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Abstract—To integrate the nowadays rapidly expanding dis-
tributed real-time systems, we need multi-hop real-time switched
networks. A (if not “the”) widely recognized/adopted real-time
switch architecture is the TDMA crossbar real-time (TCRT) switch
architecture. However, the original TCRT switch architecture
assumes per-flow queueing. To support scalability, however, queue
sharing (i.e. flow aggregation), must be allowed. With simple
flow aggregation, flow burstiness can grow and infect, making
schedulability and end-to-end delay bound analysis an open
problem. To deal with this, we propose the real-time aggregate
scheme. The scheme complies with the existing TCRT switch
architecture, and deploys spatial-temporal isolation and over-
provisioning to curb aggregate member flows’ burstiness. This
allows us to derive the closed-form end-to-end delay bound, and
give the corresponding resource planning and admission control
strategies. Simulations are carried out to show the effectiveness
of the design.

I. INTRODUCTION

Real-time networks are the venue where distributed real-

time systems integrate. As nowadays distributed real-time

systems rapidly scale up, real-time networks have to evolve

from traditional Local Area Networks (LANs) toward multi-

hop switched networks [1]. A typical example is avionics. A

modern aircraft, such as A380, F-35, or space shuttle, already

runs hundreds of processors, and may include hundreds of

high-definition real-time video sources [2][3]. Such large

number of nodes and traffic cannot be hosted by a single

real-time LAN. This forces the launch of several initiatives to

develop multi-hop real-time switched networks [4][5]. Similar

demands also arise from industrial control, telepresence/tele-

robotics, intelligent transportation, and medical device integra-

tion etc. [6].

A (if not “the”) widely recognized/adopted real-time switch

architecture for multi-hop real-time networks is the Time-

Division-Multiple-Access (TDMA) crossbar real-time switch

architecture (simplified as “TCRT switch” architecture in the

following) [7][8][1][9][10][11]. This architecture is particu-

larly important for mainstream switch manufacturers because

it complies with (and even simplifies) a mainstream Internet

switch architecture [1]. This lays a smooth evolution path for

these manufacturers to build real-time switches.

However, the existing TCRT switch architecture assumes

per-flow queueing. It is well-known that per-flow queueing

has poor scalability [12][13][14]. In fact, this is the reason

why nearly all high performance switches nowadays carry

out certain flow aggregation: flows have to share queues
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sometimes. Flows sharing a same queue are referred to as

an aggregate.

With aggregates, how to provide real-time delay guarantee

becomes a non-trivial problem. Simply aggregating flows in

TCRT switches allows the member flows’ burstiness to grow

and infect (an example is in Section III). As these member

flows join other aggregates, the burstiness infection can spread

further. This seriously complicates the network model, making

schedulability and end-to-end (E2E) delay bound analysis an

open problem.

To deal with the problem, we propose a novel scheme called

real-time aggregates. This scheme exploits the features of

TCRT switch architecture to curb aggregate member flows’

burstiness. With real-time aggregates, we can derive closed

form E2E delay bound, along with the corresponding resource

planning and admission control strategies. Simulation shows

the real-time aggregate scheme is efficient in terms of provid-

ing short E2E delay bound and high network utilization.

The remainder of the paper is organized as follows. Sec-

tion II introduces the TCRT switch architecture; Section III

proposes a naive aggregation scheme, and shows how it leaves

E2E delay bound an open problem; Section IV proposes and

analyzes the real-time aggregate scheme; Section V evaluates

real-time aggregates; Section VI discusses related work; and

Section VII concludes the paper.

II. BACKGROUND

We shall first introduce the existing/basic TCRT switch

architecture1.

Network switches (no matter real-time or not) can be

categorized as output queueing or input queueing. In output

queueing, input ports (simplified as “inputs” in the following)

does not buffer packets. Once a packet enters an input, it is

immediately routed to its corresponding output port (simplified

as “output” in the following) and buffered there.

Though output queueing is intuitive, its inherent “N speed-

up” problem [15] limits its adoption. Input queueing, instead,

becomes the de facto standard among switch vendors[1][16].

In input queueing, a crossbar fabric connects inputs with

outputs (see Fig. 1(a)). Packets are only buffered at inputs;

when a packet enters an input, it is immediately routed into

the right queue in the input (see Fig. 1(b)). At scheduled time,

an output connects with one input, picks one of its queues, and

fetches the queue’s header packet. The fetched packet exits the

output directly without further buffering (see Fig. 1(c)).

To facilitate scheduling, each packet is typically manipu-

lated as fixed-size fragments called cells. The time cost to

1Because both this paper and [8] share the same background, the content
of this section is mostly the same as the Background section of [8].

This is the Pre-Published Version.



(a) crossbar fabric, which connects inputs with outputs; each input
connects to a data bus (the horizontal line segments) that intersects with
each output’s data bus (the vertical line segments); the intersections (grey
dots) can be connected/disconnected in runtime by scheduler(s).

(b) an input port: packet routing and queueing are carried out in it; in input
i, the kth queue buffering packets to output j is denoted as Q(i, j, k).

(c) an output port: at different time slot, the output fetches packets from
different input queues according to the switch scheduling scheme.

Fig. 1. Input Queueing Switch Architecture (quoted from [8])

send one cell across the crossbar is called one cell-time. To

satisfy the crossbar constraint that at any time instance, an

input can connect to at the most one output and vice versa,

the switch operates periodically, and the period is one cell-

time. At the beginning of each cell-time, the switch scheduler

decides a one-to-one matching (simplified as “matching” in the

following) between inputs and outputs and connect/disconnect

crossbar intersections (the grey dots in Fig. 1(a)) accordingly.

During the cell-time, each output tries to fetch a cell from its

matched input for outputing.

Depending on different queueing and cell matching

schemes, many input queueing switch architectures exist.

TCRT switch architecture is one of them [1][9][10][11]. It

runs as follows.

Each input carries out per-flow queueing. Each output

maintains a TDMA schedule of M cell-time, a.k.a., the M -

slot frame. The gth (g = 0, 1, . . . ,M − 1) slot of the frame

Fig. 2. Conflict free schedule for TCRT switch (quoted from [17]): in this
example, the switch has N = 4 inputs/outputs, M = 5; each row of the
“schedule matrix” is a conflict free schedule for its corresponding output.

specifies which per-flow queue in which input to grant (i.e.,

to send a “grant” signal) at the beginning of the gth cell-time.

Here g is a global counter incremented by 1 every cell-time

(modulo M ). On receiving a grant, the input port per-flow

queue sends its header cell to the granting output during the

cell-time; or do nothing if the queue is empty.

To ease narration, in the following, we use the term “M -slot

frame” and “frame” interchangeably; and the term “slot” and

“cell-time” interchangeably.

Remember crossbar requires that in any time instance an

input can connect to no more than one output and vice versa.

That is, the M -slot frame schedules of all N outputs must

be a matching between the N inputs and N outputs in each

cell-time. We call this requirement “conflict free” (see Fig. 2).

An important feature for TCRT switch architecture is its

schedulability test method [1], quoted here as Theorem 1:

Theorem 1 (Schedulability): For an N inputs N outputs

TCRT switch, if in every M -slot frame, each output needs

to receive no more than M cells, and each input needs to

send no more than M cells, then we can always find a

conflict free schedule with a time cost of O(N4).

The corresponding O(N4) scheduling algorithm is in [1].

