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Ag nanoparticle (NP) embedded BaTiO3 (BTO) thin films on SrRuO3-coated SrTiO3 (STO) substrates

are prepared by the integrated nanocluster beam deposition and laser-molecular beam epitaxy.

Enhanced resistive switching, up to an ON/OFF ration of 104, has been achieved at low switching

voltage (less than 1 V) without a forming voltage. These characteristics make such nanocomposite

film very promising for application of low voltage non-volatile random access memory. The enhanced

resistive switching effect may be attributed to the charge storage effect of the Ag nanoparticles and

easy formation of Ag filament inside the BTO film. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4812219]

I. INTRODUCTION

Study of resistive switching toward application in resis-

tive random-access memory (RRAM) has attracted a great

deal of attention due to its promising in terms of high mem-

ory cell density and high ON/OFF (high resistance to low re-

sistance) ratio as well as low leakage current compared to

flash memory and phase change memory. However, unclear

switching mechanism and unstable switching voltage are

obstacles for real application of RRAM. Recently, ultrathin

ferroelectric tunnel junction (FTJ) sandwiched by two metal

layers with the ferroelectric layer as tunnel barrier is becom-

ing an interesting topic, owing to their unique electron trans-

port properties (e.g., giant electroresistance) and application

potentials in ultrahigh density recording.1–3 However, it is

challenging to obtain such kind of tunneling effect, which

requires to maintain perfect ferroelectricity at nanometer

scale of film thickness which is closing to the polarization

vanishing critical thickness. The relatively lower ON/OFF

ratio, up to 2–3 orders of magnitude,4–9 and large leakage

current due to its extremely thin film thickness make the fer-

roelectric switching based RRAM immature and far from

real application.

Lee et al. have demonstrated in one of their work that

RRAM devices based on layer-by-layer structure, with Pt

nanoparticle (NP) embedded in TiO2 nanocomposite multi-

layers, achieved resistive switching properties with low oper-

ating voltages and large ON/OFF ratio of 104 which is much

higher than what has been achieved by the ferroelectric tun-

neling effect.10 The memory effect in the high and low cur-

rent states can occur from charge storage (high resistance)

and release (low resistance) within the charge trap sites.

These results demonstrated the advantages of PtNP-

embedded TiO2 multilayers over the pure TiO2 multilayers in

electrical performance, and these enhanced memory proper-

ties were attributed to the presence of metal nanoparticles

operating as deep charge trap sites.

Very recently, we found another interesting phenomenon

when we embedded Ag nanoparticles into BaTiO3 (BTO)

films to form a particle/matrix nanocomposite by co-

depositing the BTO film and Ag nanoparticles using a pulsed

laser deposition system (PLD) equipped with a nanocluster

beam generator. A very large electroresistance of 104, which

is larger than all the other reported FTJ, has been observed.

Enlightened by this observation, in this work, we construct a

novel ferroelectric film-metal nanoparticle nanocomposite

and study its resistive switching characteristics. Study of this

nanocomposite film system may lead to more rich physics,

such as resonant tunneling (suggested by the presence of steps

and peaks in the I-V curve) and new function of devices. In

this paper, we report the fabrication and the resistive switch-

ing properties of the Ag nanoparticle embedded BTO film.

II. EXPERIMENT

The nanocomposite film was grown by co-deposition of

BTO film and Ag nanoparticles using PLD system combined

with a nanocluster generator. The BTO film was deposited

by the PLD system at deposition temperature of 700-750 �C
and in a high vacuum condition of around 10�4 Pa. The Ag

nanoparticles were produced by an Ag nanocluster beam

source, where an Ag target was magnetron sputtered and the

Ag nanoclusters were formed by aggregation of Ag atoms in

Ar gas, while an Ag nanocluster beam was formed and the

Ag NPs fly through an aperture toward the substrate driven

by the force of pressure gradient from the PLD to the magne-

tron sputter chamber. These Ag NPs were therefore embed-

ded inside the BTO thin films.

