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a b s t r a c t

A two-dimensional model is developed to simulate the performance of methane fueled

solid oxide fuel cells (SOFCs), focusing on the effect of electrolyte type on SOFC perfor-

mance. The model considers the heat and mass transfer, direct internal reforming (DIR)

reaction, water gas shift reaction (WGSR), and electrochemical reactions in SOFCs. The

electrochemical oxidation of CO in oxygen ion-conducting SOFC (O-SOFC) is considered.

The present study reveals that the performance of H-SOFC is lower than that of O-SOFC

at a high temperature or at a low operating potential, as electrochemical oxidation of CO in

O-SOFC contributes to power generation. This finding is contrary to our common under-

standing that proton conducting SOFC (H-SOFC) always performs better than O-SOFC.

However, at a high operating potential of 0.8 V or at a lower temperature, H-SOFC does

exhibit better performance than O-SOFC due to its higher Nernst potential and higher ionic

conductivity of the electrolyte. This indicates that the proton conductors can be good

choices for SOFCs at intermediate temperature, even with hydrocarbons fuels. The results

provide better understanding on how the electrolyte type influences the performance of

SOFCs running on hydrocarbon fuels.

Copyright ª 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.
1. Introduction conducting materials (i.e. BaCeO3 doped with Gd or Sm) have
Solid oxide fuel cells (SOFCs) are promising electrochemical

energy conversion devices for clean power generation. One

distinct feature of SOFCs is their fuel flexibility, as high oper-

ating temperature (i.e. 1073 K) enables internal reforming of

hydrocarbon fuels or thermal cracking of ammonia in the

porous anode of SOFC [1e3]. Thus, in principle all combustible

fuels can be utilized in SOFCs for electricity generation, such as

hydrogen, methane, methanol, ethanol, ammonia, dimethyl

ether (DME) [4-7].

Conventionally SOFCs employ oxygen ion-conducting

ceramics as electrolyte (here termed as O-SOFCs), such as

yttria-stabilized zirconia (YSZ) [1]. In the recent years, proton
.
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also been demonstrated as good electrolyte materials for

SOFCs (here termed as H-SOFCs) [8]. The use of proton con-

ducting electrolyte in H-SOFC changes the location of steam

production from the anode to the cathode, allowing high fuel

utilization. In addition, due to a higher hydrogen concentra-

tion in the anode, the Nernst potential of H-SOFC is higher

than that of O-SOFC. Several thermodynamic analyses have

shown that the maximum efficiency of H-SOFC is higher than

that of O-SOFC with H2 and hydrocarbon fuels [9e12]. To

examine the actual performance of H-SOFC considering

various overpotential losses, electrochemical models have

been developed to compare H-SOFC with O-SOFC [13e15]. The

electrochemical modeling reveals that H-SOFC has lower
.hk.
ublications, LLC. Published by Elsevier Ltd. All rights reserved.
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anode concentration overpotential than O-SOFC but the

cathode overpotential in H-SOFC is considerably increased as

the steam impedes the transport of oxygen [15]. Moreover, it’s

found that the actual performance of H-SOFC may not be

higher than O-SOFC if the ionic conductivity of the electrolyte

in H-SOFC is not higher than that of O-SOFC [13,15]. Recently,

Ishak et al. [16] performed thermodynamic and an electro-

chemical modeling analyses, adopting the same methodolo-

gies with references [12,17] but a higher proton conductivity

for H-SOFC. It’s found that the H-SOFC performance is higher

than O-SOFC, due to a lower ohmic overpotential of the elec-

trolyte and higher hydrogen concentration in H-SOFC anode

[16]. As the typical ionic conductivity of H-SOFC electrolyte is

higher than that of YSZ for O-SOFC, it is expected that the

actual performance of H-SOFC should be higher than that of

O-SOFC.

In the above-mentioned studies on H-SOFC and O-SOFC,

only H2 is considered as an electrochemically active fuel and

the electrochemical oxidation of CO is completely neglected.

