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Abstract

In retailing operations, retailers face the challenge of incomplete demand information.
We develop a new concept named K-approximate convexity, which is shown to be a
generalization of K-convexity, to address this challenge. This idea is applied to obtain
a base-stock list-price policy for the joint inventory and pricing control problem with
incomplete demand information and even non-concave revenue function. A worst-case
performance bound of the policy is established. In a numerical study where demand
is driven from real sales data, we find that the average gap between the profits of our
proposed policy and the optimal policy is 0.27%, and the maximum gap is 4.6%.
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1 Introduction

1.1 Motivation

Dynamic pricing is widely accepted by retailers as a powerful tool to better match demand

and increase profit. It has become increasingly popular in recent years, mainly due to the

advancement of information technology. The new technologies enable not only collecting and

analyzing massive amounts of demand data, but also automatically optimizing and adjusting

prices in realtime. It should be a perfect time for the joint inventory-pricing models developed

in the literature to have an influence in the real world. Unfortunately, their implementation

faces two important challenges. First, most existing models assumed completely known math-

ematical relationship between price and expected demand. In practice, however, a decision

maker can only collect a few discrete price points at which the product is sold and the cor-

responding sales data at each price. Even with the most advanced technology, one cannot

completely learn the expected demand as a function of price, because it is simply impossible
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to set the price to its every possible value. Second, most models in the literature also require

the revenue function to be concave. Even if a sufficient number of price-demand pairs are

available to reasonably well estimate the demand function, there is no guarantee that the

demand function or the revenue function has any of the desired properties. The violation of

these concave assumptions may result in an optimal policy that is too complicated to be im-

plemented.. These two challenges have created a gap between academic research and practical

implementation.

To bridge this gap, we introduce a new tool named K-approximate convexity. A function

is K-approximate convex (concave) if it can be approximated by a convex (concave) function

whose maximal distance to the original function is K. Hence, K somehow measures the

degree of the non-convexity of this function. We show that any K-convex function is also K-

approximate convex. Therefore, K-approximate convexity (concavity) is a generalization of

K-convexity (concavity). This new methodology is applied to solve our challenges. A piecewise

linear concave function that best fits the sales data is used to replace the revenue function

in the dynamic programming model. This approach solves the challenges of the unknown

demand function and non-concave revenue function simultaneously. The resulting policy is a

base-stock list-price policy and hence practically implementable. Under mild conditions, we

successfully develop upper bounds on the value K that measures the distance between the

true revenue function and its concave approximation. We show the effectiveness of the policy

through numerical studies where demand is driven from real sales data.

There are two important questions that determine the complexity and effectiveness of this

approach. The first question is how to find a convex function that minimizes the maximal

distance between this convex function and the function being approximated. This is shown

to be as easy as solving a linear program. The second question is how the policy performs

compared to the optimal policy with the complete demand information (the optimal policy

may not be practically implementable if the objective function is not concave). We derive a

worst-case performance bound that is a linear function of K. Therefore, a slight non-convexity

(a small K) of the objective function is acceptable because we can still get a base-stock list-

price policy with a good performance by optimizing its convex approximation.

1.2 Literature Review

The benefits of coordinated inventory and pricing decisions have been long recognized in the

research community. Whitin (1955), Mills (1959, 1962), and Kalin and Carr (1962) incorpo-

rated the pricing decisions into single-period inventory models. The joint inventory and pricing

newsvendor models were then developed by, among others, Polatoglu (1991), and Petruzzi and
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Dada (1999). Zabel (1972) and Thowsen (1975) were among the first to integrate pricing and

inventory in a multi-period stochastic setting. Federgruen and Heching (1999) studied a sim-

ilar model with more general stochastic demand functions and proved the optimality of the

base-stock list-price policy. This pioneering work stimulated a rapidly growing body of re-

search on inventory and pricing coordination. Chen and Simichi-Levi (2004a,b) proved that

the (s, S, A, p) and (s, S, p) policies are optimal for the finite and infinite horizon models with

fixed ordering cost, respectively. Li and Zheng (2006) extended the work of Federgruen and

Heching (1999) by considering random yield. Song et al. (2009) studied lost sales models

with fixed ordering cost and established the optimality of the (s, S) type policies. Chen et al.

(2010) considered a model with concave ordering cost and showed that a generalized (s, S, p)

policy is optimal if the demand distributions are Pólya or uniform. Pang et al. (2012) iden-

tified various properties of the optimal policy in the presence of positive leadtimes. Feng et

al.(2014) studied the dynamic inventory and pricing control problem under a general demand

model. All of these papers assumed completely known mathematical relationship between

price and expected demand, and most of them assumed concave revenue function. We relax

these two assumptions in this paper.

As our model deals with incomplete demand information, this research is also closely

related to the growing literature of dynamic pricing and demand learning. Aviv and Pazgal

(2005) and Carvalho and Puterman (2005) were among the the first to incorporate incomplete

demand information into the model setting. Subsequent works include Cope(2007), Araman

and Caldentey (2009), Besbes and Zeevi (2009), Farias and Van Roy (2010), Harrison et al.

(2012), den Boer and Zwart (2014) and Wang et al. (2014) among others. These papers focus

on pricing and learning without inventory replenishment decisions. In our model, inventory

replenishment is a decision variable in each period while we don’t consider demand learning

because under a stochastic demand model, a number of data points (periods) are required to

estimate the expected demand at a single price point, whereas price is periodically adjusted

according to the inventory level in our setting.

2 Model Setting

In this paper, we investigate the joint inventory and pricing control problem in a finite-horizon

setting with stochastic demand. The planning horizon consists of T periods. At the beginning

of each period, the firm reviews its inventory level and makes pricing and replenishment

decisions simultaneously. We assume that the demand in period t as a function of the price
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pt is

Dt(pt) = atd(pt) + bt, (1)

where at and bt are random variables, and d(pt) is a deterministic function. Note that the

demand defined in (1) is more flexible than both the additive and multiplicative demand

forms. It reduces to the additive demand form when the coefficient at is a constant and to

the multiplicative demand form when bt is a constant. Without loss of generality, we assume

that E[at] = 1 and E[bt] = 0. Hence, the expected demand is E[Dt(pt)] = d(pt). We also

assume that d(pt) is a strictly decreasing function of pt with the inverse function p−1(dt). The

monotonicity of d(pt) implies that there is a one-to-one correspondence between the expected

demand and the selling price. Therefore, we can replace the problem of selecting a price with

one of selecting an expected demand.

Define R(dt) = p−1(dt)dt, which represents the revenue function in terms of the expected

demand. Let Vt(xt) denote the maximum expected profit given the inventory level xt at the

beginning of period t. Then, the firm faces the following dynamic programming problem:

Vt(xt) = max
yt≥xt,dt∈[dt,dt]

{
R(dt)−ct(yt−xt)+E

[
−Ht(yt−atdt−bt)+αVt+1(yt−atdt−bt)

]}
, (2)

where ct determines the linear variable ordering cost in period t and Ht(yt) is the convex

inventory holding and shortage cost in that period. Furthermore, we assume that the profit

VT+1(xT+1) at the end of the planning horizon is concave.

The literature typically assumes that the demand function d(pt) is already known, which

immediately yields the revenue functionR(dt). However, in reality, a complete characterization

of the demand or revenue function may not be available or even possible. In most cases, a

firm will probably have only exercised several selling prices in the past and observed the

corresponding realized demand and hence the expected demand by averaging the realized

demand in a certain number of periods. In particular, consider p0 and pN+1 being the lowest

and highest possible selling prices. We assume that the firm has already exercised the prices,

p0 > p1 > · · · > pN > pN+1, and observed the corresponding expected demand, d0 < d1 <

· · · < dN < dN+1. Thus, the firm only knows the expected revenue, r0, r1, ..., rN+1, where

ri = pidi, at the corresponding expected demand, d0 < d1 < ... < dN < dN+1. That is, the

firm has partial information of the revenue function R(di) = ri at some discrete points di,

i = 0, 1, ..., N + 1. Moreover, the revenue function is usually assumed to be concave in the

literature. This assumption can also be violated in practice. Furthermore, with the limited

information of the revenue function, the firm cannot verify whether the revenue function is

concave or not.
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Our analysis intends to address the above two issues so that the joint inventory-pricing

model can be applied to more practical scenarios. First, we propose an approach in which

the joint decisions can be made when the complete information of the revenue function is not

available and the revenue function is not concave. Second, we build an upper bound on the

potential revenue loss from the proposed policy compared to the optimal policy with complete

information of R(d) (the optimal policy may not be practically implementable if R(d) is not

concave). Third, we demonstrate the efficiency of our proposed approach using a retail data

set.

The proposed policy is a base-stock list-price policy. We focus on this policy because of

two reasons. First, it is the optimal policy when the revenue function is completely known

and concave. Second, it is an easy-to-implement policy for the joint inventory and pricing

control problem. Therefore, this paper studies how to construct a base-stock list-price policy

with incomplete demand information and nonconcave revenue function, analyze and test the

performance of this policy. For this purpose, we first need to introduce a new methodology of

K-approximate Convexity.

3 K-Approximate Convexity

This section introduces the definition and properties of K-approximate convexity and presents

the linear programming formulation to find a convex approximation of a piecewise linear

function.

