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Abstract A Reynolds-averaged Navier-stokes equations (RANS) modelusing the body force method (BFM) has been
developed to simulate open-channel flows over gravel beds. The momentum equation is modified by introducing the
form drag as an extra body force term to represent the gravel-bed resistance. By applying the body force within the
roughness layer of the flow over small-scale roughness, it isfound that the body force coefficientfrk varies inversely
with the roughness length scaleks. The method is robust, not sensitive to mesh resolution and is easily extended to deal
with large scale roughness.
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INTRODUCTION

The roughness elements on gravel-bed open-channel flows vary in size and shape from site to site. Depending on the
ratio D/d50, whereD is water depth andd50 is diameter of gravels for which 50 percent are finer, the bed surface
condition can be subdivided into two categories. One is small-scale roughness for whichD is much larger thand50 and
the other is large-scale roughness for whichD is of the same order asd50. For the condition of small-scale roughness,
it is conventional to consider the flow as a perturbed boundary layer flow. As shown in Figure 1(a), two different
flow regions can be identified in the vertical direction: the inner (or near-wall) region and the outer (or near-water-
surface) region. In the inner region, the logarithmic velocity distribution is valid [1]. For the condition of large-scale
roughness, ifd50 is comparable toD (sayD/d50 < 2.0), the flow can be assumed to be a mixing layer flow [2]. The
flow velocity profile may beS-shaped (Figure 1(b)) with near-surface velocities much larger than near-bed velocities
[3]. The criterion differentiating the small-scale and large-scale roughness is not clear-cut, and depends on the shape,
concentration and arrangement of the roughness elements.

Figure 1: Velocity distribution over (a) small-scale roughness (b) large-scale roughness

The present paper describes the use of a body force method to represent the roughness effect induced by the complex
surface topography of gravel bed in open-channel flows. The study is originated from the similarity between the velocity
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profiles over large-scale roughness and those over vegetation. Although the body force method is commonly used to
simulate the resisting effect induced by vegetation, its application in gravel-bed open-channel flows has not been widely
reported. In the present study, the body force method is implemented to predict the velocity profiles of open-channel
flows over small-scale roughness. Its performance will be evaluated by comparing to that of the conventional wall
function approach (WFA).

NUMERICAL MODELLING

The momentum equation for 1D incompressible, uniform open-channel flow is

∂ ū
∂ t

=
∂
∂ z

[

(νm +νt)
∂ ū
∂ z

]

+gx −
1
ρ

Fx (1)

wherex is streamwise ordinate;z is vertical ordinate with datum set ath1 below the roughness element surface; ¯u is
time-averaged streamwise velocity component;t is time;ρ is density;νm is molecular viscosity;νt is eddy viscosity;
Fx is streamwise resistance force per unit volume induced by roughness elements;gx = gS0 is streamwise component
of the gravitational acceleration andS0 is bed slope.

The eddy viscosityνt is specified by the Spalart-Allmaras (S-A) turbulence modelwhich involves the solution of a new
eddy viscosity variableν . The S-A model is a one-equation model which is simpler than the commonly usedk-ε or
k-ω model and it has been successfully applied in the modeling ofopen-channel flows through vegetation (e.g. [4]).

The modeling of resistance force induced by a gravel bed is based on the quadratic friction law. The average force per
unit volume within the roughness layer can be obtained by

F =
1
2

ρCdbsNū1
2 =

1
2

ρ frkū1
2 (2)

whereN is number density (number of gravels per unit area, in 1/m2), bs is effective projected width of the roughness
element andfrk (= CdbsN) is body force parameter reflecting the effects of shape and size of the gravels, ¯u1 is average
velocity within the roughness layer. The thickness of the region in whichF is introduced is set equal toh1 (Figure
1(a)). Previous experiments by others show thath1 ∼0.2ks, whereks is roughness length scale. The velocity profile can
be approximated by the following logarithmic law

ū
u∗

=
1
κ

ln

(

z
ks

)

+8.5 (3)

whereκ = 0.41. Within the roughness layer of thickness 0.2ks the above equation indicates that the ratio ¯u1/u∗ will be
approximately a constant. A simple force balance analysis shows that

frkks = 5 frkh1 = 10

(

u∗

ū1

)2

∼ const. (4)

For natural riversks is generally determined from field measurements andfrk can then be found.

OPEN-CHANNEL FLOWS OVER SMALL-SCALE ROUGHNESS

The experimental data used herein to test the body force method for small-scale roughness were collected in a rect-
angular tilting flume under uniform flow condition. Quasi-uniform real gravels were used to roughen the bed. The
thickness of the gravel bed was about 35 mm and the median and standard deviation values of the gravel size are given
by d50 = 23±3.2 mm. The gravel bed was considered fixed as no motion of the gravels was observed throughout the
experiments. A total of 25 flow cases with different bed slopes or flow rates were conducted. More details about the
experiments can be found in Zeng and Li [5].

The computational domain extends from the reference level to the water surface (see Figure 1(a)). The reference level
is also called the “hypothetical bed” (i.e., the level wherethe mean velocity is assumed to be zero). The body force term
is added within the roughness layer (from reference level tothe visual bed level). A rectilinear grid with refinement
at the near wall region is used in the simulation. In order to evaluate the sensitivity of this method to mesh resolution,
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a fine mesh with 60 grid cells and a coarse mesh with 30 grid cells were used in the simulation under the same flow
condition.

Figure 2(a) and 2(b) shows the comparison between the numerical results and the experimental data for the case with
relative submergenceD/ks = 16.97. It can be found that the calculated velocity profiles fromboth mesh systems fit
the logarithmic law well in the inner region. Only a slight difference occurs for the velocities at the near-water-surface
region as shown in Figure 2(b), where the number of grid cellshas been significantly reduced. Figure 3 shows the
comparison between the calculated velocity profiles using the body force method and the wall function approach with
the same mesh. Excellent agreement is obtained between these two methods for both mesh systems. The variation
of frk againstks for the fine mesh is shown in Figure 4 and the equations of the regression lines for the two cases are
frk = 0.890 8k−1.013

s for fine mesh andfrk = 1.005k−0.953
s for coarse mesh. The results indicate thatfrk is not sensitive

to the change in mesh size and support the claim thatfrkks ∼constant. The constant is approximately 0.94.

The roughness length scale,ks is an essential parameter in the quantification of the bed roughness effects. It is generally
assumed to be directly proportional to a characteristic grain diameter, eg.ks =Cd50. From our flume experiments the
coefficientC is dependent on the bed slope as shown in Figure 5. Onceks is estimated,frk andh1 can then be specified.
Thus the body force method is feasible and easy to implement.

Figure 2: Measured and calculated velocity profiles (The dash
line denotes the reference level)

Figure 3: Calculated velocity profiles using body force method
and wall function approach

Figure 4: Variation offrk with different roughness length scale
ks (fine mesh)

Figure 5: Variation ofks/d50 againstS0

CONCLUSION

A RANS model using the body force method has been developed and validated for the simulation of flows over small-
scale roughness. The method requires the field determination of only one parameter,ks, and compares favorably with
the wall function approach. The major advantage of the method is that it can be easily extended to deal with large-scale
roughness and the general case of a mix of small-scale and large-scale roughness.
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