However, experimental investigations have confirmed the

electrochemical oxidation of CO in the anode of O-SOFCs,

although its reaction kinetics is lower than that of H2 elec-

trochemical oxidation [18e21]. Electrochemical oxidation of

CO in O-SOFC can increase the current density and thus

contribute to power generation. However, H-SOFC does not

support CO electrochemical oxidation. Thus, O-SOFC should

have an essential advantage over H-SOFC with hydrocarbon

fuels. Our recent thermodynamic analysis shows when CO

electrochemical oxidation is considered, the maximum effi-

ciency of O-SOFC is higher than that of H-SOFC [22]. As the

thermodynamic analysis does not consider any overpotential

loss, it is still unknown which type of SOFC has higher actual

performance. To answer this question, a two-dimensional

model is developed to compare the actual performance of

H-SOFC and O-SOFC considering CO electrochemical oxida-

tion in O-SOFC anode. All the complicated physicalechemical

processes are considered, including heat and mass transfer,

direct internal reforming (DIR) reaction, water gas shift reac-

tion (WGSR), and electrochemical reactions.
2. Model development

The working principles and computational domains for CH4

fed H-SOFC and O-SOFC are shown in Fig. 1(a) and (b),

respectively. The computational domain includes the inter-

connector, fuel channel, porous anode, dense electrolyte,

porous cathode and the air channel. The anode-support

configuration is adopted as it can yield higher SOFC perfor-

mance than cathode-support and electrolyte-support

configurations [13,15]. The planar configuration is used as it

is widely used in practice. However, it is understood that the

button cell configuration should be used for detailed

comparison with experimental data, as experiments are

usually conducted with button cells. In operation, pre-

reformed methane gas mixture is supplied to the anode

channel while air is supplied to the cathode channel. In both

H-SOFC and O-SOFC, DIR of methane and WGSR take place

in the porous anode, represented by Eqs. (1) and (2),

respectively.
CH4 þH2O4COþ 3H2 (1)
COþH2O4CO2 þH2 (2)

2.1. O-SOFC

In O-SOFC, oxygenmolecules diffuse from the cathode surface

to the cathodeeelectrolyte interface and react with electrons

to produce oxygen ions (Eq. (3)), which are subsequently

transported to the anode side via the dense oxygen ion-

conducting electrolyte. At the anode side, H2 and CO mole-

cules transport to the triple-phase boundary (TPB) at the

anodeeelectrolyte interface, where they react with oxygen

ions to produce electrons, H2O, and CO2, as shown in Eqs. (4)

and (5).

2e� þ 0:5O2/O2� (3)

H2 þO2�/H2Oþ 2e� (4)

COþO2�/CO2 þ 2e� (5)

The electrochemical oxidation of CH4 is neglected due to its

relatively low reaction kinetics [18]. In addition, reaction

between CO2 and CH4 is not considered. Based on the working

principles, a 2D thermo-electrochemical model is developed

to simulate the coupled transport and reaction phenomena in

O-SOFC. The 2D model consists of 3 sub-models: (1) an elec-

trochemical model; (2) a chemical model; and (3) a computa-

tional fluid dynamics (CFD) model.

2.1.1. Electrochemical model
The electrochemical model is used to calculate the local

current density (J ) at given operating potentials (V). The use of

interconnector with high electrical conductivity along the

entire flow channel leads to uniform operating potential along

the main flow stream. Thus, the JeV relationship can be

established by solving the equations below [23].

V ¼ E� hact;a � hact;c � hohmic (6)

EH2
¼ 1:253� 0:00024516Tþ RT

2F
ln

"
PI
H2

�
PI
O2

�0:5
PI
H2O

#
(7)

ECO ¼ 1:46713� 0:0004527Tþ RT
2F

ln

"
PI
CO

�
PI
O2

�0:5
PI
CO2

#
(8)

where E is the equilibrium potential and the subscripts H2 and

CO represent the equilibrium potential associated with H2 and

CO fuels; T is temperature (K). R is the universal gas constant

(8.3145 J mol�1 K�1); and F is the Faraday constant

(96,485 C mol�1). PI used in Eqs. (7) and (8) refers to the partial

pressure at the electrodeeelectrolyte interface. Thus, the

concentration overpotentials at the electrodes are included in

the Nernst potential (E ). hohmic is the ohmic overpotential and

can be determined with the Ohm’s law (Eq. (9)).

hohmic ¼ JL
1

sionic
(9)
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(a) 

(b) 

Fig. 1 e Working principles of methane-fed SOFCs (a) H-SOFC; (b) O-SOFC.
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where L is the thickness (m) of the electrolyte and sionic is the

ionic conductivity (U�1 m�1). J is the current density (A m�2).