So far, we are assuming all flows are unicast. The extension

to support multicast is simple [8], as shown in Fig. 3. When

a to-be-multicasted cell enters an input (see Fig. 3 (a)), it

is duplicated into m copies (see Fig. 3 (b)). Depending on

multicast routing, each copy enters its corresponding input port

per-flow queue, and the rest is the same as unicast. When the

copy enters the next-hop switch, same thing can happen again

for further multicast branching.

Such extension complies with the common constraint of

crossbar that at any time instance, one input can connect to at

the most one output and vice versa; hence will benefit smooth

design evolution. Later, we will use this multicast scheme to

design our flow aggregate mechanisms.

III. NAIVE APPROACH: PER-AGGREGATE QUEUEING

To address the flow aggregation demand proposed in Sec-

tion I, in this section, we shall attempt a naive approach:

add per-aggregate queueing into the aforementioned TCRT

switches. Later in this section, we will show due to insufficient

flow isolation, this approach makes the analysis of each flow’s



(a) Step 1 (b) Step 2

Fig. 3. Multicast in TCRT switch (quoted from [8], note C2 and C3 may
be fetched/outputted in different cell-times, but this does not matter).

schedulability (i.e., how much resources must be allocated to

guarantee the existence of an E2E delay bound?) and E2E

delay bounds (i.e., what is the E2E delay bound?) an open

problem. A better solution is then proposed in Section IV.

Per-aggregate queueing means flows of a same aggregate

share the same queue, as shown by Fig. 4.

Formally, let set F represent an aggregate, where f ∈ F iff

f is a member flow of F (“iff ” means “if and only if ”). A

queue can be uniquely identified as Q(I,O, F ): I is the input

where the queue resides; O is the intended output; and F is

the aggregate the queue exclusively serves. In addition, let

PF
def
= {X|∃ flow f ∈ X and f joins aggregate F

right after leaving aggregate X} (1)

denote the set of Predecessor Aggregates for F ; and let

SF
def
= {X|∃ flow f ∈ X and f joins aggregate X

right after leaving aggregate F} (2)

denote the set of Successor Aggregates for F .

Topologically, an aggregate F starts from an output O0 that

fetches cells from a set of queues {Q(I,O0, X ∩ F )|∀X ∈
PF } (note O0 and X ∩F together determines I). We call O0

the Aggregator of F , or equivalently, O0 creates F . F then

passes several subsequent switches. Without loss of generality,

suppose they are switch 1, 2, . . . , k − 1 respectively. Suppose

in switch i (i = 1 ∼ k − 1), F is queued in Q(Ii, Oi, F ) and
forwarded to output Oi; and suppose Ok−1, the last hop of

output for F , wires to input Ik of switch k. Input Ik then is

F ’s Segregator, where F segregates into |SF | queues (| • | is
the cardinal of set •). For flow f ∈ F that joins X ∈ SF , the

flow enters queue Q(Ik, O, F ∩ X), where O is determined

by Ik and F ∩X .

These concepts on aggregates are more intuitively explained

by an analogy to express trains, depicted in Fig. 4’s caption.

As shown in Fig. 4, aggregates can share the same physical

link(s), but their queues are mutually exclusive. This spatially

partitions flows of different aggregates. However, within each

aggregate, per-aggregate queueing is unable to isolate the

aggregate’s member flows. If one member flow is bursty (i.e.

the flow’s data rate changes drastically; e.g., to have no cell

arriving in one M -cell-time frame, and then have four cells

arriving in the next frame), it may make other flows bursty.

Fig. 5 shows an example on how the burstiness of a flow

may emerge and “grow” due to clock drift [18]; and the

burstiness of flows may “infect” each other due to queue

sharing.

The example assumes six consecutively connected switches,

S1 ∼ S6, along an aggregate F . The events taken place in

S1 ∼ S6 are shown in Fig. 5 by six synchronized time axes

from top to bottom: the top time axis for switch S1, the second

from top time axis for switch S2, so on and so forth.

Without loss of generality, we assume TCRT switches

always run an M -slot frame with M = 10 (note in reality, for

giga-bps switches, M is usually in the order of 103 ∼ 106).
Let τi (second) denote the duration of a cell-time for switch

Si; and τ1 < τ2 < . . . < τ6, which implies clock drift.

The aggregate F through S1 ∼ S6 consists of two flows: fa
and fb. fa’s source end maximal traffic load is 3 cell/frame,

while fb’s source end maximal traffic load is 1 cell/frame.

They enter the per-aggregate queue Q1 in switch S1’s input

port, and is fetched by an output port of S1, namely output

O1. Based on fa and fb’s source end maximal traffic load, O1

shall grant Q1 for 4 times per M -slot frame. In Fig. 5, O1

grants Q1 for the kth time at g
(1)
k .

Unfortunately, fa is bursty, either ever since source end, or

due to burstiness growth/infection in the network. Therefore,

fa injects no traffic load throughout our observation period. fb,
however, is steady. The kth cell of fb, denoted as ck, arrives

at Q1 at time a
(1)
k . For example, in Fig. 5, c0 arrives at Q1 at

time a
(1)
0 . However, c0 missed the grant at g

(1)
3 due to clock

drift. On the other hand, because the bursty flow fa injects no

cells, c0 is fetched by O1 at g
(1)
4 using a slot originally for fa.

Similar things can happen at switch S2 ∼ S5, so that c0 ∼ c3
arrive at switch S6 within one frame, using 3 additional slots

originally for fa, i.e., fb grows bursty. This burst of c0 ∼ c3
can infect other flows, as flow fb later joins other aggregates.

Note we cannot stop the growth of fb’s burstiness by

allocating more slots per frame to Qi (i = 1 ∼ 5), because bad

phasing (like the one where cell arrival time a
(1)
0 just misses

grant time g
(1)
3 in Fig. 5) can still happen.

Due to the complexity of flow burstiness growth and infec-

tion, a tight per-aggregate queueing burstiness upper bound

is still an open problem (this concurs with the experience

on flow aggregation research for other switch architectures

[12][19][20]). That is, in general, we do not know the exact

worst case burstiness of a flow in a per-aggregate queueing

TCRT switched network. This stops us from deriving efficient

schedulability test and tight E2E delay bound for per-aggregate

queueing; though a conservative sufficient schedulability test

and a loose E2E bound exist by applying classic DiffServ math

framework [20][21][22].

IV. REAL-TIME AGGREGATE

To fix the shortcomings of per-aggregate queueing, we pro-

pose real-time aggregate, which carries out spatial-temporal

partitioning and over-provisioning to curb the burstiness

“growth” and “infection”, hence making schedulability and

E2E delay bound analysis possible.



Fig. 4. Aggregate Topological Architecture. We can imagine every switch as a railway station, with each input an arrival platform, and each output a
departure platform. An aggregate is an express train that runs non-stop from a unique departure platform (i.e., its aggregator) to a unique arrival platform (i.e.,
its segregator). A flow is a passenger, who boards/alights-from express trains (aggregates) at their aggregators/segregators. A departure platform (output) can
serve as the aggregator for some express trains (aggregates), and as pass-by platform for some other express trains. Same is for an arrival platform (input) as
segregator and pass-by.

Fig. 5. Burstiness Growth and Infection Example. This figure depicts in
time domain a series of events happened in six hops of switches along an
aggregate.

A. Heuristics

Fig. 5’s example shows a main drawback of per-aggregate

queueing: cells originally belong to different M -slot frames

may pile up together. For example, in Fig. 5, cell c0 ∼ c3
originally belong to 4 different frames respectively when

arriving at switch S1; but they all arrive at switch S6 in one

frame. The forwarding output of switch S6 thus may forward

c0 ∼ c3 within one M -slot frame, propagating burstiness to

other parts of the network.