As mentioned in Section 1, a function is K-approximate convex if its distance in ℓ∞ norm

to some convex function is no greater than K. This concept is formally defined as follows.

Definition 1. Let S be a convex set in R. A function f : S 7→ R, is K-approximate convex

(concave) if there exists a convex (concave) function g : S 7→ R such that ‖f − g‖∞ ≡

supx∈S |f(x)− g(x)| ≤ K.

Figure 1 illustrates the idea of K-approximate convexity. The function defined by the blue

line is non-convex, and is approximated by the convex function defined by the red line. For

this case, the maximal distance between the two functions is 11
8
, i.e., K = 11

8
. It is worth

mentioning that Neave (1970) used the idea of approximating a nonconvex objective function

with convex functions when characterizing the optimal policy of a stochastic cash balance

problem. However, he didn’t introduce this concept and study its properties.

It is easy to see that the following proposition holds. Its proof is omitted from the paper.

Proposition 1. (a) Any convex function is 0-approximate convex.

(b) If f1(x) is K1-approximate convex and f2(x) is K2-approximate convex, then αf1(x) +
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Figure 1: K-approximate Convexity

βf2(x) is (αK1 + βK2)-approximate convex for any α, β ≥ 0.

(c) If f(x) is K-approximate convex, then E[f(x − D)] is K-approximate convex for any

random variable D.

(d) If f(x) is K1-approximate convex, then it must be K2-approximate convex for any K2 ≥ K1.

The following proposition shows that if a function is K-convex, then it must be K/2-

approximate convex and hence K-approximate convex. Therefore, K-approximate convexity

is a generalization of K-convexity.

Proposition 2. If f : R 7→ R is a K-convex function, then f(x) is a K/2-approximate convex

function.

An important question is how to obtain a convex approximation of aK-approximate convex

function such that the distance between the two functions in ℓ∞ norm is bounded by K. The

answer to this question determines the practical value of K-approximate convexity. We will

show that if a K-approximate convex function is piecewise linear, then the approximation can

be found by solving a linear programming problem.

Consider a piecewise linear function W (x) with m pieces. Let bj, j = 0, 1, ...,m−1, denote

the slope for the jth piece and −∞ = x0 < x1 < x2 < · · · < xm−1 < xm = +∞ denote

the breakpoints at which the slopes change. Here, we assume that b0 ≤ bm−1. With the

additional parameter Ij, j = 0, 1, ...,m− 1, we can write the function W (x) = Ij + bjx for any

x ∈ [xj , xj+1], j = 0, 1, . . . ,m− 1. Instead of considering all of the convex approximations of

W (x), we first limit our choice to continuous piecewise linear convex functions with the same

breakpoints as W (x). In other words, we want to find a continuous piecewise linear convex
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function W̄ (x) defined by W̄ (x) = Īj + b̄jx for any x ∈ [xj, xj+1], j = 0, 1, . . . ,m − 1, which

minimizes the maxx |W (x)− W̄ (x)|, the maximum deviation in ℓ∞ norm.

There are two important observations here. First, in the optimal solution, we must have

b̄0 = b0 and b̄m−1 = bm−1 to prevent maxx |W (x)− W̄ (x)| from blowing up to infinity when x

goes to −∞ or +∞. Second, under b̄0 = b0 and b̄m−1 = bm−1, maxx |W (x) − W̄ (x)| must be

achieved at some breakpoint xj, j = 1, . . . ,m − 1, because both W (x) and W̄ (x) are linear

for x ∈ [xj , xj+1]. Therefore, minĪj ,b̄j
maxx |W (x) − W̄ (x)| can be reduced to the following

optimization problem:

min
Īj ,b̄j

max
j=1,...,m−1

|W (xj)− W̄ (xj)| = min
Īj ,b̄j

max
j=1,...,m−1

|Ij + bjxj − (Īj + b̄jxj)| (3)

s.t. Īj + b̄jxj+1 = Īj+1 + b̄j+1xj+1, j = 0, 1, . . . ,m− 2, (4)

b̄j ≤ b̄j+1, j = 0, 1, . . . ,m− 2. (5)

Here (4) ensures continuity and (5) ensures convexity. It is easy to see that (3)-(5) can be

transformed into the following linear programming problem:

min
Īj ,b̄j ,ζ

ζ (6)

s.t. −ζ ≤ Ij + bjxj − (Īj + b̄jxj) ≤ ζ, j = 1, . . . ,m− 1, (7)

Īj + b̄jxj+1 = Īj+1 + b̄j+1xj+1, j = 0, 1, . . . ,m− 2, (8)

b̄j ≤ b̄j+1, j = 0, 1, . . . ,m− 2. (9)

The construction indicates that W̄ (x) is closer toW (x) than any other continuous piecewise

linear convex function with the same breakpoints as W (x). Proposition 3 shows that for any

K-approximate convex piecewise linear function, a convex approximation within the distance

K can be found by solving a linear program.

Proposition 3. If W (x) is K-approximate convex, then ‖W − W̄‖∞ ≤ K.

The following lemma provides some properties of K-approximate convexity, which will be

useful for proving the worst-case performance bound of the policy proposed in Section 4.

Lemma 1. For any f, g : S 7→ R, if ‖f − g‖∞ ≤ K, then

(a) |minx∈X f(x)−minx∈X g(x)| ≤ K for any X ⊆ S;

(b) g(xf )−minx∈X g(x) ≤ 2K for any X ⊆ S, where xf ∈ argminx∈X f(x).

4 A Base-stock List-price Policy

In this section, we apply the idea of K-approximate convexity to approximate the one-period

revenue function by a convex function, which leads us a base-stock list-price policy for the
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dynamic inventory-pricing control problem. We establish a worst-case performance bound for

this policy and test its performance on a retail data set.

4.1 Approximation of the Revenue Function

As aforementioned, the only available information of the revenue function R(d) in the dynamic

programming model (2) is R(di) = ri at the discrete points d0 < d1 < · · · < dN < dN+1.

A function R̄(d) has to be constructed to approximate R(d) and replace it in (2). The

approximate R̄(d) should be concave so that the corresponding policy is well-structured, e.g.,

a base-stock list-price policy. The approximation must be as close to the true revenue function

R(d) as possible, at least at the demand values di, i = 0, ..., N + 1, at which the values of

R(di) = ri are known. For any point d in (di, di+1), we have no information about the revenue

function R(d). A natural method is to assume that the approximate R̄(d) is linear between

di and di+1. Therefore, we consider the function R̄(d), to be a piecewise linear function in the

form of

R̄(d) = γi(d− di) +
i−1∑

j=0

γj(dj+1 − dj) + θ0, for any d ∈ [di, di+1] and i = 0, 1, ..., N, (10)

where γi represents the slope over [di, di+1], and θ0 is the function value at d = d0. The

concavity of R̄(d) implies that γi ≥ γi+1. Furthermore, to find the R̄(d) closest to R(d) at the

known pairs (di, ri), we should minimize maxi=0,...,N+1 |R̄(di)−ri|, which leads to the following

linear programming formulation:

min
γi,θ0,ζ

ζ

s.t. −ζ ≤ θ0 − r0 ≤ ζ,

−ζ ≤
i∑

j=0

γj(dj+1 − dj) + θ0 − ri ≤ ζ, i = 0, 1, . . . , N,

γi ≥ γi+1, i = 0, . . . , N − 1. (11)

Next, we study how close the approximation R̄(d) is to the true revenue function R(d),

which is measured by the distance in ℓ∞ norm, ‖R̄ − R‖∞. To facilitate the analysis, we

introduce the piecewise linear function R̂(d) obtained by connecting all of the realized points

(di, ri), i.e.,

R̂(d) = βi(d− di) +
i−1∑

j=0

βj(dj+1 − dj) + r0, for and d ∈ [di, di+1] and i = 0, 1, ..., N,

where βi =
ri+1−ri
di+1−di

for i = 0, 1, ..., N . The following result gives an upper bound on the gap

between R̄(d) and R̂(d). Define µ0 = β0 and µj = min{µj−1, βj} = min{βi, i = 0, 1, . . . , j}.
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Lemma 2. The gap between R̄(d) and R̂(d) is bounded by

‖R̄− R̂‖∞ ≤
1

2

N∑

j=0

(βj − µj)(dj+1 − dj).

With Lemma 2, we can build an upper bound on the gap between R(d) and R̄(d). This gap

clearly depends on the properties of R(d). Thus, our analysis will be based on three different

assumptions on the revenue function R(d): (i) Lipschitz continuity with the Lipschitz constant

LR, i.e.,

|R(d1)−R(d2)| ≤ LR|d
1 − d2|, for any d1, d2 ∈ [d0, dN+1], (12)

(ii) Lipschitz continuity with the Lipschitz constant LR and quasi-concavity, and (iii) concav-

ity.

Theorem 1. (i) Given that R(d) is Lipschitz continuous with the Lipschitz constant LR, the

maximal gap between R(d) and R̄(d) is given by

‖R̄−R‖∞ ≤
1

2

N∑

j=0

(βj − µj)(dj+1 − dj) +
LR

2
max

i=0,...,N
{di+1 − di};

(ii) Given that R(d) is Lipschitz continuous with the Lipschitz constant LR and quasi-concave,

the maximal gap between R(d) and R̄(d) is given by

‖R̄−R‖∞ ≤
1

2

N∑

j=0

(βj − µj)(dj+1 − dj) +
LR

4
max

i=0,...,N
{di+1 − di};

(iii) Given that R(d) is concave, the maximal gap between R(d) and R̄(d) is given by

‖R̄−R‖∞ ≤ max
i=1,...,N

{(βi−1 − βi)(di+1 − di)}.