According to Ferguson et al. [24], the ionic conductivity of YSZ

electrolyte can be determined as,

sionic ¼ 3:34� 104 exp

�
�10;300

T

�
(10)

hact,a and hact,c are activation overpotentials (V) at the anode

and cathode, respectively. According to experiments, the

activation overpotential and current density usually follow

a linear relationship [25]. Thus, the activation overpotentials

can be calculated as [26],

hact;H2 ;i ¼
RTJH2

nH2
FJ0H2 ;i

(11)

hact;CO;i ¼
RTJCO

nCOFJ0CO;i

(12)

where J0H2 ;i
and J0CO;i are the exchange current densities (A m�2)

for electrochemical oxidation of H2 and CO, respectively. The

subscript i (i ¼ a and c) means the anode and cathode. JH2
and

JCO are the current densities generated from H2 fuel and CO
fuel, respectively. According to the previous studies [26], the

values of J0H2 ;a
and J0H2 ;c

at 1073 K are found to be 5300 Am�2 and

2000 Am�2 respectively. The electrochemical oxidation rate of

H2 is found to be 1.9e2.3 times and 2.3e3.1 times that of CO

fuel at 1023 K and 1073 K, respectively [18]. Based on these

experimental data, J0CO;a is assumed to be J0CO;a ¼ 0:4J0H2 ;a
.

However, in the parametric simulations, J0CO;a ¼ 0:2J0H2 ;a
and

J0CO;a ¼ 0:6J0H2 ;a
are also used.

The electrochemical model has been reported and vali-

dated in the previous publications for H2 fuel and CH4 fuel

with internal reforming [13e15]. From the parametric simu-

lations, it is known that the ohmic overpotential and the

activation overpotential are the major source of potential

losses [13,14]. The concentration overpotential loss is usually

very low, although it may limit the SOFC performance at very

high current density [13,15,26].

2.1.2. Chemical model
The chemical model is used to calculate the reaction rates of

DIR and WGSR and the corresponding reaction heat. Accord-

ing to Haberman and Young [27], the reaction rates for DIR

http://dx.doi.org/10.1016/j.ijhydene.2012.12.055
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(RDIR, mol m�3 s�1) and WGSR (RWGSR, mol m�3 s�1) can be

calculated below.

RDIR ¼ krf

 
PCH4

PH2O � PCO

�
PH2

�3
Kpr

!
(13)

krf ¼ 2395 exp

��231;266
RT

�
(14)

RWGSR ¼ ksf

�
pH2OpCO � pH2

pCO2

Kps

�
(15)

ksf ¼ 0:0171 exp

��103; 191
RT

� �
mol m�3 Pa�2 s�1

�
(16)

Kps ¼ exp
�� 0:2935Z3 þ 0:6351Z2 þ 4:1788Zþ 0:3169

�
(17)

Z ¼
�
1000
TðKÞ

�
� 1 (18)

Kpr ¼ 1:0267� 1010 � exp
�� 0:2513Z4 þ 0:3665Z3 þ 0:5810Z2

� 27:134Zþ 3:277
�

(19)

The reaction heat associated with DIR reaction and WGSR

can be determined from the enthalpy changes of the two

reactions. The heat generation from exothermic WGSR

(HWGSR, J mol�1) and heat consumption by endothermic DIR

reaction (HDIR, J mol�1) can be approximated as [23].

HDIR ¼ �ð206;205:5þ 19:5175TÞ (20)

HWGSR ¼ 45; 063� 10:28T (21)

2.1.3. Computational fluid dynamic (CFD) model
The CFD model is developed to simulate the heat and mass

transfer in SOFCs. The relatively low gas velocity and small

dimension of SOFC result in low Reynolds number. Therefore,

the gas flow in SOFC is typically laminar. From heat transfer

analysis, it is found that the temperature difference between

the solid and the gas in the porous electrodes is negligibly

small [28]. Thus local thermal equilibrium condition is adop-

ted. The governing equations for the CFD model include mass

conservation, momentum conservation, energy conservation,

and species conservation [23,29].

vðrUÞ
vx

þ vðrVÞ
vy

¼ Sm (22)

vðrUUÞ
vx

þ vðrVUÞ
vy

¼ �vP
vx

þ v

vx

�
m
vU
vx

�
þ v

vy

�
m
vU
vy

�
þ Sx (23)

vðrUVÞ
vx

þ vðrVVÞ
vy

¼ �vP
vy

þ v

vx

�
m
vV
vx

�
þ v

vy

�
m
vV
vy

�
þ Sy (24)

vðrcPUTÞ
vx

þ vðrcPVTÞ
vy

¼ v

vx

�
k
vT
vx

�
þ v

vy

�
k
vT
vy

�
þ ST (25)

vðrUYiÞ
vx

þ vðrVYiÞ
vy

¼ v

vx

�
rDeff

i;m

vYi

vx

�
þ v

vy

�
rDeff

i;m

vYi

vy

�
þ Ssp (26)
U and V are the velocity components in x and y directions; r

and m are the gas density and viscosity of the gas mixture

respectively, which depends on local temperature and gas

composition.

r ¼ 1PN
i¼1Yi=ri

(27)

where ri and Yi are the density and mass fraction of gas

species i.