To make an analogy, per-aggregate queueing is like queue-

ing all words of an article without any comma. Such an article

is certainly hard to read and error prone. But the solution

Fig. 6. With/without (dummy cells delineating) temporal isolation

is simple: just add commas between words, then the article

becomes readable. These commas provide temporal isolation.

Similarly, we can add temporal isolation to the original per-

aggregate queueing. This is illustrated by Fig. 6. Fig. 6(a)

shows a queue for per-aggregate queueing: all cells are piled

up together. Our plan is to insert dummy cells between these

cells (see Fig. 6(b)) to separate cells that should not be

forwarded within a same M -slot frame. These dummy cells

serve the function of “commas”. When an output “reads” (i.e.,

forwards) cells from queue (b), it should “pause” whenever it

reaches a “comma” (i.e., dummy cell) until the next M -slot

frame starts.

With dummy cells, we add temporal isolation to the spatial

isolation of per-aggregate queueing (different aggregates are

spatially isolated from each other because they use different

queues). This combined spatial-temporal isolation better curbs

the burstiness growth and infection. But we still have one more

glitch: since we admit clock drift exists between switches, the

incoming of cells may be slightly faster than the reading of

cells. This may cause queue overflow.

We address this problem with over-provisioning. We shift

the “comma” to include some more words than the original

“sentence” length. Then in each M -slot frame, if the next hop

output “reads” until it sees a “comma”, it reads more than

needed (i.e., over-provisioning). In this way, we speed up the

“reading” of cells, so that possible clock-drift is compensated.

To implement this, we let the aggregator insert a dummy



Fig. 7. The Life Cycle of a Dummy Cell c

cell every (M +1) cell time instead of every M cell time. In

addition, dummy cells are created and inserted by each aggre-

gate’s aggregator, and deleted (consumed) by the aggregate’s

segregator. This ensures dummy cells of each aggregate will

NOT enter other aggregates to cause confusion.

The above heuristics leads to our real-time aggregate design.

B. Real-Time Aggregate Design Details

To implement the heuristics of Section IV-A, we reuse

the per-aggregate queueing topology architecture of Fig. 4,

and revise the granting mechanism in the TCRT switch of

Section II to achieve the effects shown in Fig. 7.

In Fig. 7, output O plays the role of

aggregator for two aggregates. Let MO
def
=

{X|O is the aggregator for aggregate X}. Then every

(M + 1) cell-time, O multicast a dummy cell c to MO.

Every copy of c respectively passes along each aggregate

X ∈ MO, marking the temporal border (i.e., beginning) of

a new (M + 1) cell-time frame, a.k.a. “virtual-frame” or

“v-frame”, to be differentiated from the “M cell-time frame”,

a.k.a. “frame”.

When c enters the segregator of X(∀X ∈ MO) (denoted

as input I in the figure), c is duplicated and enqueued as if

it is going to be further multicasted to SX , X’s successor

aggregates. Specifically, for each Y ∈ SX , suppose output

O′ is Y ’s aggregator, and Q(I,O′, X ∩ Y ) is the queue in

segregator I that corresponds to Y (i.e., all cells leaving

aggregate X and joining aggregate Y will be queued in

Q(I,O′, X ∩ Y )), then a copy of dummy cell c will enter

Q(I,O′, X ∩ Y ). When it reaches Q(I,O′, X ∩ Y )’s header,
aggregator O′ sees the beginning of the next v-frame. O′ will

hence block until the next M cell-time frame. In the next M
cell-time frame, the first thing O′ will do is to delete c, and
then forward the remaining cells from Q(I,O′, X ∩ Y ) until

the next dummy cell reaches Q(I,O′, X ∩ Y )’s header.
Since O′ deletes c, c would NOT enter Y , although c

attempts to. Also, since O′ blocks at seeing c till the next

frame, O′ will not aggregate cells generated in different v-

frames in one frame. This temporally curbs burst growth.

The above behavior is formally specified by the pseudo

codes in Fig. 8 and 9. The pseudo codes extend the “grant”

protocol in the TCRT switch described in Section II. At the

beginning of each cell-time, an output executes OnCellTimeS-

tart() (see Fig. 8) to grant input. On getting a grant g from

an output, an input executes OnGranted(g) (see Fig. 9). Some

pseudo code details are explained in the following:

Each output still maintains an M -slot frame (a.k.a. M
cell-time frame) schedule. Each slot corresponds to a slot

descriptor describing what the output needs to do during that

slot. Let SO denote output O’s M -slot frame schedule. Let

sOi denote the ith (i = 0 ∼ M − 1) slot descriptor of SO; and

sOi has three fields:

1) sOi .queue is the input queue to grant at the ith slot;

2) sOi .role specifies O’s role for sOi .queue. It can be either

“aggregator” or “others”.

3) sOi .sync is a boolean that is only valid when sOi .role is

“aggregator”. It is “true” iff it is the first slot in SO that

grants the queue of sOi .queue.

sOi .role and sOi .sync together differentiate three types of

grant: normal-data-grant, aggregator-data-grant, and sync-

grant (see Fig. 8 line 4, 12, 14; and Fig. 9 line 5, 7, 8).

“Normal-data-grant” is the conventional grant that fetches the

input queue’s header cell if there is one. It is used by inter-

mediate nodes (the outputs that the aggregate passes along,

but not the aggregator for the aggregate) of an aggregate.

In contrast, if an aggregator wants to issue a data grant,

it must use “aggregator-data-grant”. The difference between

“normal-” and “aggregator-” data-grant is that aggregator-

data-grant fetches nothing if the input queue header is a

dummy cell. This realizes the heuristic of “pause” for temporal

isolation. Meanwhile, the dummy cell will block there until it

is “deleted” by a “sync-grant” from the aggregator, issued once

every M -slot frame. This realizes the heuristic of “pause” until

the next frame to “resume reading”. Note the only purpose of

“sync-grant” is to delete blocking dummy cells; “sync-grant”

does not fetch cells.

Suppose output O grants Q for v times in each M -slot

frame at slot si0 , si1 , . . ., siv−1
. If O is an aggregator for

queue Q, then O sync-grants Q in the first granting slot si0 ;
and aggregator-data-grants Q in all other granting slots si1 ∼
siv−1

. If O is not an aggregator for Q, then si0 ∼ siv−1
are

all for normal-data-grants.

Also, for an output O, every (M + 1) cell-time, it

needs to multicast a dummy cell to MO (this is triggered

by the combined effects of variable i, newV Frame, and

lastV FrameStartsAt in Fig. 8 line 2, 7, 9, 10, 17, 18,

19). This means every M -slot frame, at the most one slot

will be sacrificed for outputing dummy cell, instead of data

cell. This is remedied by allocating one more slot for normal-

or aggregator-data-grant during the resource planning and

admission control stage (see Section IV-C-“Resource Planning

Method”). Note if the sacrificed cell happens to be a sync-

grant, there will be no negative effects. Because sync-grant’s

job is only to delete blocking dummy cells in the previous

hop; sync-grant does not forward cells.

C. Analysis

Without loss of generality, in the following, we use aggregate

F in Fig. 4 as an example for our analysis.

We first define some notations and conventions:
Definition 1: We call two dummy cells c0 and c1 “consec-

utive dummy cells” from output O, iff O does not output

any other dummy cells between outputting c0 and c1.