To characterize the nanocomposite BTO/Ag NPs film’s

electrical properties, a thin layer of conductive SrRuO3

(SRO� 15 nm) was deposited on SrTiO3 (STO) substrate as

bottom electrode, and Au electrodes of around 100 lm in di-

ameter were used as top electrodes. Current-voltage charac-

teristics of the film were characterized by a Keithley power

source meter (2400), and surface topology of the film

was characterized by a Veeco scanning probe microscope.

Cross-sectional microstructure of the film was studied by
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high-resolution transmission electron microscopy (TEM,

JOEL 2100F).

III. RESULTS AND DISCUSSION

Figure 1 shows microstructure and schematic diagram

of the BTO/AgNPs nanocomposite film. From the low mag-

nification TEM image (Figure 1(a)), it can be seen that the

BTO film is about 200 nm thick and mainly composed of

column-like BTO grains with dark-contrast particles embed-

ded, while a layer with polycrystalline nanoparticles can be

observed at the bottom of the BTO film. High-resolution

TEM image of the polycrystalline nanoparticle layer (Figure

1(b)) shows that this layer is mainly composed of Ag nano-

particles with diameters ranging from 10 to 25 nm. However,

smaller particles (�5-10 nm) with a relatively lower density

are found embedded in the BTO film. Lattice fringes of the

Ag NPs can be identified close to a BTO crystal from the

high-resolution TEM image as shown in Fig. 1(c). Based on

the TEM observation results, Fig. 1(d) schematically

illustrates the whole structure of the BTO/Ag NPs nanocom-

posite film and electrode on STO substrate.

In Fig. 2, energy dispersive x-ray (EDX) spectra taken

from the nanoparticles and the matrix area of the composite

film further confirm that Ag nanoparticles are embedded in

the BTO film with rather low density. The non-uniform distri-

bution of Ag nanoparticles in the composite film and on sub-

strate can be attributed to the pressure change of the growth

chamber during the PLD deposition. At the beginning of the

growth, the nanoclusters beam source opens first, and the Ag

NPs are deposited quickly, while when the PLD is started, the

relatively higher kinetic energy of the BTO particles in the

PLD plasma plume collide and scatter the Ag nanoparticles

and results in a low deposition rate of Ag NPs with smaller

size in the BTO film.

Figure 3(a) presents I-V curves of the Ag NP embedded

BTO nanocomposite film showing characteristic hysteresis

loop, where the high and low resistance states have a ratio of

104. At the low voltage regime, the film is in an insulating

state, while as the external voltage increases from zero and

FIG. 1. (a) TEM image of the Ag NP embedded BTO composite film on STO substrate. Different layers are illustrated, i.e., a thin SrRuO3 layer, Ag NP formed

electrode layer, and Ag NPs/BaTiO3 composite film; (b) High-resolution TEM images from the Ag NPs layer; (c) a typical Ag NP embedded in BaTiO3

matrix; and (d) schematic diagram of the film structure.

FIG. 2. (a) High-resolution TEM

image of the Ag NP embedded BaTiO3

composite layer and (b) the corre-

sponding EDX spectra taken from the

matrix and the nanoparticles.
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reaches a threshold voltage VSET, a sudden decrease of resist-

ance occurs. The low and high resistance states (HRSs) repre-

sent ON and OFF states, respectively. The much lower

current even at low resistance state (LRS) promises the appli-

cation potential as non-volatile memory. These results demon-

strate that RRAM devices based on Ag NP embedded BTO

film can have a unipolar switching property with low operat-

ing voltage and large ON/OFF ratio (104). It is worth noting

that the capacitor of pure BTO film without Ag NPs exhibits

very low ON/OFF ratio (<10, Fig. 3(b)). The large ON/OFF

ratio is also much larger than that of BTO based tunneling

junction (�100).11 It is, therefore, obvious that the incorpora-

tion of nanocomposite structures significantly enhances the

ON/OFF ratio. More interestingly, the resistive switching

occurs at bias as low as 1 V, without a forming process by

large voltage, which is usually required by most resistive

switching system.12–14 This is very promising for RRAM

memories with ultralow operation bias.