The viscosity of the gasmixture (m) can be calculated as [30]

m ¼
Xn
i¼1

yimiPn
j¼1 yj4ij

(28)

where the value of 4ij can be obtained by Herning and Zipperer

approximation as [30]

4ij ¼
ffiffiffiffiffiffi
Mj

Mi

s
¼ 4�1

ji (29)

where Mi is molecular weight of species i (kg kmol�1).

In the porous catalyst layer, effective heat conductivity (k)

and heat capacity (cp) are used and can be calculated as [31]

k ¼ 3kf þ ð1� 3Þks (30)

cp ¼ 3cp;f þ ð1� 3Þcp;s (31)

The effective diffusion coefficients Deff
i;m can be determined

as,

1

Deff
i;m

¼

8>>>>>>>><
>>>>>>>>:

x

3

0
BBB@
P
jsi

Xj

Dij

1� Xi
þ 3
2rp

ffiffiffiffiffiffiffiffiffi
pMi

8RT

r 1
CCCA; in porous electrodes

P
jsi

Xj

Dij

1� Xi
; in gas channels

(32)

Dij ¼ 0:0026T1:5

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MiMj

Mj þMi

s �
si þ sj

2

�2

UD

(33)

UD ¼ 1:06036�
kbT
3i;j

�0:1561 þ
0:193

exp

�
0:47635

�
kbT
3i;j

��þ 1:03587

exp

�
1:52996

�
kbT
3i;j

��

þ 1:76474

3:89411

�
kbT
3i;j

�
(34)

where x and 3 are the tortuosity and porosity of electrodes; and

rp is the average radius of pores. Dij is the binary diffusion

coefficient of species i and j. s is themean characteristic length

of species andUD is a dimensionless diffusion collision. kb is the

Boltzmann’s constant (1.38066 � 10�23 J K�1). The values of si
and 3i,jused in thepresent study are summarized inTable 1 [30].

Xi is the molar fraction of specie i. The relationship between

mass fraction (Yi) and molar fraction can be determined as.

Yi ¼ Xi

 
MiPN

i¼1 XiMi

!
(35)

The Darcy’s law is used as source terms in the momentum

equation (Eqs. (23) and (24)).
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Table 1 e Values of si and 3i/k for calculating the diffusion
coefficients [30].

CO CO2 H2 O2 CH4 N2 H2O

si (�A) 3.69 3.941 2.827 3.467 3.758 3.798 2.641

3i/k (K2 J�1) 91.7 195.2 59.7 106.7 148.6 71.4 809.1

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 3 8 ( 2 0 1 3 ) 2 8 4 6e2 8 5 82850
Sx ¼ �mU
Bg

(36)

Sy ¼ �mV
Bg

(37)

where Bg is the permeability (m2). Typical value of perme-

ability (i.e. 2 � 10�10 m2) is used for the SOFC electrodes while

infinitely large value (i.e. 1020 m2) is used for the gas channels,

so that the momentum equations can be applied to both the

gas channels and the porous electrodes.

The source term (ST, W m�3) in the energy equation (Eq.

(25)) accounts for heat associated with DIR reaction and

WGSR, heat from electrochemical reactions, and heat from

irreversible overpotential losses. In the present simulation,

the source term in the porous anode comes from the reaction

heat for DIR reaction and WGSR. The heat from electro-

chemical reaction and irreversible overpotential losses are

evenly applied to the dense electrolyte. Thus, the source term

ST can be written as [23],

ST ¼
8<
:

RDIRHDIR þ RWGSRHWGSR; in porous anode

�JH2
TDSH2

þ JCOTDSCO

2FL
þ JH2

ht;H2

L
þ JCOht;CO

L
; in electrolyte

(38)

where DSH2
and DSCO are the entropy changes for electro-

chemical reactions associated with H2 fuel and CO fuel,

respectively. ht;H2
and ht,CO are the total overpotential losses

for H2 fuel and CO fuel.

The source term (Ssp, kg m�3 s�1) in the species equation

(Eq. (26)) represent species consumption or generation due to

the chemical and electrochemical reactions. Taking H2 as an

example, the source term ðSH2 Þ in the species equation can be

written as [23,32],

SH2
¼

8><
>:

3RDIRMH2
þ RWGSRMH2

; in porous anode

�JH2
MH2

2FDy
; at the anodeeelectrolyte interface

(39)

where Dy is the control volume width in y-direction (Fig. 1) at

the anodeeelectrolyte interface.