1. void OnCellTimeStart() {
2. i← ((i+ 1) mod M);
3. //suppose sOi .queue refers to Q(I,O, F );
4. if (sOi .role == “aggregator” and sOi .sync == true) {
5. sync-grant Q(I,O, F );
6. }
7. if (newV Frame) {
8. create and output a multicast dummy cell c toMO , and at the

segregator of each X ∈MO , c will be enqueued as if it will
further multicast to SX (X’s successor aggregates);

//Note1:MO
def
= {X|O is the aggregator for aggregate X}.

//Note2: The above life cycle of c is better explained by Fig. 7.
//Note although c will enter each queue X segregates to, c will
//be deleted at the corresponding queue’s header, see Fig. 9 line 6.

9. newV Frame ← false;
10. lastV FrameStartsAt ← i;
11. }else{
12. if (sOi .role == “aggregator” and sOi .sync == false ) {
13. fetch and output Q(I,O, F )’s header

cell (if any) with an aggregator-data-grant;

14. }else if (sOi .role 6= “aggregator”){
15. fetch and output Q(I,O, F )’s header

cell (if any) with a normal-data-grant;
16. } //else do nothing (particularly, output nothing)
17. if (i == lastV FrameStartsAt) {
18. newV Frame ← true;
19. }
20. }
21. }

Fig. 8. OnCellTimeStart procedure, called at the beginning of each cell-
time by an output port O. Global variables i, lastV FrameStartsAt, and
newV Frame are initialized to (M − 1), (M − 1), and true respectively.

1. void OnGranted(g) {
2. //suppose g.queue refers to Q(I,O, F );
3. if (Q(I,O, F ) is empty) return;
4. Let c refer to Q(I,O, F )’s header cell;
5. if (g.type == sync-grant) {
6. if (c is a dummy cell) delete c; //else do nothing (“pause”)
7. }else if (g.type == aggregator-data-grant){

if (c is not a dummy cell) send c to O; //else do nothing (“pause”)
8. }else /* g.type == normal-data-grant */ send c to O;
9. }

Fig. 9. OnGranted procedure, called at the beginning of each cell-time by
an input iff it receives a grant g: g.queue is the queue granted; g.type is one
of sync-grant, aggregator-data-grant, or normal-data-grant.

Special care should be taken at the ends of flows. With-

out loss of generality, suppose input I0 in Fig. 4 connects

to a source end computer, which enqueues flow f into

Q(I0, O0, F
′ ∩ F ). Then every (M + 1) cell-time, the source

end computer shall enqueue a dummy cell into Q(I0, O0, F
′∩

F ). To facilitate narration, we define the following:

Definition 2: Suppose between enqueueing two consecu-

tive dummy cells, the source end computer enqueues ñsrc
f

cells of f into Q(I0, O0, F
′ ∩ F ). We denote

Ñsrc
f

def
= sup{ñsrc

f }. (3)

We say that flow f has a worst case source end virtual

traffic load of Ñsrc
f cell/v-frame.

Here we use “∼” to indicate the corresponding parameter is

related to certain “virtual” concepts, such as “virtual frame”.

The definition also tells us how to measure/specify Ñsrc
f .

For example, if our system’s v-frame size is (M +1) = 1001
(cell/v-frame), then the source end computer enqueues a

dummy cell every 1001 cell-time. If the source end computer

NEVER enqueues more than 9 cells of f between enqueueing

dummy cells, then Ñsrc
f = 9 (cell/v-frame).

Also, from now on, unless explicitly noted, let us assume

the default unit for time and data are “second” and “cell”

respectively.

We use τ (i) to denote the cell-time duration of output

Oi (i = 0, 1, . . .) in Fig. 4. Therefore, Oi’s M -slot frame

duration P (i) = Mτ (i). We admit the existence of clock drift,

and denote the minimum and maximum cell-time duration

of all switches in the system as τmin and τmax respectively.

Correspondingly, the minimum and maximum M -slot frame

duration are Pmin = Mτmin and Pmax = Mτmax.

We use w̃(f,Q) to denote the maximum number of flow

f ’s cells arriving at queue Q between the arrival of any two

consecutive dummy cells. Intuitively, this is the worst case

traffic load of f enqueued into Q in each v-frame. Hence

w̃(f,Q)’s unit is cell/v-frame. Correspondingly, let v(O,Q)
(cell/frame) denote the number of slots that output O schedules

to grant Q in each frame. Note, if O is an aggregator for Q,

then the first slot is for sync-grant, the other v(O,Q)−1 slots

are for aggregator-data-grant. If O is not an aggregator for Q,

then all v(O,Q) slots are for normal-data-grant.

Knowing the traffic load is the first step to plan resource

allocation. Therefore, we need the following lemma:

Lemma 1 (Burstiness Bound): Suppose flow f ’s worst

case source end virtual traffic load (see Definition 2) is

Ñsrc
f cell/v-frame. Suppose there are M slots per frame

(i.e. M + 1 slots per v-frame). If output O is the h̃th
(h̃ = 1, 2, . . .) aggregator that f encounters after leaving its

source end computer (excluding the source end computer).

Then regardless of τmin and τmax, between any two

consecutive dummy cells (i.e., in each v-frame) outputed

from O, there are no more than 2Ñsrc
f cells of f if h̃ = 1;

and no more than (2h̃ − 1)Ñsrc
f cells of f if h̃ ≥ 2 and

M ≥ (2h̃− 1).

Proof: Please see Appendix A. �

We have five important remarks/observations on Lemma 1:

Firstly, in almost all practical cases, M >> (2h̃−1). Hence
we are not interested in cases where h̃ ≥ 2 and M < (2h̃−1).

Secondly, Lemma 1 is NOT about overflow or delay; rather,

it is only about burstiness: the possible number of f ’s cells

between any consecutive dummy cells enqueued. The fact that

Lemma 1 does not involve τmin and τmax, the shortest and

longest cell-time duration of all switches, implies our real-time

aggregate can bound burstiness growth and infection regardless

of clock-drift.

Thirdly, however, clock-drift may still cause queue overflow,

which means infinite E2E delay. Therefore, the delay bound

analysis (see Theorem 2 and 3) will still involve τmin and

τmax. In fact, we will see Theorem 2 and 3 give a sufficient

condition involving τmin and τmax that bounds E2E delay,

and hence avoids queue overflow.

Fourthly, Lemma 1 also tells that if f passes h̃ hops of real-

time aggregates, then f ’s burstiness is bounded by O(h̃). In
many cases (see Section V), we can configure a network so

that h̃ = O(log2 h), where h is the number of physical links



that f passes. Therefore, the burstiness of f in such networks

is controlled by O(log2 h). Or if we always configure a single
real-time aggregate from source to destination end of f , then
the burstiness is controlled by O(1).
Fifthly, Lemma 1 tells us how to calculate

Ñ
(0)
f

def
= w̃(f,Q(I0, O0, F

′ ∩ F )) (cell/v-frame) (4)

for any f ∈ F ′ ∩ F (where F is the aggregate of con-

cern, and F ′ ∈ PF ). For example, if in Fig. 4, input

I0 connects to source end computer that enqueues flow f
into Q(I0, O0, F

′ ∩ F ) with Ñsrc
f = 9 (cell/v-frame); then

Ñ
(0)
f

def
= w̃(f,Q(I0, O0, F

′ ∩ F )) = Ñsrc
f = 9 (cell/v-

frame); and each v-frame outputed from O0 contains no

more than 2Ñsrc
f = 18 cells of flow f , which also means

w̃(f,Q(Ik, Ok, F ∩ F ′′)) = 18 (cell/v-frame). So on and so

forth.