Remark 1. When using a concave function to approximate the unknown function R(d), the

approximation gap ‖R̄ − R‖∞ is induced by two factors, non-concavity and the unknownness

of R(d), which can be measured by ‖R̄ − R̂‖∞ and ‖R̂ − R‖∞, respectively. Thus, the gaps

stated in parts (i) and (ii) consist of two terms, the first from non-concavity (shown in Lemma

2) and the second from unknownness. If R(d) is indeed concave, then R̂(d) must be a concave

function and hence the gap resulting from non-concavity vanishes. This is why the gap in part

(iii) only has one term resulting from unknownness.

Similarly, the gap induced by unknownness can be reduced if we know more of the properties

of R(d). For instance, the gap from unknownness in part (ii) is only half of that in part (i)

because of an additional property – the quasi-concavity of R(d). As Lipschitz continuity is not
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required in part (iii), although concavity implies quasi-concavity, we cannot conclude that part

(iii) has a smaller gap from unknownness than part (ii). However, for the R(d) that is both

Lipschitz continuous and concave, we can show that

‖R̄−R‖∞ ≤ max
i=1,...,N

{
min

{
LR

4
, βi−1 − βi

}
× (di+1 − di)

}
.

Furthermore, if the product was sold at more distinct prices, we could observe more data points

of the expected demand and hence obtain more pairs of (di, ri), i.e., the value of di+1 − di

would decrease. In this case, the gap from unknownness in all three cases can be reduced. In

particular, it disappears when R(d) is completely known, i.e., when di+1 − di goes to zero.

Remark 2. In parts (i) and (ii), the gap from unknownness is determined by the maximum

value of di+1 − di. This result is of particular importance when we have already collected the

price-demand pairs (pi, di) and need to choose more selling prices to learn the revenue curve.

Given that p0 > p1 > · · · > pN > pN+1 and d0 < d1 < · · · < dN < dN+1, the next price

should be selected in the interval (pi∗ , pi∗+1) where i∗ ∈ argmaxi{di+1 − di} such that the

approximation gap is minimized.

Remark 3. The gap from non-concavity in parts (i) and (ii) is always bounded. To see

this, note that Lipschitz continuity of R(d) implies that βi =
ri+1−ri
di+1−di

∈ [−LR, LR]. As µj =

min{βi, i = 0, 1, . . . , j} ≥ −LR. Therefore,

N∑

j=0

(βj − µj)(dj+1 − dj) ≤
N∑

j=0

2LR(dj+1 − dj) = 2LR(dN+1 − d0).

Remark 4. Theorem 1 assumes that R(di) = ri = pidi for any i. In practice, we may

observe different demands at the same selling price pi because of demand uncertainty. If a

sufficient number of demand realizations are observed, di can be estimated by the mean of

those demand realizations. Otherwise, we can construct a confidence interval for di and hence

a confidence interval for R(di) (as pi is given) such that |R(di) − ri| ≤ ǫ for any i, we can

show that ‖R̄−R‖∞ is no more than the upper bound in Theorem 1 plus the additional term

ǫ. certainly, this upper bound holds at a given confidence level.

4.2 Solution Algorithm and Performance Bound

Once R̄(d) is determined, we replace R(d) with R̄(d) in problem (2) to construct an auxiliary

optimization problem

Wt(xt) = max
yt≥xt,dt∈[dt,dt]

{
R̄(dt)−ct(yt−xt)+E

[
−Ht(yt−atdt−bt)+αWt+1(yt−atdt−bt)

]}
, (13)
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with the boundary condition WT+1(xT+1) = VT+1(xT+1).

It is well known that a base-stock list-price policy is optimal for this auxiliary problem

with a known and concave R̄(dt) (c.f. Federgruen and Heching 1999). The retailer is able to

implement this well-structured policy as a heuristic policy of the original system. Given the

starting inventory xt, let V̄t(xt) denote the expected total profit from period t to T + 1 when

this heuristic policy is implemented. By applying K-approximate convexity, we can show the

following theorem, which provides a worst-case bound on the performance of the heuristic

policy.

Theorem 2. If ‖R− R̄‖∞ ≤ K, then V̄t(xt) ≥ Vt(xt)− 2K
∑T−t

i=0 (i+1)αi for any xt ∈ R and

t ∈ {1, ..., T}.

Remark 5. This performance bound only depends on the number of periods T , the discount

factor α, and the parameter K, which represents the gap between R̄(d) and R(d) and is upper

bounded in Theorem 1. It is independent of all of the cost parameters and demand distribu-

tions. This bound does not blow up when T goes to infinity because limT→∞

∑T

i=0(i + 1)αi =

1
(1−α)2

.

Remark 6. If the revenue function Rt(dt) is not stationary, consider an approximate R̄t(dt)

such that ‖Rt − R̄t‖∞ ≤ Kt for all t ∈ {1, ..., T}. Similar to Theorem 2, we can show that

V̄t(xt) ≥ Vt(xt)− 2
∑T−t

i=0 (i+ 1)αiKt+i for any xt ∈ R and t ∈ {1, ..., T}.

4.3 Numerical Study: Performance Test

In this section, we present a set of numerical experiments. This numerical study has two

objectives. The first objective is to assess the performance of the proposed heuristic policy

and the effectiveness of the worst case performance bound given by Theorem 2 over a large

set of examples. The second is to examine how the system parameters affect the performance

of the proposed heuristic policy.

4.3.1 Data

We adopt the data collected from the Dominick’s Finer Foods Project(DFFP) conducted by

the Kilts Center of the University of Chicago. This database contains store-level pricing and

sales data from Dominick’s Finer Foods, one of the two biggest supermarket chains in the

Chicago area. We select a product, diet orange slice, with sales data at 40 different prices

ranging from $0.79 to $1.79 collected from 83 stores over 7 years. Because it is hard to confirm

whether a zero-sale means a no-trade date or stock-out event, we simply remove samples with

zero demand that contain no price information. The remaining data set comprises nearly
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20,000 observations from 15 sale zones. We assume that customers in different zones are

homogenous, which is an acceptable assumption if all customers are from a single city. We

study the aggregate demand in Chicago instead of the demand in each sale zone (the number

of selling prices and the corresponding realized demand is much less) for three reasons. First,

the aggregate demand has a sufficient number of different selling prices (around 40) such that

we can accurately calibrate the demand function.1 Second, the data set provides a sufficiently

large range of prices [0.79, 1.79] to avoid trivial solutions. Third, at each selling price pi, the

number of demand realizations is sufficiently large (at least 20) such that the expected demand

di can be accurately estimated. However, the data set has a shortcoming, as it does not record

some non-price promotions offered by stores. Therefore, our estimated model cannot address

those promotion effects in a sophisticated way, except by incorporating the demand induced

by those promotions into the random variables bt.

Figure 2 plots the demand mean under different selling prices in the data set. Based on the

distribution of the points, we use a piecewise linear function with two pieces to fit the function

d(p) by linear regression.2 The estimated d(p) (c.f. Figure 2) has the following specific form:

d(p) =

{
−64.2919p+ 80.7333, if 0.79 ≤ p ≤ 1.09,

−6.8677p+ 18.1409, if 1.09 ≤ p ≤ 1.79,
(14)

where all of the parameter estimates are significant at a p-value of 0.05.
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Figure 2: Demand Mean under Various Selling Prices

1Note that the heuristic does not require a large number of data points because it can deal with incomplete
demand information. However, to evaluate the performance of the heuristic policy, we need the optimal profit
under complete demand information as the benchmark, i.e., the true demand function is required. In the
numerical study, the demand function calibrated from the data set serves as the true demand function, and
hence it needs be accurately estimated.

2One could use other function forms, e.g., piecewise linear function with multiple pieces, to better fit the
demand function. However, our estimated model seems good enough (all of the parameter estimates are
significant at a p-value of 0.05). We also tried the demand model with three linear pieces and obtained similar
results.
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In the numerical experiment, we treat d(p) stated in (14) as the true expected demand

function. Suppose that the demand parameters at and bt in (1) are independent normal

random variables with mean and variance pairs (1, σ2
a) and (0, σ2

b ), respectively. Given d(p),

σa and σb can be estimated by maximum likelihood, and the results are shown in Table

2. For p ∈ [0.79, 1.79], the value of the function d(p) is roughly in the interval [6, 30], and

hence we set dt = 6 and dt = 30, i.e., the feasible region for the decision variable dt is

[6, 30]. The holding/shortage function has the following specific form: Ht(x) = ht max{0, x}+

st max{0,−x} for any period t. Moreover, all system parameters are assumed to be stationary

over time and thus we remove the time index of the system parameters. Note that some of

the parameters including the ordering, holding, and shortage costs, are not contained in the

DFFP data set, and thus their values are set relative to the selling price. However, the tested

value covers a large region that is most likely to contain the real ones.