2.2. H-SOFC

In H-SOFC, both DIR reaction and WGSR also occur in the

porous anode. However, only H2 can participate in the elec-

trochemical reaction and contribute to power generation. The

3 sub-models for O-SOFC in the previous section can be

adapted to H-SOFC. Since CO is not electrochemically active in

H-SOFC, only Eq. (7) is solved for calculating the Nernst

potential of H-SOFC. As steam is electrochemically produced

in the porous cathode, the partial pressure of H2O in the

cathode should be used in Eq. (7) for H-SOFC. The exchange
current densities used for O-SOFC are adopted for H-SOFC for

calculating the activation overpotential losses. According to

Matsumoto [33], the proton conductivity of the BaCe0.8Y0.2O3�a

electrolyte is about 2.6 S m�1 at 973 K and 3.5 S m�1 at 1073 K.

Assuming linear dependence on temperature for simplicity,

the proton conductivity (sionic, S m-1) at different temperatures

can be determined as,

sionic ¼ 0:009T� 6:157 (40)

3. Numerical methodologies

A constant velocity is specified at the inlet (x ¼ 0) of gas

flow channel and zero velocity is applied to the solid part

and the porous layers. At the bottom and top of the

computational domain ( y ¼ 0 and y ¼ yM), thermally adia-

batic conditions are adopted. At the outlet of the compu-

tational domain (x ¼ xL), zero gradients for temperature,

velocity, and mass fraction are assumed for the gas chan-

nels while zero velocity is applied to the solid part and the

porous layer.

The governing equations are discretized and solved with

the finite volume method (FVM). The diffusion terms and

the convection terms are treated with the central difference

and upwind schemes, respectively. The pressure and

velocity are linked with the SIMPLEC algorithm. The dis-

cretized equations are solved with the TDMA based iteration

schemes. The program starts with initialization by

assuming initial data over the whole computational domain.

Then, the chemical model is solved to calculate the reaction

rates of DIR and WGSR as well as the corresponding reaction

heat. After that, the electrochemical model is solved to

determine the local current density at a given operating

potential. The results obtained from the chemical model

and electrochemical model are used to determine the source

terms in the CFD model. After solving the CFD model, the

flow field, temperature field, gas distributions, etc can be

updated. If not converged, the updated data will be used to

solve the chemical model again. Computation is repeated

until convergence is achieved. The program is written in

FORTRAN and has been well validated by comparing the

simulation results with data from the literature as well as

from FLUENT.
4. Results and analysis

In this section, simulations are performed to compare the

actual performance of O-SOFC and H-SOFC, with consider-

ation of CO electrochemical oxidation in O-SOFC. The typical

simulation conditions are summarized in Table 2 [23,34]. It is

understood that many parameters affect the SOFC perfor-

mance, such as the cell size, the cell configuration, the catalyst

used etc. For example, longer cells will have larger gas

composition variation along the channel and high concen-

tration loss in the downstream. In button cells, the gas flowing

into the cell is opposite to the gas flowing out from the cell,

thus the gas flow, heat transfer and the cell performance

could be different from the planar cells [35e38]. However, this

http://dx.doi.org/10.1016/j.ijhydene.2012.12.055
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paper does not aim to study all parameters but focuses on the

comparison between H-SOFC and O-SOFC with hydrocarbon

fuels. The important parameters that affect the CO electro-

chemical oxidation are studied in detail, such as the exchange

current density for CO fuel, temperature and operating

potential.

4.1. Comparison between H-SOFC and O-SOFC

Simulations are performed at an inlet temperature of 973 K

and an inlet gas velocity (anode) of 0.5 m s�1 to compare the

current density distributions in H-SOFC and O-SOFC.

J0CO ¼ 0:6J0H2
and J0CO ¼ 0:2J0H2

are used for simulating the

performance of O-SOFC. The quantitative contribution from

CO electrochemical oxidation to the O-SOFC performance can

be seen from the current density by CO fuel (Fig. 2). As can be

seen from Fig. 2(a), the current densities of O-SOFC are higher

than that of H-SOFC, due to significant contribution of CO

electrochemical oxidation for power generation in O-SOFC

(Fig. 2(b)). In addition, the current density of O-SOFC increases

considerably as the reaction rate of CO electrochemical

oxidation is increased (from J0CO ¼ 0:2J0H2
to J0CO ¼ 0:6J0H2

). This

result is contrary to our common understanding that H-SOFC

always perform better than O-SOFC due to higher Nernst

potential of H-SOFC and higher ionic conductivity of the

proton conducting electrolyte [10,11,16]. However, according
Table 2 e Parameters used in simulation [23,34].

Parameter Value

Operating temperature, T (K) 973

Operating pressure, P (bar) 1.0

Electrode porosity, 3 0.4

Electrode tortuosity, x 3.0

Average pore radius, rp (mm) 0.5

Anode-supported electrolyte

Anode thickness, da (mm) 500

Electrolyte thickness, L (mm) 100

Cathode thickness, dc (mm) 100

Height of gas flow channel

(mm)

1.0

Length of the planar SOFC

(mm)

20

Thickness of interconnector

(mm)

0.5

Inlet velocity at anode: U0

(m s�1)

0.5

Cathode inlet gas molar ratio:

O2/N2

0.21/0.79

Anode inlet gas molar ratio:

H2O/CH4/H2/CO2/CO

0.003/0.116/0.661/0.002/

0.218 [34]

SOFC operating potential (V) 0.4

Thermal conductivity of SOFC

component (W m�1 K�1)

Anode 11.0

Electrolytea 2.7

Cathode 6.0

Interconnect 1.1

a Thermal conductivity of proton conductor is assumed to be the

same with oxygen ion conductor.

Fig. 2 e Distributions of current density in SOFCs at an inlet

temperature of 973 K and operating potential of 0.6 V e (a)

comparison between H-SOFC and O-SOFC; (b) current

density generated by CO fuel and H2 fuel in O-SOFC.
to the author’s best knowledge, no experimental comparison

of H-SOFC and O-SOFC with hydrocarbon fuels has been

reported in the literature. Once experimental data are avail-

able, the model developed in the present paper can be better

validated and improved for design optimization.

The distributions of DIR reaction rate in H-SOFC and

O-SOFC at an operating potential of 0.6 V are investigated and

compared in Fig. 3. Using the model by Haberman and Young

[27], the DIR reaction rates are in general very low (less than

1 mol m�3 s�1) at an inlet temperature of 973 K. The DIR in

H-SOFC is slightly negative and decreases along the flow

channel (Fig. 3(a)). In H-SOFC, H2O from electrochemical

reaction is produced in the cathode, which tends to reverse

the DIR reaction in anode. For comparison, the DIR in O-SOFC

is positive and increases along the cell (Fig. 3(b) and (c)), as H2O

from electrochemical reaction is produced in the anode and

favors positive DIR reaction. When the CO electrochemical

oxidation is increased (from J0CO ¼ 0:2J0H2
to J0CO ¼ 0:6J0H2

), the

DIR reaction rate is slightly increased. The increase in DIR

http://dx.doi.org/10.1016/j.ijhydene.2012.12.055
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Fig. 3 e Distributions of DIR reaction rate in SOFCs at

an inlet temperature of 973 K and operating potential of

0.6 V e (a) H-SOFC; (b) O-SOFC with J0CO[0:2J0H2
; and (c)

O-SOFC with J0CO[0:6J0H2
. Fig. 4 e Distributions of temperature in SOFCs at an inlet

temperature of 973 K and operating potential of 0.6 V e (a)

H-SOFC; (b) O-SOFC with J0CO[0:2J0H2
; and (c) O-SOFC with

J0CO[0:6J0H2
.
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reaction rates in O-SOFC is caused by increased cell temper-

ature in the downstream (Fig. 4). The temperature in SOFCs

depends on 3 factors: (1) entropy change of the electro-

chemical reactions; (2) irreversible overpotential losses; and

(3) chemical reactions including DIR reaction and WGSR. Both

(1) and (2) contribute to heat generation and are related to

current density. For chemical reactions, positive DIR reaction

is endothermic and consumes heat while positive WGSR is

exothermic and generates heat. For both H-SOFC and O-SOFC,

the increase of temperature along the main flow stream
indicates that the total heat generation greatly exceeds the

heat consumption by chemical reactions. The temperature in

O-SOFC is higher than that of H-SOFC as the higher current

density in O-SOFC generates more heat from (1) and (2). For

example, at J0CO ¼ 0:6J0H2
, the SOFC temperature is increased

from 973 K at the inlet to be about 1059 K at the outlet

(Fig. 4(c)).
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The distribution of WGSR rate in H-SOFC shows quite

different pattern from that in O-SOFC (Fig. 5(a)e(c)).

In H-SOFC, reaction rate of WGSR is negative and increases

along the cell (Fig. 5(a)), due to relatively lower H2O molar

fraction in the anode. For comparison, reaction rate of WGSR

in O-SOFC is positive and increases along the cell at

J0CO ¼ 0:2J0H2
(Fig. 5(b)). At J0CO ¼ 0:6J0H2

, theWGSR reaction rate is

positive and high at themiddle of the cell and small at the two

ends (Fig. 5(c)). This phenomenon can be explained by a lower
Fig. 5 e Reaction rates of WGSR in SOFCs at an inlet

temperature of 973 K and operating potential of 0.6 V e (a)

H-SOFC; (b) O-SOFC with J0CO[0:2J0H2
; and (c) O-SOFC with

J0CO[0:6J0H2
.

COmolar fraction in O-SOFC at J0CO ¼ 0:6J0H2
than the other two

cases (Fig. 6(a)e(c)), which tends to reverse the WGSR in the

downstream. As can be seen from Fig. 6(b) and (c), the CO

molar fraction in O-SOFC is obviously lower than that in

H-SOFC, especially at J0CO ¼ 0:6J0H2
, since CO is electrochemi-

cally oxidized in O-SOFC. Due to positive DIR and WGSR

reaction rates in O-SOFC while negative DIR and WGSR reac-

tion rates in H-SOFC, O-SOFC shows higher H2 molar fraction

than that of H-SOFC in the downstream (Fig. 7(a)e(c)).
Fig. 6 e Molar fractions of CO in SOFCs at an inlet

temperature of 973 K and operating potential of 0.6 V e (a)

H-SOFC; (b) O-SOFC with J0CO[0:2J0H2
; and (c) O-SOFC with

J0CO[0:6J0H2
.
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It should be mentioned that in SOFC performance charac-

terization, fuel utilization is also a usually used parameter.

At a given operating temperature and cell configuration, the

fuel utilization is directly linked with the current density. In

other words, high current density corresponds to high fuel

utilization and low current density corresponds to low fuel

utilization [39]. Therefore, the current density is sufficient to

quantify the SOFC performance and thus the detailed anal-

yses on the fuel utilization are not provided in this paper.
Fig. 7 e Molar fractions of H2 in SOFCs at an inlet

temperature of 973 K and operating potential of 0.6 V e (a)

H-SOFC; (b) O-SOFC with J0CO[0:2J0H2
; and (c) O-SOFC with

J0CO[0:6J0H2
.

4.2. Effect of operating potential

The effect of operating potential is studied by increasing the

operating potential from 0.6 V to 0.8 V. At 0.8 V, the H-SOFC

shows higher average current density than O-SOFC (Fig. 8).

This is due to a high Nernst potential of H-SOFC [10,12] and

small contribution from CO fuel in O-SOFC at a high poten-

tial. The distributions of temperature, DIR reaction rate,

WGSR reaction rate and CO molar fraction are shown in

Fig. 9. At 0.8 V, the temperature increases along the main

flow stream in both H-SOFC and O-SOFC (Fig. 9(a) and (b)),

but the increments are smaller than at an operating poten-

tial of 0.6 V (Fig. 4(a) and (b)). This is because the current

density is lower at a higher operating potential, which in

turn generates less heat from reversible entropy change and

irreversible overpotential losses. In addition, the distribu-

tions of DIR reaction rates, WGSR reaction rates and gas

composition at 0.8 V exhibit smaller variations along the gas

flow channel (Fig. 9(c)e(h)) than at 0.6 V, due to smaller

current density and lower average temperature at 0.8 V than

at 0.6 V.

4.3. Effect of operating temperature

To examine the effect of temperature on SOFC performance,

simulations are performed at inlet temperatures of 873 K and

1073 and at J0CO ¼ 0:4J0H2
for O-SOFC. Results are shown in

Fig. 10. Interestingly, it is found that the performance of H-

SOFC is higher than that of O-SOFC at an inlet temperature of

873 K (Fig. 10(a)). This is because the ionic conductivity of

proton conductors is considerably higher than that of oxygen

ion conductors [24,33] and the contribution from CO electro-

chemical oxidation in O-SOFC is too small at a low tempera-

ture (Fig. 10(c)). However, at a higher inlet temperature

(1073 K), O-SOFC performs significantly better than H-SOFC

(Fig. 10(b)), due to significant contribution of CO electro-

chemical reaction to power generation (Fig. 10(c)). These

results indicate that O-SOFC should be used at high temper-

atures while H-SOFC can be a good choice at intermediate

temperatures, even with hydrocarbon fuels. Since there is
Fig. 8 e Current density comparison between H-SOFC and

O-SOFC at an operating potential of 0.8 V.
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Fig. 9 e Comparison between H-SOFC and O-SOFC (with J0CO[0:2J0H2
) at an inlet temperature of 973 K and operating potential

of 0.8 V e (a) temperature in H-SOFC; (b) temperature in O-SOFC; (c) reaction rate of DIR in H-SOFC; (d) reaction rate of DIR in

O-SOFC; (e) reaction rate of WGSR in H-SOFC; (f) reaction rate of WGSR in O-SOFC; (g) molar fraction of CO in H-SOFC; and (h)

molar fraction of CO in O-SOFC.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 3 8 ( 2 0 1 3 ) 2 8 4 6e2 8 5 8 2855

http://dx.doi.org/10.1016/j.ijhydene.2012.12.055
http://dx.doi.org/10.1016/j.ijhydene.2012.12.055


Fig. 10 e Current density comparison between H-SOFC and

O-SOFC at an operating potential of 0.6 V e (a) inlet

temperature of 873 K; (b) inlet temperature of 1073 K; (c)

current density generated by CO fuel in O-SOFC.
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a trend to lowering the operating temperature of SOFCs [40],

proton conductors should be givenmore consideration for the

development of high performance intermediate temperature

SOFCs.
5. Conclusions

A two-dimensionalmathematicalmodel is developed to study

the performance of methane-fed SOFCs, with a focus on the

comparison betweenH-SOFC andO-SOFC. Themodel consists

of an electrochemical model, a chemical model and a CFD

model. Electrochemical oxidation of CO in the anode of O-

SOFC is considered.

Contrary to our common understanding that H-SOFC

always performs better than O-SOFC, the present study shows

that the performance of H-SOFC is evidently lower than that of

O-SOFC at an operating potential of 0.6 V and at 973 K, as CO

electrochemical oxidation in O-SOFC contributes to power

generation. The difference between H-SOFC and O-SOFC is

enlarged when the CO electrochemical oxidation is enhanced

ðJ0CO ¼ 0:6J0H2
Þ. The WGSR and DIR in H-SOFC are both negative

at 973 V and 0.6 V, due to a relatively lower molar fraction

of H2O in the anode. For comparison, the DIR and WGSR in

O-SOFC are both positive. The temperatures in both H-SOFC

and O-SOFC are found to increase along the cell, due to large

heat generation by electrochemical reaction and overpotential

losses. However, it’s also found that H-SOFC exhibits higher

performance at a high operating potential than O-SOFC due to

small contribution by CO fuel in O-SOFC. In addition, H-SOFC

is found to perform better than O-SOFC at an intermediate

temperature (873 K), due to its higher ionic conductivity of the

electrolyte.

The results presented in the paper reveal that H-SOFC

exhibits advantages with H2 fuel (or ammonia). With hydro-

carbon fuels, O-SOFC performs better than H-SOFC at typical

operating temperatures (i.e. 1073 K) due to the contribution

from CO fuel. However, at a reduced temperature (i.e. 873 K),

H-SOFC exhibits higher performance and thus the proton

conductors can be good choices for SOFCs at intermediate

temperatures. The results provide better understanding on

how the electrolyte type influences the SOFC performance.
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Nomenclature

Bg permeability of the porous electrode, m2

cp heat capacity, J kg�1 K�1

da thickness of anode, mm

dc thickness of cathode, mm

Deff
i;m effective diffusion coefficient of species i in gas

mixture, cm2 s�1

Di,k Knudsen diffusion coefficient of i, cm2 s�1

Di,j binary diffusion coefficient of i and j, cm2 s�1

E equilibrium potential, V

E0 reversible potential at standard condition, V

F Faraday constant, 9.6485 � 104 C mol�1
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HDIR heat demand for direct internal reforming of

methane, J mol�1

HWGS heat generation from water gas shift reaction,

J mol�1

J current density, A m�2

k thermal conductivity, W m�1 K�1

L thickness of the electrolyte, m

Mi molecular weight of species i, kg mol�1

n number of electrons transferred

P operating pressure, bar

PIi partial pressure, bar, of species i at

electrodeeelectrolyte interface

RDIR reaction rate of direct internal reforming of

methane, mol m�3 s�1

RWGSR rate of water gas shift reaction, mol m�3 s�1

rp mean pore radius of electrode, mm

R universal gas constant, 8.3145 J mol�1 K�1

DS entropy change of electrochemical reactions,

kJ kg�1 K�1

Sm source term in continuity equation, kg m�3 s�1

Sx, Sy source terms in momentum equations, kg m�2 s�2

ST source terms in energy equations, W m�3

Ssp source terms in species equations, kg m�3 s�1

T operating temperature, K

U velocity in x direction, m s�1

Uin gas velocity at the SOFC inlet, m s�1

V SOFC operating potential, V; velocity in y direction,

m s�1

X molar fraction of species i

Y mass fraction of species i

3 electrode porosity

x electrode tortuosity

si,j mean characteristic length of species i and j, �A

sionic ionic conductivity of the electrolyte, U�1 m�1

UD dimensionless diffusion collision integral

r density of the gas mixture, kg m�3

m viscosity of gas mixture, kg m�1 s�1

hact,a activation overpotential at anode, V

hact,c activation overpotential at cathode, V

hohmic ohmic overpotential of the electrolyte, V
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