With all Ñ
(0)
f = w̃(f,Q(I0, O0, F

′∩F )) at O0 (see Fig. 4)

known, we can plan resources, analyze E2E delay bound, test

schedulability, and create TDMA schedules as follows.

Resource Planning Method O0 shall allocate

v(O0, Q(I0, O0, F
′ ∩ F ))

= 3 +
∑

∀f∈F ′∩F

Ñ
(0)
f

def
= Ñ

(0)
F ′∩F (cell/frame) (5)

to grant Q(I0, O0, F
′∩F ). Note the first slot is to sync-grant;

the other two additional slots are for over-provisioning, whose

meaning will become clear during the analysis of Theorem 2

and 3; and Ñ
(0)
F ′∩F is a notational shortcut.

Eq. (5) means O0 totally allocates

Ñ
(0)
F

def
=

∑

∀F ′∈PF

Ñ
(0)
F ′∩F (cell/frame) (6)

for aggregate F . Subsequently, Oi (i = 1 ∼ k − 1) shall

allocate

v(Oi, Q(Ii, Oi, F )) = Ñ
(0)
F + 2

def
= Ñ

(1)
F (cell/frame) (7)

for aggregate F . Note the two additional slots are for over-

provisioning. Also note since Oi is not the aggregator for F ,

all allocated slots are for normal-data-grant.

Lemma 1 tells us how to calculate Ñ
(0)
f (∀f ∈ F ′ ∩ F ,

where F is the aggregate of concern, and F ′ ∈ PF ). Given

all Ñ
(0)
f s, Eq. (5) ∼ (7), tell us how many slots per frame to

grant aggregate F along its path.

Next we will see how to calculate delay bounds.

Real-Time Delay Bounds Still, without loss of general-

ity, we refer to Fig. 4, and study a flow f that joins aggregate

F at O0 from Q(I0, O0, F
′ ∩ F ), and leaves F at Ik from

queue Q(Ik, Ok, F ∩ F ′′).

For a cell c of flow f , let L
(0)
f , L

(k−1)
f , and L

(k)
f denote

the time that c leaves O0, Ok−1, and Ok respectively. We still

use τ (k) to denote the cell-time duration (second) of switch k,

P (k) def
= Mτ (k); use τmin and τmax to denote the shortest and

longest cell-time duration of all switches, Pmin
def
= Mτmin

and Pmax
def
= Mτmax. Note τmax − τmin implies the extent

of clock drift in the switched networks. Then we can claim

the following:

Theorem 2 (Inner Aggregate Delay Bound): Suppose we

allocate resources per Eq. (5) ∼ (7). If Ñ
(1)
F < M and

τmax − τmin < τmin

M
, then

L
(k−1)
f − L

(0)
f ≤ D

(1∼k−1)
F

def
= (k − 1)(M − Ñ

(0)
F )τmax +

Ñ
(0)
F

Pmax

Ñ
(0)
F

+1
≤ kPmax, (8)

where Ñ
(0)
F and Ñ

(1)
F are defined in Eq. (6) and (7)

respectively.

Proof: Please see Appendix B. �

Theorem 3 (Inter Aggregate Delay Bound): Suppose we

allocate resources per Eq. (5) ∼ (7). If Ñ
(1)
F < M and

τmax − τmin < τmin

M
, then

L
(k)
f − L

(0)
f ≤ D

(1∼k−1)
F + 3P (k) + 2τ (k) (9)

≤ (k + 3)Pmax + 2τmax, (10)

where D
(1∼k−1)
F is given in Eq. (8).

Proof: Please see Appendix C. �

Note the preconditions in Theorem 2 and 3 define the

constraint on all clock drifts between switches: τmax−τmin <
τmin/M . As long as this constraint is met, we can have solid

delay bounds in spite of the existence of clock drifts.

By applying Theorem 3 along flow’s path, we can calculate

flow’s E2E delay bound (note the 0th aggregate is the source

end computer and the input port/queue it connects to).

Switch Schedulability and Scheduling Given the flows

in the network, their worst case source end virtual traffic

loads (i.e., Ñsrc
f ), and their routing plans among real-time

aggregates, Lemma 1 and Eq. (5)∼(7) can decide how many

slot/frame each output shall grant each input. We can then

reuse Theorem 1 to test schedulability; and reuse the corre-

sponding polynomial time scheduling algorithm described in

[1] to derive the schedule.

V. EVALUATION

We evaluate the efficiency of our real-time aggregate design

in networks of TCRT switches.

Specifically, the physical link layout of our evaluated net-

works takes the form of grid. A grid of edge length E consists

of (E + 1)× (E + 1) TCRT switches. Switches are deployed

in a two-dimensional plane at coordinates (x, y) (where x =
0, 1, 2, . . . , E and y = 0, 1, 2, . . . , E). For simplicity, we use

(x, y) to denote the TCRT switch at coordinate (x, y). Switch
(x, y) has a directional physical link to connect it to each of

its one hop neighbors (here “one hop” means “geographical

distance of one”). Fig. 10 (a) illustrates the physical link layout

of a grid of 4× 4 (i.e., E = 4).
Given an aforementioned grid network of E × E, we

then overlay (1 + ⌊log2 E⌋) layers of aggregates upon the

network. The Lth (L = 0, 1, . . . , ⌊log2 E⌋) layer of aggregates
also form a grid, which connects those switches whose x, y
coordinates are both multiples of 2L. For example, Fig. 10(b)

is the aggregate layout of the 4× 4 network of Fig. 10(a).

We evaluate five grid networks, where E = 1, 2, 4, 8, 16
respectively. In each network, there are (E+1)×(E+1) TCRT
switches. Each input/output of these switches is of capacity



Fig. 10. Grid Network of TCRT Switches: Physical Link Layout and
Aggregate Layout

Fig. 11. Worst case E2E delay bound statistics (each dot is the mean of the
corresponding 100 trials; error bars show the 95% confidence range).

10 ∼ 10.0040016Gbps (the range is due to clock drift between

different switches, i.e., the clock period of different switches

are not exactly the same, hence the time used to transmit one

bit are not exactly the same). For convenience, we assume

each cell is 500 bit (instead of the de facto standard of 512
bit), M = 2000 slot/frame. These result in τmax = 50ns,
τmin = 49.98ns, Pmax = 0.1msec, and Pmin = 0.09996msec,

which complies with [6]’s suggestions: the frame duration is

orders of magnitude less than typical real-time tasks’ periods

(which are typically >> 1ms [23][6][24][25]).

We compare two flow aggregate methods: real-time aggre-

gate and per-aggregate queueing. For each aggregate method,

we run 100 trials. In each trial, we add into the network

randomly generated periodical real-time flows: 90% of them

are sensing/actuating traffic with worst case source end virtual

traffic load of Ñsrc
f = 1 cell/v-frame (in other words, 1

cell every (M + 1) cell-time; based on the aforementioned

configuration parameters, this corresponds to a constant data

Fig. 12. Average physical link utilization statistics (each dot is the mean of
the corresponding 100 trials; error bars show the 95% confidence range).

rate of about 5Mbps, enough to encapsulate a typical real-

time control flow [23][6][24][25]); and the rest are video

flows with Ñsrc
f = 16 cell/v-frame (in other words, 16

cells every (M + 1) cell-time; based on the aforementioned

configuration parameters, this corresponds to a constant data

rate of about 80Mbps, enough to encapsulate a typical real-

time video flow [23][6][24][25]). The source and destination

ends are randomly picked from the switches in the network

according to uniform distribution (here, we are not associating

our simulation with any specific networked real-time appli-

cations; without the application specific knowledge, uniform

distribution is a natural and generic enough choice, just as most

software libraries’ default random number generator assumes

uniform distribution on [0, 1)). Once source/destination ends

are picked, the flow is routed via the aggregate layout of

the network using Dijkstra’s shortest path algorithm (each

aggregate is considered to be of length “1” in the Dijkstra

path planning).

