<td>500</td>
<td>501</td>
<td>1.36e-002</td>
</tr>
<tr>
<td>10^-4</td>
<td>250</td>
<td>500</td>
<td>501</td>
<td>1.99e-002</td>
</tr>
<tr>
<td>10^-6</td>
<td>10</td>
<td>253</td>
<td>254</td>
<td>1.18e-005</td>
</tr>
<tr>
<td>10^-6</td>
<td>50</td>
<td>500</td>
<td>501</td>
<td>9.49e-005</td>
</tr>
<tr>
<td>10^-6</td>
<td>100</td>
<td>500</td>
<td>501</td>
<td>8.01e-004</td>
</tr>
<tr>
<td>10^-6</td>
<td>150</td>
<td>500</td>
<td>501</td>
<td>2.85e-003</td>
</tr>
<tr>
<td>10^-6</td>
<td>200</td>
<td>500</td>
<td>501</td>
<td>6.90e-003</td>
</tr>
<tr>
<td>10^-6</td>
<td>250</td>
<td>500</td>
<td>501</td>
<td>1.36e-002</td>
</tr>
</tbody>
</table>

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
Table 5

Test results for ill-posed problem 2 with the initial point $x_0 = (0.1, 0.1, \ldots, 0.1)^T$ and different regularization parameters.

<table>
<thead>
<tr>
<th>μ</th>
<th>n</th>
<th>m</th>
<th>Iter</th>
<th>Nf</th>
<th>$|r_k|$</th>
<th>Biter/Iter</th>
<th>Nf</th>
<th>$|r_k|$</th>
<th>λ_{min}</th>
<th>Iter</th>
<th>Nf</th>
<th>$|r_k|$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-2}</td>
<td>10</td>
<td>10</td>
<td>22</td>
<td>76</td>
<td>8.00e-001</td>
<td>6/14</td>
<td>63</td>
<td>8.00e-001</td>
<td>1.37e-001</td>
<td>7</td>
<td>89</td>
<td>8.02e-001</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>10</td>
<td>50</td>
<td>45</td>
<td>47</td>
<td>8.52e-001</td>
<td>9/16</td>
<td>55</td>
<td>8.52e-001</td>
<td>1.32e-001</td>
<td>10</td>
<td>121</td>
<td>8.54e-001</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>20</td>
<td>20</td>
<td>49</td>
<td>81</td>
<td>1.12e+000</td>
<td>6/21</td>
<td>66</td>
<td>1.12e+000</td>
<td>8.03e-002</td>
<td>6</td>
<td>81</td>
<td>1.12e+000</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>100</td>
<td>100</td>
<td>96</td>
<td>98</td>
<td>1.15e+000</td>
<td>6/10</td>
<td>55</td>
<td>1.15e+000</td>
<td>6.22e-002</td>
<td>6</td>
<td>70</td>
<td>1.20e+000</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>30</td>
<td>30</td>
<td>78</td>
<td>115</td>
<td>1.36e+000</td>
<td>7/52</td>
<td>59</td>
<td>1.36e+000</td>
<td>5.64e-002</td>
<td>6</td>
<td>80</td>
<td>1.37e+000</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>30</td>
<td>150</td>
<td>147</td>
<td>149</td>
<td>1.46e+000</td>
<td>4/8</td>
<td>48</td>
<td>1.46e+000</td>
<td>3.64e-002</td>
<td>7</td>
<td>72</td>
<td>1.47e+000</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>40</td>
<td>40</td>
<td>107</td>
<td>131</td>
<td>1.57e+000</td>
<td>27/81</td>
<td>269</td>
<td>1.57e+000</td>
<td>4.53e-002</td>
<td>6</td>
<td>84</td>
<td>1.57e+000</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>40</td>
<td>200</td>
<td>197</td>
<td>199</td>
<td>1.68e+000</td>
<td>7/31</td>
<td>73</td>
<td>1.68e+000</td>
<td>4.79e-002</td>
<td>9</td>
<td>79</td>
<td>1.68e+000</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>50</td>
<td>50</td>
<td>141</td>
<td>245</td>
<td>1.76e+000</td>
<td>6/86</td>
<td>122</td>
<td>1.76e+000</td>
<td>3.87e-002</td>
<td>5</td>
<td>75</td>
<td>1.76e+000</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>50</td>
<td>250</td>
<td>247</td>
<td>249</td>
<td>1.88e+000</td>
<td>7/31</td>
<td>75</td>
<td>1.88e+000</td>
<td>3.99e-002</td>
<td>9</td>
<td>76</td>
<td>1.88e+000</td>
</tr>
</tbody>
</table>

\parallel denotes the norm of the solution x. The results are rounded to four significant digits.
Acknowledgments. We would like to thank the referees and the associate editor, whose very helpful suggestions led to much improvement of this paper.

REFERENCES

[27] S. Osher and M. Burger, Convergence rates of convex variational regularization, Inverse...
NEW HYBRID GAUSS–NEWTON STRUCTURED BFGS METHOD