4.3.2 Performance Evaluation of Heuristic Policy

With the complete demand information in (14), we can solve the real system stated in (2).

It is worth noting that the expected revenue function R(d) derived from d(p) is not concave.

Hence, the optimal policy may not follow the structure of the base-stock and list-price policy.

Hence, we solve the real system by enumeration to obtain the optimal solutions, which may

not be well-structured.

To evaluate the performance of the heuristic policy under incomplete demand information,

we uniformly pick N points from [6, 30], which, together with dt and d̄t, are treated as the

values of expected demand at which the expected revenue are observed. Obviously, N measures

the degree of the incompleteness of the demand information. The largerN is, the more demand

information we have. Given these demand observations, we can construct an approximation

of revenue function and solve the auxiliary dynamic programming in (13). After solving the

auxiliary problem, we implement its optimal solution as a heuristic policy in the real system.

The performance of the heuristic can be measured by ξHP = Vt(xt)−V̄t(xt)
Vt(xt)

, which represents

the percentage loss of profit caused by implementing the heuristic policy rather than the

optimal one. The worst-case performance bound of the proposed heuristic policy is defined

by ξUP =
2K

∑T−t
i=0

(i+1)αi

V̄t(xt)
because Theorem 2 implies that V̄t(xt)

Vt(xt)
≥ 1

1+ξUP
.

We assume that the initial inventory level in the first period x1 is zero, the number of

periods T = 5, and the discount factor α = 0.95. In designing the experiments, we select

the following set of system parameter values: c ∈ {0.1, 0.2, 0.3}, h ∈ {0.06, 0.08, 0.10, 0.12},

s ∈ {0.08, 0.10, 0.12, 0.14}, N ∈ {5, 7, 11}, σ2
a ∈ {1, 3, 5}, and σ2

b ∈ {5, 7, 9}. The fitted values

of σ2
a and σ2

b from the real data are 3 and 7, respectively. We try other values because demand
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variance can affect the optimal decisions and hence the performance of the heuristic policy.

All combinations of these system parameters provide 3×4×4×3×3×3 = 1296 test instances.

Table 1 summarizes the overall performance of ξHP and ξUP . We can see that the average

gap between the profits generated by the heuristic policy and optimal policy is 0.27% and the

maximal gap is 4.6%. Overall, our proposed heuristic policy performs quite well. The worst

case performance bound ξUP implies that the profit returned by the heuristic policy is on

average 1
1+87.2%

of the optimal profit with a maximum of 1
1+45.1%

and a minimum of 1
1+180.3%

of

the optimal profit. This is a reasonable expectation because we are facing incomplete demand

information and a non-concave revenue function, and our problem is a stochastic dynamic

programming problem with two decision variables (inventory and pricing). Certainly, the

worst-case performance bound can be very bad in terms of the percentage of the optimal

profit because the value of the optimal profit can be very small in certain cases. Conversely,

it can be very good when the value of the optimal profit is large.

Table 1: Overall Performance of ξHP , ξRG, and ξUP (%)
ξHP ξUP

Average values 0.27% 87.2%
Minimal values 0 45.1%
Maximal values 4.6% 180.3%

4.3.3 Sensitivity of Model Parameters

Next, we investigate the effect of the model parameters on the performance of the heuristic.

To this end, we set a base scenario and vary the parameter values once at a time. Table 2

summarizes the values of all of the parameters in the base scenario.

Table 2: Parameters for Base Scenario
Ordering Holding Shortage Discount
Cost ct Cost h Cost s dt d̄t Rate α
0.3 0.15 0.2 6 30 0.95

Initial Inventory Horizon Number of Observed
Level x1 σ2

a σ2
b T (di, ri) Pairs N + 2

0 3.16 7.01 5 7

The numerical results for sensitivity are presented in Figures 3, 4, and 5 and Table 3.

Figure 3 demonstrates the effectiveness of the heuristic under various time horizons. The

heuristic performs better as the time horizon increases. Both the total profit of the optimal

policy and the profit loss due to the heuristic policy increase with the number of periods T .

Figure 3 shows that as the percentage loss of profit decreases in T , the amount of profit loss

due to the heuristic policy increases at a lower rate than the total profit.
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Figure 3: Heuristic Performance under Various Time Horizons

Figure 4 shows how the performance of the heuristic policy depends on the degree of the

incompleteness of the demand information. It shows that the heuristic performs better as

N increases. This observation is intuitive because more demand information leads to a more

accurate decision. Another observation from Figure 4 is that the heuristic policy is not optimal

even with more demand information (e.g., N increases from 13 to 25). In this case, the profit

loss (0.48%) is due to the non-concavity of R(d).
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Figure 4: Heuristic Performance with Respect to the Number of Observed (pi, ri) Pairs

Table 3: The Impact of Holding and Shortage Costs on Heuristic Performance (%)
Shortage Holding Cost h
Cost s 0.05 0.1 0.2 0.3 0.4
0.1 0 0 0 0 0
0.2 0 0 0.01 0.17 0.18
0.3 0 0 2.15 0.59 1.47
0.4 0 0.14 0.97 3.08 1.96
0.5 0 0.56 0 1.56 0.30

Table 3 illustrates the effectiveness of the heuristic policy under different inventory holding

and shortage costs. To understand the effect, consider two extreme cases: zero holding cost and
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zero shortage cost. Clearly, in the former case, the optimal policy, i.e., the optimal solution

to (2), is to only order once at the start of the first period to satisfy all of the demands

in the planning horizon, and in every period set the price that maximizes the true revenue

function R(d). For the heuristic policy obtained by solving (13), we should also order enough

inventory at the start of the first period, and in each period quote the price that maximizes

the approximate revenue function R̄(d). As R(d) and R̄(d) have the same maximizer, the

heuristic policy is optimal. In the latter case, for both the optimal and heuristic policies, the

price quoted in every period is the maximizer of both R(d) and R̄(d), and the order should

only be placed at the end of the planning horizon to fulfill all of the backlogs. This explains

the observation in Table 3, that the heuristic policy performs well when the ratio, s/h, is small

or large. However, we do not observe any other monotonicity properties.
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Figure 5: Heuristic Performance with Respect to Fixed Costs

So far, we have assumed that the fixed ordering cost is zero in our problem. If there exists

a fixed ordering cost, the heuristic policy becomes a (s, S, A, p) policy (see Chen and Simchi-

Levi 2004a). Figure 5 demonstrates the effect of fixed costs on the heuristic performance. We

can see that the heuristic policy performs well over a large range of fixed costs. We further

observe that its performance is extremely good when the fixed cost is very small or very large.

This is because in the extreme cases, both the optimal policy and the heuristic policy become

smoother, which makes the heuristic policy match the optimal policy better.

5 Conclusion

In this paper, we develop a new concept of K-approximate convexity, which is a generalization

of K-convexity. Based on this concept, we solve the challenges of incomplete demand infor-

mation and the non-concave revenue function by approximating the one-period cost function,

which significantly enhances the practical value of the joint inventory-pricing coordination in

a dynamic setting.
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The methodology based on K-approximate convexity is general enough to find many other

applications. For example, in marketing, the sales as a function of advertising effort can be

an S-shaped increasing function, i.e, first convex and then concave (c.f. Danaher 2008). The

advertising effort has a carryover effect to the next period (c.f. Little 1979), which naturally

leads to a dynamic problem with a non-convex and non-concave objective function. Therefore,

the analysis in this paper can readily lend itself to such a marketing problem. In some inventory

control problems, the ordering cost can be a non-convex and non-concave function of ordering

quantity (c.f. Chan et al. 2002 and Zhang et al. 2012). K-approximate convexity can help

us construct and analyze well-structured heuristic policies for these inventory problems.
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A Appendix

To show Proposition 2, we first need the following lemmas. Our proof involves the concept of

convex envelope.
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Definition 2. For any function f : S 7→ R where S ⊆ R, the function f ∗ : S 7→ R is the

convex envelope of f if

f ∗ = sup{f : S 7→ R, f convex and f ≤ f}.

The following lemma provides a useful tool to characterize a function’s convex envelope.

Lemma 3. Suppose that f : S 7→ R and g : (a, b) 7→ R, where (a, b) ⊆ S, are both convex

functions. If limx↓a f(x) = limx↓a g(x), limx↑b f(x) = limx↑b g(x), and f(x) ≤ g(x) for any

x ∈ (a, b), then h : S 7→ R where

h(x) =

{
f(x) ∀ x ∈ S \ (a, b)

g(x) ∀ x ∈ (a, b)

is convex.

Proof. Let δf,a, δf,b, δg,a, and δg,b denote the semi-derivatives of f and g at a and b, respectively,

i.e.,

δf,a = lim
x↓a

f(x)− limy↓a f(y)

x− a
, δf,b = lim

x↑b

f(x)− limy↑b f(y)

x− b
,

δg,a = lim
x↓a

g(x)− limy↓a g(y)

x− a
, δg,b = lim

x↑b

g(x)− limy↑b g(y)

x− b
.

Note that δf,a ≤ δg,a and δf,b ≥ δg,b as limx↓a f(x) = limx↓a g(x), limx↑b f(x) = limx↑b g(x), and

f(x) ≤ g(x) for any x ∈ (a, b).