Under real-time aggregate method, in each switch that

the route passes, the corresponding output allocates resource

according to Section IV-C-“Resource Planning Method”. Then

we test the schedulability of such resource allocation according

to Section IV-C-“Switch Schedulability and Scheduling”; and

calculate the flow’s E2E delay bound with Theorem 2 and 3.

If every switch on the route can afford the resource allocation

and the E2E delay bound is within 50 msec (we choose

50msec because through literature survey, it is a commonly

acceptable E2E delay bound for networked real-time applica-

tions [23][6][24][25]), the flow is admitted.

Under per-aggregate queueing method, though an efficient

schedulability test and tight E2E delay bound are still open

problems, we find that we can apply the DiffServ math

model [20][21][22] to give an sufficient schedulability test and

corresponding E2E delay bound. Specifically, every aggregate

queue is regarded as a DiffServ queue; and according to

[20][21][22], we allocate each queue a number of TDMA slots

so that the service rate is no less than the total source end

arrival rates of the queue’s member flows. Then we can apply

Theorem 2.4.2 of [20] to carry out a sufficient schedulability

test and derive the corresponding E2E delay bound.

As mentioned before, given the network and aggregate

method, we carry out 100 trials. In each trial, we keep adding

real-time flows into the network until no more flow can be

admitted. Each admitted flow corresponds to an E2E delay

bound. Then we calculate the worst case E2E delay bound of

all admitted flows, and the average physical link utilization.

The average physical link utilization is calculated as follows: a

flow with a worst case source end traffic load of Ñsrc
f cell per

(M + 1) cell-time contributes a utilization of Ñsrc
f /(M + 1)

for each physical link it passes.

In summary, in each trial, we can derive a worst case (i.e.,

maximum) E2E delay bound of all flows admitted, and an

average physical link utilization. The statistics of the two

metrics are plotted in Fig. 11 and Fig. 12. In the figures, each

dot represents the mean of the corresponding 100 trials, while

the error bars represent the corresponding mean value’s 95%
confidence interval. Note some mean values are very accurate,

resulting nearly overlapping upper and lower error bars.



According to Fig. 11, with no less than 95% confidence, we

can claim all the flows admitted have E2E delay bound below

the real-time deadline requirement of 50msec, a commonly

acceptable E2E delay bound for networked real-time appli-

cations [23][6][24][25]. What is more, real-time aggregate

achieves much better worst case E2E delay bound (all mean

values are below 10msec) than per-aggregate queueing (whose

mean values fluctuate from 15msec to even near 30msec).

According to Fig. 12, with no less than 95% confidence, we

can claim the following. First, under both aggregate methods,

the schedulable average physical link utilization decreases as

the network diameter H increases. This is because as H
increases, flows on average travels more hops of aggregates.

Their burstiness increases each time it joins a new aggregate,

which degrades schedulability. Second, real-time aggregate

achieves much higher schedulable average physical link uti-

lization than per-aggregate queueing. When H = 4, 8, 16, and
32, the former is respectively 1.5, 2.5, 3.8, and 7.6 times that

of the latter. Third, note our real-time aggregate performance

analysis already takes into consideration the dummy cell

overhead. The results show that even take into consideration of

dummy cell overhead, real-time aggregate still achieves much

better schedulable average physical link utilization and worst

case E2E delay bound than per-aggregate queueing.

VI. RELATED WORK

In the real-time community. There are three sets of highly

relevant works.

The first set is Pinwheel scheduling [26]. Though also

based on TDMA, Pinwheel scheduling assumes one CPU per

node or independent multiprocessors, and mainly focuses on

finding the optimal TDMA scheduling period. In contrast, we

have N outputs contending for N inputs in parallel within a

same switch, and focus on finding a contention free crossbar

schedule (matching).

The second set is hierarchical scheduling [27]. However,

hierarchical scheduling are about CPUs. Though recently,

Santos et al. [28] proposes using hierarchical scheduling for

output queueing real-time switches, how to migrate the hier-

archical CPU task model to the popular input queueing TCRT

switch architecture without introducing much modifications is

still a non-trivial open problem, not to mention supporting

aggregates and clock drift.

The third set is non-work-conserving switch scheduling

(e.g., Stop-and-Go[29]). But these schemes also assume out-

put queueing instead of input queueing crossbar switch ar-

chitecture, which only becomes predominant more recently.

In addition, to our best knowledge, the existing non-work-

conserving switch scheduling (such as Stop-and-Go) schemes

are not about flow aggregation, neither do they cover the

burstiness growth and infection problems caused by clock drift

between switches.

In the networking community, first, we notice that our multi-

hop real-time switched networks bear drastically different

design philosophy, traffic features, and network coverage com-

pared to those of Internet. Internet prefers flow aggregation

(shared queues) to flow isolation (e.g., per-flow routing) in

pursuit of scalability. Unlike Internet, mission critical real-

time networks/applications need flow isolation, zero packet

loss, and hard E2E delay bound to guarantee dependability.

It is worth noting that in earlier years, the Internet com-

munity did propose many per-flow queueing zero packet loss

QoS schemes, e.g., WFQ [30]. However, these schemes mostly

assume output queueing, and need time-stamp based packet

sorting. Due to implementation and runtime complexity, they

are not widely implemented by manufacturers.

It is the other branch of efforts on ATM and telephone

switches that finally evolves into today’s widely adopted

input queueing TCRT switch architecture [7][8][1][9][10][11],

which this paper is about (see Section II).

Another set of architectures supporting per flow queueing

and zero packet loss is the real-time LANs, a.k.a. fieldbuses

[31][32]. But their support for real-time mostly assumes shared

medium, hence is for LANs instead of multi-hop networks.

In fact, to merge fieldbuses to multi-hop switched networks

would need the aforementioned real-time switches [11][9][1].

TTEthernet [33] is a fieldbus standard that considers multi-

hop real-time support. However, TTEthernet standard assumes

the underlying multi-hop switched network already guarantees

bounded E2E delay. The standard itself does not specify

the detailed design of the switches. Therefore, our real-

time switch/aggregate design can complement TTEthernet by

providing a detailed design that meets its core assumption.

There are other real-time fieldbus standards that involve

support for real-time flow aggregate. IEC 61784 [34] defines a

set of communication profiles on flow aggregate. However, it

does not specify how to realize such profiles. In other words,

IEC 61784 is an open standard: our TCRT switch real-time

aggregate mechanism provides one way to realize the IEC

61784 real-time flow aggregate communication profile.

There are also other related work on how to realize and

analyze real-time flow aggregate.

MPLS [35] is a flow labeling mechanism for aggregation

based routing. However, MPLS is a Layer 2.5 mechanism,

which is above Layer 2 (the Data Link Layer); while the real-

time aggregate design of this paper is a strictly Layer 2 design.

In other words, real-time aggregate can serve MPLS.

Sun and Shin proposed Guaranteed Rate (GR) server based

flow aggregates with bounded E2E delay in [12]. However,

GR servers (e.g., WFQ [30]) are not widely implemented as

they usually assume output queueing and need packet sorting.