The nanocomposite structure also exhibits unipolar resis-

tive switching behavior at higher voltages. Figure 4 shows the

typical unipolar switching characteristics for the Ag NP/BTO

film when the sweep voltage increases to a few volts, where

the I-V curve is shown in Fig. 4(a), and the R-V curve is

shown in Fig. 4(b). One can see that as the external voltage

Vext increases from zero and reaches a threshold voltage

VSET, a sudden current increase occurs and the film changes

from a HRS to a LRS. It is interesting to see that the HRS and

LRS are metastable and can suddenly switch from one to the

other at a certain voltage. Although distributions occur in

VRESET and VSET, one can see that the resistance changes at

different VRESET and VSET are the same, i.e., the universal re-

sistance change. These LRS and HRS can be used as the bi-

nary states for memory applications, and the large ON/OFF

ratio and low current are promising characteristics for RRAM

application. Compared to other resistive switching systems,

the VRESET and VSET of our sample occur at relatively low

voltages without a forming process.

It should be noted that the trace 5 in Fig. 4 indicates a

fact that the low resistance state returns to high-resistance

state when the voltage reduces to zero. However, if we look

at the traces from 6 to 8, it shows that at zero voltage, the

low resistance state can be retained. The uncertainty of

switching voltage is a common issue in many resistive

switching memories, and the wide distribution of VRESET

and VSET is considered to be the major obstacle to practical

RRAM applications. This issue could be more serious for the

current sample, and more work is needed to study its reten-

tion and endurance properties.

Nevertheless, in this work, we emphasize the Ag nano-

particle induced giant resistive switching and quantum effect.

The above giant ON/OFF ratio compared to the bare BTO

film is believed to be due to the presence of Ag nanoparticle

electrode and nanoparticles inside the film, resulting in a

charging and discharging effect on the nanoparticles as well

as easy formation of filaments. At relatively lower voltage

FIG. 3. (a) Unipolar resistance switching behavior of the Au/BTO-AgNPs/

Ag device; (b) low resistive switching behavior of BaTiO3 film without Ag

NPs.

FIG. 4. Resistance switching of the Au/BTO-AgNPs/Ag device: (a) I-V

curve and (b) R-V curve.
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range, the I-V curves exhibit a characteristic of large and re-

versible current rectification behavior (Figure 3(a)), which is

likely due to the charge and discharge of electrons inside the

embedded Ag nanodots.10,15 In addition, we further attribute

the wide distribution of the set and reset voltages to the Ag

NP’s quantum confinement and Coulomb blockade effect. It

has also been reported that the volatile electrode of Ag NPs

results in easy formation of the Ag filament inside oxide films

through ion diffusion mechanism, while the Ag nanodots

inside the Ag film should enhance this process. At higher vol-

tages, filament effects become more significant, as demon-

strated by the unipolar resistive switching behavior in Fig. 4,

in which the I-V behavior at LRS state is like an Ohmic con-

tact, implying the formation of a metal-like channels, e.g., Ag

filament. In a general case, the I-V behavior should be gov-

erned by both the trapped and distrapped charges as well as

filament effects. Further more, by detailed examination of

Fig. 4(b), we can see that at the lower voltage range, multiple

steps appear and the heights of the steps are about the same.

This is similar to what has been called quantized conductance

as reported in Ref. 16 due to the formation of multiple fila-

ments. It is also worth noting that the ferroelectric switching

induced resistive switching may also contribute to the large

resistive switching, but further study is needed to understand

this point.

IV. CONCLUSION

In conclusion, we have fabricated Ag NP embedded

BTO nano-composite films and demonstrated that the resis-

tive switching memory behavior based on the Ag NP embed-

ded BTO film has unipolar switching property with low

operating voltages and large ON/OFF ratios (104). The

mechanism for this giant resistive switching is attributed to

charge storage effect of Ag NPs as well as Ag NP electrode

induced easy formation of filament inside the BTO film.
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