Consider the convex function g̃ : S 7→ R that

g̃(x) =





limx↓a g(x) + δg,a(x− a) ∀ x ∈ S and x ≤ a

g(x) ∀ x ∈ (a, b)

limx↑b g(x) + δg,b(x− b) ∀ x ∈ S and x ≥ b.

For any x ∈ S and x ≤ a, the convexity of f yields f(x) ≥ limx↓a f(x) + δf,a(x − a) ≥

limx↓a g(x)+δg,a(x−a) = g̃(x), where the second inequality follows from δf,a ≤ δg,a. Similarly,

we can show f(x) ≥ limx↑b f(x)+δf,b(x−b) ≥ limx↑b g(x)+δg,b(x−b) = g̃(x) for any x ∈ S and

x ≥ b. Therefore, we have h = max{f, g̃}, which is convex as both f and g̃ are convex.

The following lemma gives a characterization of a function’s convex envelope.

Lemma 4. Consider a function f : S 7→ R where S ⊆ R and its convex envelope f ∗. Suppose

that there exists an interval (a, b) ⊆ S such that

inf
x∈[c,d]

{
f(x)− f ∗(x)

}
> 0 ∀ [c, d] ⊂ (a, b).

Then

f ∗(x) =
b− x

b− a
lim
y↓a

f ∗(y) +
x− a

b− a
lim
y↑b

f ∗(y) ∀ x ∈ (a, b).
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Proof. To simplify the notation, define the linear function

l(x) =
b− x

b− a
lim
y↓a

f ∗(y) +
x− a

b− a
lim
y↑b

f ∗(y) ∀ x ∈ (a, b).

Assume for contradiction that there exists x0 ∈ (a, b) such that f ∗(x0) 6= l(x0). As f ∗ is

convex, we have f ∗(x) ≤ l(x) for any x ∈ (a, b) and hence f ∗(x0) < l(x0). Consider the

following two cases:

• Suppose that f(x) ≥ l(x) for any x ∈ (a, b). Define

f(x) =

{
f ∗(x) ∀ x ∈ S \ (a, b)

l(x) ∀ x ∈ (a, b).

Obviously, f ∗ ≤ f ≤ f and f ∗(x0) < l(x0) = f(x0). Lemma 3 shows f(x) is convex,

which contradicts that f ∗ is the convex envelope of f .

• Suppose that ∆ = sup{l(x)− f(x) : x ∈ (a, b)} > 0. Consider the function l(x)− f ∗(x).

Note that l(x)− f ∗(x) is concave in (a, b). The definition of l(x) implies limx↓a

{
l(x)−

f ∗(x)
}
= limx↑b

{
l(x) − f ∗(x)

}
= 0. As f ∗(x0) < l(x0) for some x0 ∈ (a, b), we have

l(x)− f ∗(x) > 0 for any x ∈ (a, b). Therefore, we can define

δa = lim
x↓a

l(x)− f ∗(x)

x− a
> 0 and δb = lim

x↑b

l(x)− f ∗(x)

x− b
< 0,

which correspond to the semi-derivatives of l(x)−f ∗(x) at a and b, respectively. Choose

a sufficiently large n > 1 such that ∆
nδa

+ ∆
−nδb

< b − a. For any x ∈ (a, a + ∆
nδa

), the

concavity of l(x)−f ∗(x) implies l(x)−f(x) ≤ l(x)−f ∗(x) < ∆
n
. Similarly, l(x)−f(x) ≤

l(x)− f ∗(x) < ∆
n
for any x ∈ (b− ∆

−nδb
, b). Hence, we obtain

sup

{
l(x)− f(x) : x ∈

[
a+

∆

nδa
, b−

∆

−nδb

]}
= ∆. (15)

Let

ǫ = inf

{
f(x)− f ∗(x) : x ∈

[
a+

∆

nδa
, b−

∆

−nδb

]}
> 0.

According to (15), there exists x∗ ∈ [a+ ∆
nδa

, b− ∆
−nδb

] such that l(x∗)− f(x∗) > ∆− ǫ.

Also note that f(x∗)− f ∗(x∗) ≥ ǫ. We have

l(x∗)−∆ > f(x∗)− ǫ ≥ f ∗(x∗).

Define

f(x) =

{
f ∗(x) ∀ x ∈ S \ (a, b)

max
{
l(x)−∆, f ∗(x)

}
∀ x ∈ (a, b).
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Lemma 3 yields that f(x) is convex. The definition of ∆ implies l(x)−∆ ≤ f(x) for any

x ∈ (a, b), and hence f ∗ ≤ f ≤ f . Also note that l(x∗)−∆ > f ∗(x∗), where x∗ ∈ (a, b).

Therefore, f(x∗) = l(x∗)−∆ > f ∗(x∗), which is a contradiction to that f ∗ is the convex

envelope of f .

We now show that any K-convex function over a bounded interval is K/2-approximate

convex.

Lemma 5. If f : (a, b) 7→ R is a K-convex function, then f(x) is a K/2-approximate convex

function.

Proof. Let f ∗ denote the convex envelope of f . It suffices to show that ‖f − f ∗‖∞ ≤ K.

First, we prove that infx∈(a,a+δ]{f(x) − f ∗(x)} = 0 for any δ ∈ (0, b − a). Assume for

contradiction that infx∈(a,a+δ]{f(x) − f ∗(x)} = ǫ > 0 for some δ ∈ (0, b − a). Define the

function

φ(x) =

{
ǫ+ ǫ

δ
(a− x) ≤ ǫ if x ∈ (a, a+ δ],

0 if x ∈ (a+ δ, b).

Obviously, φ is convex and so is f ∗+φ. The definition of ǫ implies f(x) ≥ f ∗(x)+ǫ for any x ∈

(a, a+δ], and hence f ∗ ≤ f ∗+φ ≤ f . As f ∗(x)+φ(x) > f ∗(x) for any x ∈ (a, a+δ), we obtain a

contradiction to that f ∗ is the convex envelope of f . As a result, infx∈(a,a+δ]{f(x)−f ∗(x)} = 0

for any δ ∈ (0, b − a). Similarly, we can show that infx∈[b−δ,b){f(x) − f ∗(x)} = 0 for any

δ ∈ (0, b− a).

Consider any x0 ∈ (a, b) such that f(x0) > f ∗(x0). Recall that infx∈(a,a+δ]{f(x)−f ∗(x)} =

infx∈[b−δ,b){f(x)−f ∗(x)} = 0 for any δ ∈ (0, b−a). There exist some a0 ∈ [a, x0] and b0 ∈ [x0, b]

such that

inf
x∈[a0−δ,a0+δ]∩(a,b)

{
f(x)− f ∗(x)

}
= inf

x∈[b0−δ,b0+δ]∩(a,b)

{
f(x)− f ∗(x)

}
= 0 ∀ δ > 0 (16)

and

inf
x∈[c,d]

{
f(x)− f ∗(x)

}
> 0 ∀ [c, d] ⊂ (a0, b0).

According to the definitions of a0 and b0, a0 = x0 implies

inf
x∈[x0−δ,x0)∩(a,b)

{
f(x)− f ∗(x)

}
= 0 ∀ δ > 0 (17)

and b0 = x0 implies

inf
x∈(x0,x0+δ]∩(a,b)

{
f(x)− f ∗(x)

}
= 0 ∀ δ > 0. (18)

Consider the following two cases:
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Case 1. Suppose that a0 = b0 = x0. Consider any arbitrary ǫ > 0. As f ∗ is continuous in

(a, b), there exists δǫ > 0 such that

|f ∗(x)− f ∗(x0)| <
ǫ

2
∀ x ∈ [x0 − δǫ, x0 + δǫ] ⊂ (a, b). (19)

(17) and (18) yield that there exist some aǫ ∈ [x0 − δǫ, x0) and bǫ ∈ (x0, x0 + δǫ] such that

f(aǫ)− f ∗(aǫ) <
ǫ

2
and f(bǫ)− f ∗(bǫ) <

ǫ

2
.

Combining with (19) and f ≥ f ∗, we have

|f(aǫ)− f ∗(x0)| < ǫ and |f(bǫ)− f ∗(x0)| < ǫ.

Applying the K-convexity of f , we obtain

f(x0) ≤
bǫ − x0

bǫ − aǫ
f(aǫ) +

x0 − aǫ
bǫ − aǫ

f(bǫ) +
x0 − aǫ
bǫ − aǫ

K

<
bǫ − x0

bǫ − aǫ

(
f ∗(x0) + ǫ

)
+

x0 − aǫ
bǫ − aǫ

(
f ∗(x0) + ǫ

)
+

x0 − aǫ
bǫ − aǫ

K < f ∗(x0) + ǫ+K.

The arbitrary of ǫ yields f(x0)− f ∗(x0) ≤ K.

Case 2. Suppose that a0 < b0. Lemma 4 shows that

f ∗(x0) =
b0 − x0

b0 − a0
lim
x↓a0

f ∗(x) +
x0 − a0
b0 − a0

lim
x↑b0

f ∗(x). (20)

Consider any ǫ > 0. There exists some δlim > 0 such that

∣∣∣∣f
∗(x)− lim

x↓a0
f ∗(x)

∣∣∣∣ <
ǫ

4
∀x ∈ [a0 − δlim, a0 + δlim] ∩ (a, b)

∣∣∣∣f
∗(x)− lim

x↑b0
f ∗(x)

∣∣∣∣ <
ǫ

4
∀x ∈ [b0 − δlim, b0 + δlim] ∩ (a, b).

(21)

Define

ǫλ =
ǫ/2∣∣limx↓a0 f

∗(x)− limx↑b0 f
∗(x)

∣∣+ 1
> 0 and δλ =

ǫλ(b0 − a0)

3 + 2ǫλ
> 0.

Next, we show that there exist aǫ and bǫ such that

a < aǫ < x0 < bǫ < b, |aǫ − a0| ≤ min{δlim, δλ}, |bǫ − b0| ≤ min{δlim, δλ},

f(aǫ)− f ∗(aǫ) <
ǫ

4
and f(bǫ)− f ∗(bǫ) <

ǫ

4
.

(22)

• Suppose that a0 < x0 < b0. Let δǫ = min{δlim, δλ,
x0−a0

2
, b0−x0

2
} > 0. According to (16),

there exist some aǫ ∈ [a0 − δǫ, a0 + δǫ]∩ (a, b) and bǫ ∈ [b0 − δǫ, b0 + δǫ]∩ (a, b) satisfying

(22).
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• Suppose that a0 = x0 < b0. Let δǫ = min{δlim, δλ,
b0−x0

2
} > 0. According to (16) and

(17), there exist some aǫ ∈ [a0− δǫ, a0)∩ (a, b) and bǫ ∈ [b0− δǫ, b0+ δǫ]∩ (a, b) satisfying

(22).

• Suppose that a0 < x0 = b0. Let δǫ = min{δlim, δλ,
x0−a0

2
} > 0. According to (16) and

(18), there exist some aǫ ∈ [a0− δǫ, a0+ δǫ]∩ (a, b) and bǫ ∈ (b0, b0+ δǫ]∩ (a, b) satisfying

(22).

Applying (21), (22) and f ≥ f ∗, we have
∣∣∣∣f(aǫ)− lim

x↓a0
f ∗(x)

∣∣∣∣ <
ǫ

2
and

∣∣∣∣f(bǫ)− lim
x↑b0

f ∗(x)

∣∣∣∣ <
ǫ

2
. (23)

As a < aǫ < x0 < bǫ < b, the K-convexity of f implies

f(x0) ≤
bǫ − x0

bǫ − aǫ
f(aǫ) +

x0 − aǫ
bǫ − aǫ

f(bǫ) +
x0 − aǫ
bǫ − aǫ

K

<
bǫ − x0

bǫ − aǫ

(
lim
x↓a0

f ∗(x) +
ǫ

2

)
+

x0 − aǫ
bǫ − aǫ

(
lim
x↑b0

f ∗(x) +
ǫ

2

)
+K

=
bǫ − x0

bǫ − aǫ
lim
x↓a0

f ∗(x) +
x0 − aǫ
bǫ − aǫ

lim
x↑b0

f ∗(x) +K +
ǫ

2

= f ∗(x0) +K +
ǫ

2
+

(
bǫ − x0

bǫ − aǫ
−

b0 − x0

b0 − a0

)
lim
x↓a0

f ∗(x) +

(
x0 − aǫ
bǫ − aǫ

−
x0 − a0
b0 − a0

)
lim
x↑b0

f ∗(x)

≤ f ∗(x0) +K +
ǫ

2
+

∣∣∣∣
bǫ − x0

bǫ − aǫ
−

b0 − x0

b0 − a0

∣∣∣∣
∣∣∣∣limx↓a0

f ∗(x)− lim
x↑b0

f ∗(x)

∣∣∣∣

where the second inequality and the second equality follow from (23) and (20), respectively.

Note that
b0 − δλ − x0

b0 − a0 + 2δλ
≤

bǫ − x0

bǫ − aǫ
≤

b0 + δλ − x0

b0 − a0 − 2δλ
.

Furthermore,

b0 − δλ − x0

b0 − a0 + 2δλ
=

b0 −
ǫλ(b0−a0)
3+2ǫλ

− x0

b0 − a0 + 2× ǫλ(b0−a0)
3+2ǫλ

=
(3 + 4ǫλ)(b0 − x0)− 2ǫλ(b0 − x0)− ǫλ(b0 − a0)

(3 + 4ǫλ)(b0 − a0)

≥
(3 + 4ǫλ)(b0 − x0)− 3ǫλ(b0 − x0)

(3 + 4ǫλ)(b0 − a0)
=

b0 − x0

b0 − a0
−

3

3 + 4ǫλ
ǫλ ≥

b0 − x0

b0 − a0
− ǫλ

b0 + δλ − x0

b0 − a0 − 2δλ
=

b0 +
ǫλ(b0−a0)
3+2ǫλ

− x0

b0 − a0 − 2× ǫλ(b0−a0)
3+2ǫλ

=
3(b0 − x0) + 2ǫλ(b0 − x0) + ǫλ(b0 − a0)

3(b0 − a0)

≤
3(b0 − x0) + 3ǫλ(b0 − a0)

3(b0 − a0)
=

b0 − x0

b0 − a0
+ ǫλ.

Therefore,
∣∣∣∣
bǫ − x0

bǫ − aǫ
−

b0 − x0

b0 − a0

∣∣∣∣
∣∣∣∣limx↓a0

f ∗(x)− lim
x↑b0

f ∗(x)

∣∣∣∣ ≤ ǫλ

∣∣∣∣limx↓a0
f ∗(x)− lim

x↑b0
f ∗(x)

∣∣∣∣

=
ǫ/2∣∣limx↓a0 f

∗(x)− limx↑b0 f
∗(x)

∣∣+ 1
×

∣∣∣∣limx↓a0
f ∗(x)− lim

x↑b0
f ∗(x)

∣∣∣∣ <
ǫ

2
,
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which yields f(x0) < f ∗(x0)+K+ ǫ. As this inequality holds for any arbitrary ǫ > 0, we have

f(x0)− f ∗(x0) ≤ K.

Finally, we can show Proposition 2, which states that any K-convex over R is K/2-

approximate convex.

Proof of Proposition 2. For any M ∈ Z
+, define f ∗

M
as the convex envelop of the function

f in (−M,+M). Consider any M1,M2 ∈ Z
+ and M1 ≤ M2. f ∗

M2

is convex in (−M1,M1)

and f ∗

M2

≤ f in (−M1,M1). As f ∗

M1

is the convex envelop of f in (−M1,M1), we have

f ∗

M2

(x) ≤ f ∗

M1

(x) for any x ∈ (−M1,M1). Therefore, for any given x, f ∗

M
(x) decreases in

M for any M ∈ Z
+ and M > |x|. Furthermore, given x, the proof of Lemma 5 shows that

f ∗

M
(x) ≥ f(x)−K for any M ∈ Z

+ and M > |x|.

As the sequence f ∗

M
(x) decreases in M and is bounded, we can define the function f : R 7→

R such that f(x) = limM→∞ f ∗

M
(x) for any x ∈ R. Note that f ∗

M
(x) ∈ [f(x) − K, f(x)] for

any M ∈ Z
+ and M > |x|, which yields f ≤ f and ‖f − f‖ ≤ K. Therefore, we can complete

the proof by establishing the convexity of f .

Consider any x1, x2 ∈ R and x = λx1 + (1 − λ)x2 where λ ∈ [0, 1]. For any M ∈ Z
+

and M > max{|x1|, |x2|, |x|}, the convexity of f ∗

M
implies f ∗

M
(x) ≤ λf ∗

M
(x1)+ (1−λ)f∗

M
(x2).

Taking the limit on both sides, we obtain

f(x) = lim
M→∞

f ∗

M
(x) ≤ λ lim

M→∞
f ∗

M
(x1) + (1− λ) lim

M→∞
f ∗

M
(x2) = λf(x1) + (1− λ)f(x2).

Proof of Proposition 3. As W (x) is K-approximate convex, there exists a convex function

w : R 7→ R such that ‖W − w‖∞ ≤ K. We define

b̄0 = b0, b̄j =
w(xj+1)− w(xj)

xj+1 − xj

for all j = 1, ...,m− 2, b̄m−1 = bm−1,

Ī0 = w(x1)− b̄0x1, Īj = w(xj)− b̄jxj for all j = 1, ...,m− 1, ζ = K.

(24)

It is sufficient to show that the solution in (24) satisfies the constraints (7)-(9).

Consider any j = 1, ...,m − 1. The fifth equation in (24) implies that w(xj) = Īj + b̄jxj.

According to the definition of {xj, Ij, bj}, W (xj) = Ij + bjxj. As ‖W − w‖∞ ≤ K, we have

|W (xj)− w(xj)| ≤ K = ζ, i.e., the solution in (24) satisfies the constraint (7).

The fifth equation in (24) also yields w(xj+1) = Īj+1 + b̄j+1xj+1 for any j = 0, 1, ...,m− 2.

When j = 0, the forth equation in (24) shows w(x1) = Ī0 + b̄0x1. For any j = 1, ...,m− 2,

Īj + b̄jxj+1 = Īj + b̄jxj + b̄j(xj+1 − xj) = w(xj) +
w(xj+1)− w(xj)

xj+1 − xj

(xj+1 − xj) = w(xj+1),

where the second inequality is obtained from the second and fifth equations in (24). Therefore,

the constraint (8) is also satisfied by the solution in (24).
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For any j = 1, ...,m− 3, as −∞ < xj < xj+1 < xj+2 < +∞, the convexity of w implies

w(xj+1) ≤
xj+2 − xj+1

xj+2 − xj

w(xj) +
xj+1 − xj

xj+2 − xj

w(xj+2)

(
(xj+2 − xj+1) + (xj+1 − xj)

)
w(xj+1) ≤ (xj+2 − xj+1)w(xj) + (xj+1 − xj)w(xj+2)

w(xj+1)− w(xj)

xj+1 − xj

≤
w(xj+2)− w(xj+1)

xj+2 − xj+1

. (25)

Hence, by the second equation in (24), the constraint (9) is satisfied for any j = 1, ...,m− 3.

Consider any x < x1. Similar to (25), the convexity of w yields

w(x1)− w(x)

x1 − x
≤

w(x2)− w(x1)

x2 − x1

= b̄1, i.e., w(x) ≥ w(x1)− b̄1(x1 − x).

The definition of {xj, Ij, bj} shows W (x) = I0 + b0x and W (x1) = I0 + b0x1, which imply

W (x) = W (x1)− b0(x1 − x). Therefore, w(x)−W (x) ≥ w(x1)−W (x1) + (b0 − b̄1)(x1 − x). If

b0 > b̄1, then w(x1)−W (x1)+ (b0− b̄1)(x1−x) > K for sufficiently small x, which contradicts

‖W − w‖∞ ≤ K. As a result, we have b̄0 = b0 ≤ b̄1, i.e., the constraint (9) is satisfied when

j = 0.

Similarly, for any x > xm−1, the convexity of w implies

w(x)− w(xm−1)

x− xm−1

≥
w(xm−1)− w(xm−2)

xm−1 − xm−2

= b̄m−2, i.e., w(x) ≥ w(xm−1) + b̄m−2(x− xm−1).

The piecewise linear property of W yields W (x) = W (xm1−1) + bm−1(x − xm1−1). Thus,

w(x) − W (x) ≥ w(xm−1) − W (xm−1) + (b̄m−2 − bm−1)(x − xm1−1). If b̄m−2 > bm−1, then

w(xm−1)−W (xm−1)+(b̄m−2−bm−1)(x−xm1−1) > K for sufficiently large x, which contradicts

‖W −w‖∞ ≤ K. Therefore, we obtain b̄m−2 ≤ bm−1 = b̄m−1, i.e., the constraint (9) is satisfied

when j = m− 2.

Proof of Lemma 1. (a) Consider xf ∈ argminx∈X f(x) and xg ∈ argminx∈X f(x). Then

min
x∈X

f(x) = f(xf ) ≤ f(xg) ≤ g(xg) +K = min
x∈X

g(x) +K,

where the first inequality follows from the optimality of xf and the second inequality follows

from |f(x) − g(x)| ≤ K. Symmetrically, we have minx∈X g(x) ≤ minx∈X f(x) + K, which

completes the proof of part (a).

(b) According to part (a), f(xf ) = minx∈X f(x) ≤ minx∈X g(x)+K. ‖f − g‖∞ ≤ K yields

f(xf ) ≥ g(xf )−K. Therefore, we obtain g(xf )−minx∈X g(x) ≤ 2K.

Proof of Lemma 2. First, consider a piecewise linear function R̄∗(d) defined as

R̄∗(d) = µi(d− di) +
i−1∑

j=0

µj(dj+1 − dj) + r0 +
1

2

N∑

j=0

(βj − µj)(dj+1 − dj)
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for any d ∈ [di, di+1] and i = 0, 1, ..., N . The definition of R̄(d) yields

R̄∗(d)− R̂(d) = (µi − βi)(d− di) +
i−1∑

j=0

(µj − βj)(dj+1 − dj) +
1

2

N∑

j=0

(βj − µj)(dj+1 − dj)

for any d ∈ [di, di+1] and i = 0, 1, ..., N . Note that µi ≤ βi and thus R̄∗(d) − R̂(d) is a

decreasing function over [d0, dN+1]. Therefore,

‖R̄∗ − R̂‖∞ = max
d∈[d0,dN+1]

|R̄∗(d)− R̂(d)| = max
{
|R̄∗(d0)− R̂(d0)|, |R̄

∗(dN+1)− R̂(dN+1)|
}

=
1

2

N∑

j=0

(βj − µj)(dj+1 − dj).

Consider R̄(d), which corresponds to an optimal solution to (11). As µi ≥ µi+1 for any

i = 0, 1, ...N − 1, R̄∗(d) corresponds to a feasible solution to (11). The optimality of R̄(d)

implies

max
i=0,...,N+1

|R̄(d)− ri| ≤ max
i=0,...,N+1

|R̄∗(d)− ri|.

The piecewise linear properties of both R̄∗(d) and R̄(d) yields

‖R̄∗−R̂‖∞ = max
i=0,...,N+1

|R̄∗(d)−ri| =
1

2

N∑

j=0

(βj−µj)(dj+1−dj) and ‖R̄−R̂‖∞ = max
i=0,...,N+1

|R̄(d)−ri|.

Hence, we obtain

‖R̄− R̂‖∞ ≤ ‖R̄∗ − R̂‖∞ =
1

2

N∑

j=0

(βj − µj)(dj+1 − dj).

Proof of Theorem 1. (i) Suppose that R(d) is Lipschitz continuous with the Lipschitz constant

LR. For i = 0, ..., N , define

d̂i =
ri − ri+1

2LR

+
di + di+1

2
and d̃i =

ri+1 − ri
2LR

+
di + di+1

2
.

Moreover, define

RL(d) =

{
−LR(d− di) + ri if d ∈ [di, d̂i], i = 0, ..., N,

LR(d− di+1) + ri+1 if d ∈ [d̂i, di+1], i = 0, ..., N.

and

RU(d) =

{
LR(d− di) + ri if d ∈ [di, d̃i], i = 0, ..., N,

−LR(d− di+1) + ri+1 if d ∈ [d̃i, di+1], i = 0, ..., N.

First, we prove that RL(d) and RU(d) are lower and upper bounds on the real revenue

function, respectively, i.e., RL(d) ≤ R(d) ≤ RU(d). We start with showing that RL(d) is a
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lower bound of R(d) by contradiction. Suppose there exists ν ∈ [di, di+1] such that R(ν) <

RL(ν). If ν ∈ [di, d̂i], then we have

R(di)−R(ν)

di − ν
=

ri −R(ν)

di − ν
<

ri −RL(ν)

di − ν
= −LR,

which contradicts to (12). If ν ∈ [d̂i, di+1], then we have

R(di+1)−R(ν)

di+1 − ν
=

ri+1 −R(ν)

di+1 − ν
>

ri+1 −RL(ν)

di+1 − ν
= LR,

which again contradicts to (12). Hence, RL(d) is a lower bound of R(d). The proof that RU(d)

is an upper bound is similar and thus, omitted.

We next show RL(d) ≤ R̂(d) ≤ RU(d) and then build an upper bound on ‖R̂(d)−R(d)‖∞.

By the definition of βi, R̂(d) can be rewritten as

R̂(d) = βi(d− di) + ri, for any d ∈ [di, di+1].

As R(d) is continuous with Lipschitz constant LR, the definition of βi yields −LR ≤ βi ≤ LR,

i = 0, 1, ..., N . Thus, one can readily prove that RL(d) ≤ R̂(d) ≤ RU(d). As a result, we have

‖R̂−R‖∞ ≤ sup
d∈[d0,dN+1]

max
{
R̂(d)−RL(d), RU(d)− R̂(d)

}

= max
i=0,...,N

{
sup

d∈[di,di+1]

{
R̂(d)−RL(d)

}
, sup
d∈[di,di+1]

{
RU(d)− R̂(d)

}}
.

For any i = 0, 1, ..., N and d ∈ [di, di+1], R̂(d) is a linear function and RL(d) is a piecewise

linear continuous function with breakpoints {di, d̂i, di+1}. As R̂(di) = RL(di) and R̂(di+1) =

RL(di+1),

sup
d∈[di,di+1]

{
R̂(d)−RL(d)

}
= R̂(d̂i)−RL(d̂i) = (βi + LR)(d̂i − di)

= (βi + LR)

(
ri − ri+1

2LR

+
di + di+1

2
− di

)
= (βi + LR)

(
−βi

di+1 − di
2LR

+
di+1 − di

2

)

=
di+1 − di

2
(βi + LR)

(
1−

βi

LR

)
=

di+1 − di
2

(
LR −

β2
i

LR

)
≤

LR

2
(di+1 − di).

Similarly,

sup
d∈[di,di+1]

{
RU(d)− R̂(d)

}
≤

LR

2
(di+1 − di).

Therefore,

‖R̂−R‖∞ ≤
LR

2
max

i=0,...,N
{di+1 − di}.

By Lemma 2, we have

‖R̄−R‖∞ ≤ ‖R̄− R̂‖∞ + ‖R̂−R‖∞ ≤
1

2

N∑

j=0

(βj − µj)(dj+1 − dj) +
LR

2
max

i=0,...,N
{di+1 − di}.

28



(ii) Now, we consider the case that R(d) is not only Lipschitz continuous with the Lipschitz

constant LR, but also quasi-concave. Define I = argmax{ri}, which represents the index with

the largest values among the realized points. For i = 0, ..., N , define

d̂i =

{
di+1 +

ri−ri+1

LR
if i = 0, ..., I − 1,

di +
ri−ri+1

LR
if i = I, ..., N,

and d̃i =

{
di +

ri+1−ri
LR

if i = 0, ..., I − 1,

di+1 +
ri+1−ri

LR
if i = I, ..., N.

Moreover, we define

RL(d) =





ri if d ∈ [di, d̂i], i = 0, ..., I − 1,

LR(d− di+1) + ri+1 if d ∈ [d̂i, di+1], i = 0, ..., I − 1,

−LR(d− di) + ri if d ∈ [di, d̂i], i = I, ..., N,

ri+1 if d ∈ [d̂i, di+1], i = I, ..., N.

and

RU(d) =





LR(d− di) + ri if d ∈ [di, d̃i], i = 0, ..., I − 1,

ri+1 if d ∈ [d̃i, di+1], i = 0, ..., I − 1,

ri if d ∈ [di, d̃i], i = I, ..., N,

−LR(d− di+1) + ri+1 if d ∈ [d̃i, di+1], i = I, ..., N.

Next, we prove that RL(d) and RU(d) are lower and upper bounds on the real revenue

function, i.e., RL(d) ≤ R(d) ≤ RU(d). We first show that RL(d) is a lower bound of R(d)

by contradiction. Suppose there exists ν ∈ [di, di+1] such that R(ν) < RL(ν). If ν ∈ [di, d̂i],

where i ≤ I − 1, then R(ν) − R(ri) < RL(ν) − R(ri) = 0, which contradicts to the fact that

R(d) is increasing over [d0, dI−1]. If ν ∈ [d̂i, di+1], where i ≤ I − 1, then, we have

R(di+1)−R(ν)

di+1 − ν
=

ri+1 −R(ν)

di+1 − ν
>

ri+1 −RL(ν)

di+1 − ν
= LR,

which contradicts to the fact that R(d) is Lipschitz continuous with Lipschitz constant LR.

Similarly, one can prove the case with ν ∈ [di, di+1], where i ≥ I, and prove that RU(d) ≥ R(d).

With the same logic, one can prove RL(d) ≤ R̂(d) ≤ RU(d). Similar to part (i), we obtain

‖R̂−R‖∞ ≤ max
i=0,...,N

{
sup

d∈[di,di+1]

{
R̂(d)−RL(d)

}
, sup
d∈[di,di+1]

{
RU(d)− R̂(d)

}}

= max
i=0,...,N

{
R̂(d̂i)−RL(d̂i), R

U(d̃i)− R̂(d̃i)
}
.

For any i = 0, ..., I − 1,

R̂(d̂i)−RL(d̂i) = βi(d̂i − di) = βi

(
di+1 +

ri − ri+1

LR

− di

)

= βi(di+1 − di)

(
1−

βi

LR

)
=

di+1 − di
LR

(
−

(
βi −

LR

2

)2

+
L2
R

4

)
≤

LR

4
(di+1 − di).
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Using a similar argument, we can also show that

R̂(d̂i)−RL(d̂i) ≤
LR

4
(di+1 − di) for any i = I, ..., N,

RU(d̃i)− R̂(d̃i) ≤
LR

4
(di+1 − di) for any i = 0, ..., N.

Consequently, we have

‖R̂−R‖∞ ≤
LR

4
max

i=0,...,N
{di+1 − di}

and hence

‖R̄−R‖∞ ≤ ‖R̄− R̂‖∞ + ‖R̂−R‖∞ ≤
1

2

N∑

j=0

(βj − µj)(dj+1 − dj) +
LR

4
max

i=0,...,N
{di+1 − di}.

(iii) When R(d) is concave, βi is decreasing in i. For i = 0, 1, ..., N , define RL(d) =

βi(d− di) + ri, d ∈ [di, di+1] and

d̃i =
ri − ri−1 + βi−2di−1 − βidi

βi−2 − βi

.

Moreover, define

RU(d) =





β1(d− d1) + r1 if d ∈ [d0, d1],

βi−2(d− di−1) + ri−1 if d ∈ [di−1, d̃i], i = 2, ..., N,

βi(d− di) + ri if d ∈ [d̃i, di], i = 1, 2, ..., N,
βN−1(d− dN) + rN if d ∈ [dN , dN+1].

Similar to parts (i) and (ii), we next prove that RL(d) and RU(d) are lower and upper bounds

on the real revenue function, respectively, i.e., RL(d) ≤ R(d) ≤ RU(d). We first prove that

RL(d) is a lower bound of R(d) by contradiction. Suppose there exists ν ∈ [di, di+1] such that

R(ν) < RL(ν). Then, we have

R(ν)−R(di)

ν − di
=

R(ν)− ri
ν − di

<
RL(ν)− ri
ν − di

= βi,

and

R(di+1)−R(ν)

di+1 − ν
=

ri+1 −R(ν)

di+1 − ν
>

ri+1 −RL(ν)

di+1 − ν
= βi.

Hence, R(ν)−R(di)
ν−di

< R(di+1)−R(ν)
di+1−ν

which contradicts to the concavity of R(d).

Now, we prove that RU(d) is an upper bound again by contradiction. Suppose there exists

ν ∈ [d0, dN+1] such that R(ν) > RU(ν). If ν ∈ [d0, d1], then one can readily prove that

R(d1)−R(ν)

d1 − ν
=

r1 −R(ν)

d1 − ν
<

r1 −RU(ν)

d1 − ν
= β1,

30



which contradicts to the concavity of R(d). The proofs for the cases ν ∈ [di, di+1], i = 1, ..., N ,

are similar and thus omitted.

Note that in this case, R̄(d) = R̂(d) = RL(d). Then, we have

‖R̄−R‖∞ ≤ ‖RU −RL‖∞ ≤ max
i=1,...,N

{(βi−1 − βi)(di+1 − di)}.

Hence, the result holds.

Proof of Theorem 2. Besides the result in Theorem 2, we also show in this proof that ‖Vt −

Wt‖∞ ≤
∑T−t

i=0 αiK for any t ∈ {1, ..., T}. Note that VT+1(xT+1) = WT+1(xT+1) = V̄T+1(xT+1)

and hence both results hold when t = T + 1. Suppose that ‖Vt+1 −Wt+1‖∞ ≤
∑T−t−1

i=0 αiK

and V̄t+1(xt+1) ≥ Vt+1(xt+1)− 2K
∑T−t−1

i=0 (i+ 1)αi for some t ∈ {1, ..., T}.

Consider any xt ∈ R. Define

(ȳt(xt), d̄t(xt)) ∈ arg max
yt≥xt,

dt∈[dt,dt]

{
R̄(dt)−ct(yt−xt)+E

[
−Ht(yt−atdt−bt)+αWt+1(yt−atdt−bt)

}
.

The induction assumption yields

V̄t(xt) = R(d̄t(xt))− ct(ȳt(xt)− xt)

+ E
[
−Ht(ȳt(xt)− atd̄t(xt)− bt) + αV̄t+1(ȳt(xt)− atd̄t(xt)− bt)

]

≥ R(d̄t(xt))− ct(ȳt(xt)− xt)− 2K
T−t−1∑

i=0

(i+ 1)αi+1

+ E
[
−Ht(ȳt(xt)− atd̄t(xt)− bt) + αVt+1(ȳt(xt)− atd̄t(xt)− bt)

]
.

(26)

For all yt ≥ xt and dt ∈ [dt, dt],

∣∣∣
{
R(dt)− ct(yt − xt) + E

[
−Ht(yt − atdt − bt) + αVt+1(yt − atdt − bt)

]}

−
{
R̄(dt)− ct(yt − xt) + E

[
−Ht(yt − atdt − bt) + αWt+1(yt − atdt − bt)

]}∣∣∣

≤
∣∣∣R(dt)− R̄(dt)

∣∣∣+
∣∣∣E
[
αVt+1(yt − atdt − bt)

]
− E

[
αWt+1(yt − atdt − bt)

]∣∣∣

≤
∣∣∣R(dt)− R̄(dt)

∣∣∣+ αE
[∣∣Vt+1(yt − atdt − bt)−Wt+1(yt − atdt − bt)

∣∣
]

= K + α
T−t−1∑

i=0

αiK =
T−t∑

i=0

αiK.

(27)

Applying Lemma 1 (a), we have |Vt(xt)−Wt(xt)| ≤
∑T−t

i=0 αiK, i.e., ‖Vt−Wt‖∞ ≤
∑T−t

i=0 αiK.

According to Lemma 1 (b), (27) yields

Vt(xt)− 2
T−t∑

i=0

αiK ≤ R(d̄t(xt))− ct(ȳt(xt)− xt)

+ E
[
−Ht(ȳt(xt)− atd̄t(xt)− bt) + αVt+1(ȳt(xt)− atd̄t(xt)− bt)

]
.

31



Combining with (26), we obtain

V̄t(xt) ≥ Vt(xt)− 2
T−t∑

i=0

αiK − 2K
T−t−1∑

i=0

(i+ 1)αi+1 = Vt(xt)− 2K
T−t∑

i=0

(i+ 1)αi.
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