In contrast, serving flow aggregates with FIFO is widely

implemented due to its simplicity. This method is also known

as DiffServ [22]. As Wang et al. [13] point out, DiffServ’s

schedulability and E2E delay bound are very susceptible to

rogue bursty traffic, mainly due to lack of isolation in FIFO.

A generic schedulability test and tight E2E delay bound are

still open problems. However, there is a well-known sufficient

schedulability test and corresponding E2E delay bound anal-

ysis framework developed by Boudec et al. [20][21]. This

framework can be applied to per-aggregate queueing TCRT

switched networks (in fact, per-aggregate queueing is the way

to implement DiffServ on the TCRT switch architecture). In

Section V, we used this DiffServ analysis framework to an-

alyze the per-aggregate queueing performance, and compared



it with that of real-time aggregate.

The IEEE 802.1 AVB task group has recently released the

IEEE 802.1Qav specifications [36], which also proposes a

flow aggregate mechanism for multi-hop switched networks.

However, this mechanism is designed for output queueing

work-conserving switch architecture with prioritized schedul-

ing. In contrast, this paper’s aggregate mechanism is designed

for the input queueing non-work-conserving crossbar switch

architecture with TDMA scheduling.

Finally, Scharbarg et al. [37] give a probabilistic E2E delay

bound for aggregates in AFDX [4] switched networks. In

contrast, this paper focuses on providing a deterministic E2E

delay bound instead.

VII. CONCLUSION

In this paper, we proposed a novel flow aggregation (queue

sharing) mechanism for the popular TCRT switches, which

are widely recognized/adopted to build multi-hop real-time

networks for integrating nowadays quickly expanding dis-

tributed real-time systems. The mechanism, called “real-time

aggregates”, exploits the TCRT switch’s features and deploys

spatial-temporal isolations to curb the burstiness growth and

infection of aggregate’s member flows. This allows us to derive

closed form E2E delay bound and the corresponding resource-

planning/admission-control strategies. Simulations show that

real-time aggregates can guarantee short E2E delay bound and

provide high utilization of the network resources.
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APPENDIX A

PROOF OF LEMMA 1

Suppose output O’s M -slot frame schedule consists of slot

s0 ∼ sM−1. In this section, we make a convention that an “M -



slot frame” or “frame” refers to the M consecutive cell-time

starting from slot s0.
To prove Lemma 1, let us first prove Lemma 2 and 3.

Lemma 2: During each M -slot frame starting from slot s0,
output O0 in Fig. 4 can at the most fetch one v-frame from

the header of Q(I0, O0, F
′ ∩ F ).

Proof: In Q(I0, O0, F
′∩F ), every v-frame is delineated by

two consecutive dummy cells. The two dummy cells can only

be removed from Q(I0, O0, F
′ ∩ F ) by sync-grant from O0.

Let s0 ∼ sv denote the slots in each frame that O0 grants

Q(I0, O0, F
′ ∩F ). Then according to Section IV-B-Grant, s0

is the only sync-grant slot.

If at s0, the header of Q(I0, O0, F
′ ∩ F ) is a dummy cell,

then the dummy cell is removed by the sync-grant; and till

the end of the M -slot frame, O0 can fetch at the most one v-

frame from Q(I0, O0, F
′∩F ). O0 cannot fetch more than one

v-frame in the current frame, because it issues no more sync-

grant to remove the next dummy cell in Q(I0, O0, F
′ ∩ F ).

If at s0, the header of Q(I0, O0, F
′ ∩ F ) is not a dummy

cell, then till the end of the M -slot frame, O0 cannot issue

any more sync-grant to remove the dummy cell leading the

next v-frame. Therefore, in the current frame, O0 can at the

most get one v-frame from Q(I0, O0, F
′ ∩ F ). �

Lemma 3: For each k (k ≤ M ) consecutive v-frames

outputed from O0, let D denote their data cells that originally

come from Q(I0, O0, F
′ ∩F ). Then the data cells of D come

from at the most (k+ 2) consecutive v-frames outputed from

Q(I0, O0, F
′ ∩ F ).

Proof: O0 outputs k consecutive v-frames using k(M + 1)
consecutive cell-time. Therefore, these k consecutive v-frames

are outputed during at the most
⌈

k(M + 1)

M

⌉

+ 1 =

⌈

k +
k

M

⌉

+ 1

= k + 2 (because k ≤ M )

consecutive M -slot frames. According to Lemma 2, these (k+
2) M -slot frames can fetch at the most (k + 2) consecutive

v-frames from Q(I0, O0, F
′ ∩ F ). �

Now we are ready to prove Lemma 1.

Case 1: h̃ = 1. Since O outputs a v-frame every M + 1
cell-time, the slots belong to at the most 2 consecutive M -slot

frames of O. According to Lemma 2, the data contents can

come from at the most 2 v-frames from previous hop (i.e., f ’s
source end computer). That is, each v-frame outputed by O
can contain at the most 2Ñsrc

f cells of f .

Case 2: h̃ = 2. Using similar analysis as Case 1, for each

v-frame outputed from O, the data contents come from at the

most 2 v-frames from previous aggregate. Suppose O′ is the

aggregator for previous aggregate. O′ outputs 2 v-frames using

2M + 2 cell-time: slot0 ∼ slot2M+1. These slots belong to

either 3 or 4 consecutive M -slot frames of O′.

Suppose these slots belong to 4 consecutive frames:

frame0 ∼ frame3. Then slot2M+1 and only slot2M+1

belongs to frame3, and slot2M+1 must be frame3’s first

slot. Because an aggregator cannot do aggregator-data-grant

before doing sync-grant during any frame, slot2M+1 must not

be an aggregator-data-grant. Therefore, slot2M+1 cannot fetch

any content of flow f . Therefore, only frame0 ∼ frame2 can
fetch contents of flow f .
Therefore, either way, the slots among slot0 ∼ slot2M+1

that contain data from flow f come from at most 3 consecutive

frames of O′. According to Lemma 2, the data contents come

from at the most 3 v-frames from the previous hop (i.e., f ’s
source end computer). That is, there can be at the most 3Ñsrc

f

cells of f .
Case 3: h̃ ≥ 3. For convenience, denote Oh̃ = O. Suppose

after leaving the source end computer, flow f passes aggrega-

tor O1, O2, . . . , Oh̃ sequentially. Using similar as Case 2, for

each v-frame outputed from Oh̃, the cells contain contents of f
must come from at the most 3 consecutive v-frames outputed

from Oh̃−2. Then we can recursively apply Lemma 3 till we

reach the conclusion that the cells contain contents of f must

come from at the most 3 + 2(h̃ − 2) = 2h̃ − 1 consecutive

v-frames from f ’s source end computer. That is, there can be

at the most (2h̃− 1)Ñsrc
f cells of f .

Combining Case 1 ∼ 3, we prove the lemma. �

APPENDIX B

PROOF OF THEOREM 2

Our analysis may use two special functions of time t: affine
function Λ[σ, ρ](t) and rate-delay function Γ[r, δ](t) defined

as follows:

Λ[σ, ρ](t)
def
=

{

0 (t ≤ 0)

σ + ρt (t > 0)
; (11)

Γ[r, δ](t)
def
= r[t− δ]+, (12)

where [x]+
def
=

{

0 (x ≤ 0)

x (x > 0)
.

We can use network calculus to prove Theorem 2.

According to Eq. (6), O0 allocates Ñ
(0)
F slots in each of its

M -slot frame to serve aggregate F . Due to TDMA, these Ñ
(0)
F

slots have fixed locations (i.e., indices) in the M -slot frame.

Hence the arrival of aggregate F at Q(I1, O1, F ) conforms to

arrival curve α
(1)
F (t):

α
(1)
F (t) = Λ[σ

(1)
F , ρ

(1)
F ](t), (13)

where σ
(1)
F = Ñ

(0)
F , (14)

ρ
(1)
F =

Ñ
(0)
F

Pmin

. (15)

According to Theorem 1.4.6 (and its corollary) in [20], we

can regard O1 ∼ Ok−1 as one single server in a black box,

which serves Q(I1, O1, F ) with a service curve of

β
(1∼k−1)
F (t) = Γ[r

(1∼k−1)
F , δ

(1∼k−1)
F ](t), (16)

where

r
(1∼k−1)
F =

Ñ
(1)
F − 1

Pmax

, (17)

δ
(1∼k−1)
F = (k − 1)(M − (Ñ

(1)
F − 1) + 1)τmax. (18)

Note at the most 1 slot might be overtaken for sending

dummy cells in an M -slot frame. Hence in Eq. (17) and (18)

we use (Ñ
(1)
F − 1) instead of Ñ

(1)
F .



Since

τmax − τmin <
τmin

M
⇒ MM(τmax − τmin) < Mτmin

⇒ M(Pmax − Pmin) < Pmin

⇒ Ñ
(0)
F (Pmax − Pmin) < Pmin

⇒
Ñ (1) − 1

Pmax

>
Ñ

(0)
F

Pmin

⇒ r
(1∼k−1)
F > ρ

(1)
F ,

we can apply basic network calculus to get:

L
(k−1)
f − L

(0)
f ≤ D

(1∼k−1)
F = δ

(1∼k−1)
F +

σ
(1)
F

r
(1∼k−1)
F

= (k − 1)(M − Ñ
(1)
F + 2)τmax +

Ñ
(0)
F

Ñ
(1)
F − 1

Pmax

= (k − 1)(M − Ñ
(0)
F )τmax +

Ñ
(0)
F

Ñ
(0)
F + 1

Pmax

≤ (k − 1)Mτmax + Pmax

= (k − 1)Pmax + Pmax = kPmax. �

APPENDIX C

PROOF OF THEOREM 3

Let či denote the ith (i = 0, 1, . . .) dummy cell outputed

from O0 since system starts. Let Ľ
(0)
i , Ľ

(k−1)
i , and Ľ

(k)
i denote

the time that či leaves O0, Ok−1, and Ok respectively. Then

according to Theorem 2, we have

Ľ
(k−1)
i − Ľ

(0)
i ≤ D

(1∼k−1)
F , (19)

where D
(1∼k−1)
F is defined in Eq. (8).

We further have the following lemma:

Lemma 4:

Ľ
(k)
i − Ľ

(0)
i ≤ D

(1∼k−1)
F + 2P (k) + τ (k), (20)

where P (k) and τ (k) are the M -slot frame and cell-time

duration (in the unit of “second”) of Ok.

Proof: We can prove by induction.

Eq. (20) holds for i = 0. Suppose Eq. (20) holds for some

i ≥ 0, let us prove it also holds for i+ 1.

Case 1: Ľ
(k)
i ≥ Ľ

(k−1)
i+1

In this case, at Ľ
(k)
i , či+1 already arrives at Q(Ik, Ok, F ∩

F ′′), which also means all the v-frame contents between či and
či+1 are already backlogged before či+1 in Q(Ik, Ok, F∩F ′′).

Note Ok goes through a full M -slot frame from Ľ
(k)
i −τ (k)

to Ľ
(k)
i − τ (k) + P (k), issuing enough data-grant to clear the

v-frame data cells backlogged in front of či+1.

Therefore when Ok issues sync-grant at Ľ
(k)
i − τ (k)+P (k),

či+1 is cleared in that cell-time, which means

Ľ
(k)
i+1 = Ľ

(k)
i − τ (k) + P (k) + τ (k) = Ľ

(k)
i + P (k)

≤ Ľ
(0)
i +D

(1∼k−1)
F + 2P (k) + τ (k) + P (k) (see Eq. (20))

≤ Ľ
(0)
i+1 − P (k) +D

(1∼k−1)
F + 3P (k) + τ (k) (21)

= Ľ
(0)
i+1 +D

(1∼k−1)
F + 2P (k) + τ (k),

where Ineq. (21) is because

τmax − τmin <
τmin

M
⇒ Pmin + τmin > Pmax

⇒ P (0) + τ (0) > P (k)

⇒ Ľ
(0)
i+1 − (P (0) + τ (0)) ≤ Ľ

(0)
i+1 − P (k)

⇒ Ľ
(0)
i = Ľ

(0)
i+1 − (P (0) + τ (0)) ≤ Ľ

(0)
i+1 − P (k).

Case 2: Ľ
(k)
i < Ľ

(k−1)
i+1

In this case, at Ľ
(k−1)
i+1 , či+1 arrives at Q(Ik, Ok, F ∩ F ′′);

and since či has already left, at the most one v-frame of data

cells are backlogged before či+1 in Q(Ik, Ok, F ∩ F ′′).
Suppose t is the first time Ok sync-grants Q(Ik, Ok, F∩F ′′)

after Ľ
(k−1)
i+1 , then

t ≤ Ľ
(k−1)
i+1 + P (k). (22)

By t+P (k), all the v-frame data cell backlog in front of či+1

are cleared. Therefore, či+1 leaves Ok by t + P (k) + τ (k) at

the latest. That is

Ľ
(k)
i+1 ≤ t+ P (k) + τ (k)

≤ Ľ
(k−1)
i+1 + P (k) + P (k) + τ (k) (see Eq. (22))

≤ Ľ
(0)
i+1 +D

(1∼k−1)
F + 2P (k) + τ (k) (see Eq. (19)).

Combining Case 1 and 2, Eq. (20) also holds for i+ 1. �
Proof of Theorem 3: Without loss of generality, suppose cell

c of flow f is sandwiched between dummy cell či and či+1,

then

Ľ
(0)
i ≤ L

(0)
f ≤ Ľ

(0)
i+1. (23)

Due to Theorem 2,

L
(k−1)
f ≤ L

(0)
f +D

(1∼k−1)
F

≤ L
(0)
f +D

(1∼k−1)
F + 2P (k) + τ (k)

def
= t (denoted as t for convenience).

That is, c arrives at Q(Ik, Ok, F ∩ F ′′) by t at the latest. On

the other hand,

Ľ
(k)
i ≤ Ľ

(0)
i +D

(1∼k−1)
F + 2P (k) + τ (k) (see Lemma 4)

≤ L
(0)
f +D

(1∼k−1)
F + 2P (k) + τ (k) = t. (see Ineq. (23))

That is, dummy cell či leaves Q(Ik, Ok, F ∩ F ′′) by t.
Therefore, by t, even if c is still in Q(Ik, Ok, F ∩ F ′′), there
is no dummy cell backlogged before c; in addition, there is

at the most one v-frame of data cells backlogged before c.
Therefore

L
(k)
f ≤ t+ P (k) + τ (k)

= L
(0)
f +D

(1∼k−1)
F + 3P (k) + 2τ (k). (24)

Eq. (24) means c is backlogged in Q(Ik, Ok, F ∩F ′′) for at

the most D
(1∼k−1)
F + 3P (k) + 2τ (k) ≤ (k + 3)Pmax + 2τmax

seconds. �




