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The understanding of the magnetovolume effect lacks explicit consideration of spin-
lattice coupling at the atomic level, despite abundant theoretical and experimental
studies throughout the years. This research gap is filled by the recently developed
spin-lattice dynamics technique implemented in this study, which investigates the
magnetovolume effect of isotropic body-centered-cubic (BCC) iron, a topic that has
previously been subject to macroscopic analysis only. This approach demonstrates
the magnetic anomaly followed by the volumetric changes associated with the effect,
each characterized by the corresponding field-induced inflection temperature. The
temperature of the heat capacity peaks is useful in determining the temperature for
retarding the atomic volume increase. Moreover, this work shows the correlation
between the effects of temperature and field strength in determining the equilibrium
atomic volume of a ferromagnetic material under a magnetic field. C© 2014 Author(s).
All article content, except where otherwise noted, is licensed under a Creative Com-
mons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4893469]

I. INTRODUCTION

The magnetovolume effect is the structural deformation induced by the change in magnetization
that results from the magnetic phase transition induced by an applied magnetic field. The change
in magnetization leads to numerous anomalous phenomena in the physical properties of the lattice
structure, especially in ferromagnetic materials, such as body-centered-cubic (BCC) iron.1–4 The
magnetovolume effect caused by magnetic fluctuation is strongest across the ferro/paramagnetic
(FM/PM) phase boundary, at which the abrupt change in magnetic order brings about drastic
changes in the thermal and elastic properties of Fe-Cr alloys.5 An example of this effect can be
found in quenched face-centered-cubic (FCC) Fe65Ni35, which has a nearly zero thermal expansion
coefficient in a certain temperature region.6 Materials with this property have dimensional stability
that is beneficial for applications such as magnetic shielding, precision instruments, and thermostats
in electric water heaters.

A primary concern when investigating the effect is the choice of an approach that models the
interaction between the spin and lattice subsystems. Macroscopic study of the magnetovolume effect
has been conducted for dozens of years and has mainly suggested the importance of the distance-
dependent exchange integral used to describe the coupling in material size determination. To list
a few results, Lee3 has stated the interrelation among the average magnetic moment, the volume,
the pressure, and the external magnetic field in a thermodynamic context, while Callen et al.7 have
deduced an anisotropic coupling relation between the spins and the external strain in response to the
direction of the external magnetic field. Shiga8 has proposed the distance dependence of the norm
of a spin, which indicates the spin-lattice coupling in magnetic materials. Experimental work has
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also been performed to observe the effect. Tanji9 has experimentally studied the derivative of the
exchange integral with respect to interatomic distance as the key to the anomalous volume change
caused by the magnetovolume effect. Oomi and Mōri10 have observed the effect of stress on the
magnetic properties, known as the reverse magnetovolume effect, yet discussion of the resulting
magnetic phase transition is lacking.

From a computational perspective, atomic simulation of the magnetovolume effect evaluates
macroscopic quantities based on the microscopic condition of the atoms. A notable example of such
a case was performed by Grossmann and Rancourt11 in two steps, with the lattice motion treated
in terms of molecular dynamics, and the presumably less-frequent spin motion was modelled using
a Monte Carlo technique. However, the direct coupling between the spin and lattice subsystems
cannot be considered in this formulation. Skubic et al.12 employed the model parameters from
density functional theory computations and introduced the damping parameters of electron and
lattice subsystems to achieve coupling to the spin subsystem. Wang et al.13 formulated an ab initio
scheme of incorporating spin and lattice coupling with low-energy modes in simulating multiferroic
materials. Ma, Woo and Dudarev (MWD)14, 15 developed the spin-lattice dynamics (SLD), which
mimics atomic behavior by treating the spin and lattice subsystems with equal weight by means of
the distance-dependent exchange integral. In this regard, a more realistic and intuitive account of
the magnetovolume effect is expected, together with a more reliable determination of the inflection
temperature.

The aim of this study is the adoption of the SLD technique for studying the magnetovolume
effect of isotropic BCC iron at elevated temperatures. We show that SLD can demonstrate both the
volume change associated with the magnetic properties.

To investigate the magnetovolume effect under stress-free conditions, spin-lattice dynamics is
adopted. The Hamiltonian of this approach is established, and the equations of motion relating to
this Hamiltonian are shown. The NPT ensemble is employed, in which the pressure is set to zero.
The field strength is varied between 0 T and 100 T, and the thermalization temperature is varied
between 300 K and 1,400 K. After thermal equilibrium is reached, the time averages of observables
such as the atomic magnetic moment, the spin-spin correlation functions and the atomic volume are
obtained to represent the ensemble averages in accordance with the ergodicity principle.

II. METHODOLOGY

A. Spin-lattice dynamics

Spin-lattice dynamics (SLD)14, 15 is an improvement of the conventional molecular dynamics
technique in solving the equations of motion because of its incorporation of spin degrees of freedom,
which are interrelated with the position and momentum degrees of freedom. Therefore, SLD is
suitable for simulations of ferromagnetic materials, in which the magnetic properties affect the
mechanical properties. The Hamiltonian of ferromagnetic iron used in SLD is shown as

H =
∑

i

p2
i

2mi
+ U ({Ri }) − 1

2

∑
i, j

ji j (Ri j )ei · e j + gμBHextS ·
∑

i

ei . (1)

In equation (1), mi is the mass of atom i , {pi } is the momentum space, {Ri } is the position space,
{ei } is the classical unit spin space, and U ({Ri }) is the total lattice potential. Additionally, ji j (Ri j ) is
the exchange integral attributed to the spin separation Ri j ,14 whose expression is

ji j (Ri j ) = j0(1 − |R|i j/Rc)3�(Rc − |R|i j ), (2)

where j0 = 904.90177 meV, Rc = 3.75 Å, and � is the Heaviside unit-step function. It can be
observed that ji j is a decreasing function of Ri j ; the value of the exchange integral drops with
interatomic distance during thermal expansion. Besides, S is the norm of a classical spin. The first
term on the right-hand side of equation (1) represents the kinetic Hamiltonian of the lattices. The
second term on the right-hand side refers to the lattice potential. The third term on the right-hand
side of equation (1) represents the Heisenberg exchange Hamiltonian. The energy attributable to an
external field is expressed as the last term on the right-hand side of equation (1), where Hext is the
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external magnetic field, g is the electronic g-factor, and μB is the Bohr magneton. Alternatively, this
term may be written as Eext = −Hext · ∑

i
Mi , where Mi = −gμBSi is the magnetic moment of an

atom that has the opposite direction from the classical spin vector Si .
The total lattice potential U ({Ri }) used in this study has the form

U ({Ri }) = UCDD({Ri }) −
(

−1

2

∑
i

ji j (Ri j )

)
, (3)

where UCDD({Ri }) is a magnetic potential known as the CDD potential with version number MP-CS3-
30,16, 17 and the ground-state magnetic energy (−1/2)

∑
i

ji j (Ri j ) is removed. The CDD potential

is derived from the embedded-atom method (EAM) that parametrizes the potential in terms of
interatomic distance, in the form

E =
N∑

i=1

F(ρi ) + 1

2

N∑
i=1,i �= j

V (Ri j ). (4)

Here, ρi is the local electronic density of atom i in the form

ρi =
N∑

i=1,i �= j

f (Ri j ). (5)

The embedding energy F(ρi ) is given by

F(ρ) = −A
√

ρ − B

ln 2

(
1 − √

ρ
)

ln(2 − ρ)�(1 − ρ). (6)

A and B in equation (6) are fitting parameters listed in Ref. 16. The first term is the non-magnetic d-
band energy and the second term is the ferromagnetic band energy. Then, the repulsive pair potential
V (r ) and pair density function f (r ) are both fifth-order knot functions in the form

V (r ) =
N V∑
n=1

Vn
(
r V

n − r
)5

e−λV

(
r V

n −r
)
�

(
r V

n − r
)
, (7)

f (r ) =
N f∑

n=1

fn
(
r f

n − r
)5

e−λ f

(
r f

n −r
)
�

(
r f

n − r
)
. (8)

Here, N V and N f are number of knot points used for the potential and density functions. The
coefficients Vn and fn , the positions of the knot functions r V

n and r f
n , λV and λ f are the fitting

parameters of the MP-CS3-30 parametrization, all of which are listed in Ref. 16.
The exchange integral used in this study is isotropic, such that the effect that arises from it has

no preference for any of the lattice axes. In short, the spin subsystem is connected to the lattice
subsystem by introducing the exchange integral, which varies with interatomic distance.

The phase-space trajectory of the SLD technique can be evaluated from equation (1) to be:

dRk

dt
= ∂ H

∂pk
= pk

mk
(9)

dpk

dt
= − ∂ H

∂Rk
= −∂UCDD({Ri })

∂Rk
+ 1

2

∂

∂Rk

∑
i, j

ji j (Ri j )(1 − ei · e j ) (10)

dei

dt
= 1

�
ei × gμBHeff

i (11)

The numerical solutions to the equations of motion rely on the recently developed integration
algorithm18 based on the Suzuki-Trotter decomposition.19–23

Both the lattice and spin thermostats in SLD are implemented using the Langevin thermostat24

and the fluctuation-dissipation theorem.25, 26 The implementation of the spin thermostat can be



087123-4 C. P. Chui and Y. Zhou AIP Advances 4, 087123 (2014)

FIG. 1. Temperature dependence of the atomic magnetic moment of isotropic BCC iron along the direction of the external
field, using (a) SLD and (b) pure SD, respectively. The field-independent Curie temperature of iron (TC = 1, 043 K) is marked.
The arrows indicate the inspected inflection points for respective field strengths in both SLD and SD cases. By comparing
them, it is evident that both the thermal expansion and spin-lattice coupling contribute to the agreement with the experimental
zero-field Curie point.

obtained from Ref. 14. The stress is handled in SLD by adopting the Berendsen barostat,27 such that
the fluctuation of the simulation box volume with temperature can be modeled.

B. Simulation steps

First, the CDD potential16 was chosen for the simulation. BCC iron bulks of 54,000 atoms with
spins were created at 0 K in dimensions of 30 × 30 × 30 unit cells. The lattice constant of BCC iron
in the ground state was set to 2.8665 Å. The bulks were exposed to an external magnetic field of a
given strength along the +z direction, followed by thermalization. One simulation box was subjected
to a fixed temperature and a fixed field strength. Both the lattice and spin subsystems rely on the
Langevin thermostat.24 The time step was 1 femtosecond (fs). The atomic motion was evaluated
using the Suzuki-Trotter decomposition.19–23 The cut-off distance RC for the spin interaction was set
to 3.75 Å so that the second-nearest-neighbor atoms could be included in the spin computations. To
mimic an infinite bulk, a periodic boundary condition28 was adopted on each face of the simulation
box.

The heat capacity at constant pressure P (zero in this case) is given by29

CP = dQeq

dT
, (12)

where Qeq is the heat absorbed at equilibrium volume at absolute temperature T . The thermal
expansion coefficient α at constant pressure P is given by30

α = 1

V

(
dV

dT

)
P

, (13)

where the temperature-dependent atomic volume V (T ) for BCC metals can be written as31

V (T ) = 1

2
[a(T )]3, (14)

where a(T ) is the temperature-dependent lattice constant at a certain field strength.

III. RESULTS

The change in the magnetization, which plays a key role in varying the atomic volume, is inves-
tigated first. Figure 1(a) shows the SLD-generated temperature dependence of the average magnetic
moment per atom, M , along the applied field direction to express the overall spin collinearity that
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characterizes the long-range magnetic order. In this graph, the atomic magnetic moment that charac-
terizes the magnetization of BCC iron decreases with increasing temperature for all field strengths.
However, a stronger field inhibits the decrease of the magnetic moment at higher temperatures (see
the trend beyond the Curie temperature of BCC iron, TC), leading to a finite field-induced magne-
tization. This simulation result is consistent with the experimental results that indicate long-range
ferromagnetic order beyond the Curie temperature in the presence of an external field.32 It should
be noted that zero magnetization should occur at some temperature far beyond the range shown in
Fig. 1(a).

The inflection point for the zero-field curves in Fig. 1(a) may be used to distinguish the
magnetic phase transition,33, 34 beyond which point the magnetization, or the long-range magnetic
order, vanishes. The inspected inflection points for the field-induced magnetization are located as
follows: 1,000 K at 0 T, 1,025 K at 10 T, 1,050 K at 50 T, 1,100 K at 100 T, indicating the increase
in the inflection temperature with increasing external field.

As a comparison to the SLD results, the temperature dependence of the magnetization produced
by the pure spin-dynamics (SD) simulation is plotted in Fig. 1(b). The pure spin-dynamics simulation
was undertaken by fixing the ground state lattice constant at 2.8665 Å and by neglecting the
contributions of the lattice potential term U ({Ri }) in Eqs. (1) and (10), so that the effect of lattice
expansion was ignored. In Fig. 1(b), the inflection points inspected from the pure-spin system under
0 T, 10 T, 50 T, and 100 T are about 1,100 K, 1,125 K, 1,155 K, and 1,180 K respectively, which are
higher than the spin-lattice coupled counterparts in Fig. 1(a). In particular, the zero-field inflection
point in the pure-spin system (1,100 K) is higher than the well-known experimental result of 1,043 K.
Without increasing the lattice separation during the increase in temperature, the exchange integral
ji j (Ri j ) which is a decreasing function would maintain at a larger value than that with thermal
expansion, promoting spin alignment. In this case, a higher temperature is required to disrupt
the spin alignment more severely, thereby returning a higher inflection point. The comparison
thus demonstrates that the lattice component should contribute to the closeness of the zero-field
inflection point with the experimental value of 1,043 K. In other words, volumetric variation is vital
for modelling the inflection points of magnetization, at least for the zero-field condition.

An external field not only varies the average magnetization but also changes the temperature
dependence of the spin-spin correlation functions 〈ei · e j 〉 that characterize the short-range magnetic
order.35 The temperature dependence of the spin-spin correlation functions due to the first, second,
and third nearest neighbors are depicted in Fig. 2(a) to 2(c), respectively. The Curie point of zero-
field BCC iron (1,043 K) is marked, and the figure also shows the existence of the short-range order
(SRO) in the presence of an external field beyond the Curie point. All three plots exhibit similar
inflection points by inspection: 1,000 K for 0 T, 1,030 K for 10 T, 1,050 K for 50 T, and 1,100 K for
100 T. Accordingly, the spin-spin correlation functions exhibit similar temperature dependence to
that of the average magnetization in Fig. 1(a), indicating the consistency between the long-range and
short-range magnetic order in the expression of spin collinearity. The short-range order that exists
under strong thermal agitation accounts for the convergence of 〈ei · e j 〉 to a non-zero value beyond
the Curie point for all fields that is seen in this work, which has been confirmed experimentally
in ferromagnetic materials.36 The similarity between the second-nearest neighbor and third-nearest
neighbor correlation functions results from the computational model that just considers a cut-off
distance of the exchange integral up to the second-nearest neighbors.14

In addition to macroscopic magnetization, the heat capacity is another indicator of the magnetic
order; it reaches its maximum at the onset of disorder of spins. The heat capacity is obtained by
equation (12) after the atomic energy has been calculated. Figure 3 shows the heat capacity of
isotropic BCC iron under stress-free conditions and under various field strengths ranging from 0 T
to 100 T. The temperature of the heat capacity peaks increases as the applied field increases, yet
the peak values of the heat capacity appear to be suppressed by a stronger field. From Fig. 3, the
anomaly temperatures determined from the abrupt changes in heat capacity near 1,000 K at 0 T,
1,010 K at 10 T, 1,040 K at 50 T, and 1,065 K at 100 T. When these values are compared with
those obtained from the inflection temperatures in Figs. 1 and 2, it is clear that the anomaly tem-
perature in the heat capacity curve (see Fig. 3) can also represent the temperature of magnetic order
stabilization.
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FIG. 2. Spin-spin correlation function of BCC Fe within (a) the first nearest neighbors (1nn), (b) the second nearest neighbors
(2nn), and (c) the third nearest neighbors (3nn) as a function of temperature. The results for all fields exhibit similar anomaly
temperatures to the inflection points seen in the average magnetization data. The Curie point TC is marked in each sub-figure.
The short-range order (SRO) beyond the Curie point is the result of the reduction in the long-range order in this temperature
range. The insets in each sub-figure emphasize the increase in the inspected inflection points with the applied magnetic field.

FIG. 3. Heat capacity at zero pressure at elevated temperatures and magnetic-field strengths, showing the increase in the
anomaly temperature. The Curie point TC is marked. The inset shows the temperature region where the phase transition takes
place according to the external magnetic field.

The introduction of a distance-dependent exchange integral to the Hamiltonian of ferromag-
netic iron implies a change in atomic volume caused by a variation in magnetic properties. Fig. 4
demonstrates this relation by plotting the atomic volume Vatom against the absolute temperature for
a number of external field strengths. It is shown that the atomic volume exhibits a generally linear
relation with temperature, with an extrapolated offset of approximately 11.77 Å3 at zero temperature,
corresponding to the same ground-state atomic volume for all fields simulated in this study. The
volumetric anomaly for the zero-field curve occurs in a similar temperature region as in the atomic
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FIG. 4. Temperature dependence of the atomic volume of isotropic BCC iron under various magnetic fields, with a ground-
state atomic volume of 11.77 Å3 extrapolated from the simulated data points. When these data are compared to the experimental
results of Ref. 37, it can be seen that the SLD results can reproduce the anomaly demonstrated in the experiment shows. The
Curie point TC is marked. The inset highlights the volumetric anomaly due to an external magnetic field around the critical
region.

FIG. 5. Thermal expansion coefficients of isotropic BCC iron as a function of temperature under various applied magnetic
fields, indicating the shift of the anomaly temperature towards higher values. The coefficients derived from the data in
Ref. 37 are also shown for comparison. The fitted data seem to deviate from the Curie point TC because of the limited number
of data points. The inset gives a clearer view of the anomaly shift.

volume curve derived from the zero-field lattice constants of BCC iron measured by Ridley and
Stuart.37 In addition, the offset agrees with the ground-state atomic volume obtained from ab initio
calculations by Friák et al.38 and Ekman et al.39

Two features can be observed in Fig. 4. First, the simulated magnetovolume effect seems
to be limited, in the sense that the simulated volumetric anomaly is less pronounced than in the
experimental results, which might be caused by the stiff nature of the adopted interatomic potential.
Magnetic potentials of this kind focuses on reproducing the anomaly temperature, rather than
the trend after the anomaly. Second, the inhibited increase in the simulated atomic volume with
increasing field strength can be more clearly observed in Fig. 4 near the critical region of BCC iron
(near 1,043 K), which can be attributed to the SLD technique, which relates magnetic properties to
volumetric properties.

Alternatively, the temperature dependence of the thermal expansion coefficient α, which can be
derived from the atomic volume data used in Fig. 4, is plotted in Fig. 5. This quantity is evaluated
according to equation (13) after the equilibrium atomic volume has been computed by equation (14).
Since the experimental atomic volume remains roughly unchanged just after reaching the anomaly
(see the flat portion in Fig. 4), the resulting thermal expansion coefficient returns a rather small value
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compared to the simulated SLD results. On the other hand, the experimental thermal expansion
coefficients were derived from the zero-field lattice constants recorded in Ref. 37 for comparison. It
can be seen that the simulated zero-field α at 300 K returns a value of 35 × 10−6 K−1, similar to that
derived according to Ref. 37. In this graph, a stronger field suppresses the rising trend of the thermal
expansion coefficient and increases the values of the anomaly temperature located at approximately
950 K for 0 T, 1,000 K for 10 T, 1,025 K for 50 T, and 1,040 K for 100 T. These values generally
coincide with those obtained from Figs. 1(a) and 2. In fact, the peak of each curve in Fig. 5 indicates
the magnetic anomaly temperature under a certain applied field, and these values are consistent with
the inflection temperatures in Figs. 1(a) and 2 and the anomaly temperatures in Fig. 3.

IV. DISCUSSION

This study has demonstrated the atomic volume anomaly associated with the magnetic properties
of BCC iron using the spin-lattice dynamics technique. The implications of the results are discussed
in detail below.

The success of the lattice potential is attributed to its inclusion of the directional spin degrees
of freedom, which is able to address the thermal disorder of magnetization and the interaction
between spin waves and lattice vibrations.14 Also, the adopted potential has undergone checking
of the third-order elastic constants,16 adding its credibility of describing thermal expansion. The
closeness of the present calculations to the experimental values can be regarded as a demonstration
of the applicability of this simulation technique in handling thermodynamics of BCC iron. Besides,
the success of describing the magnetization is attributed to the employed exchange integral, which
is parametrized by fitting two sets of independent ab initio data,40, 41 considering up to 4-nearest-
neighbor (4nn) interactions. Even though the adopted exchange integral is a computationally pairwise
one, it has absorbed the effect due to more distant atoms.

In the same way, the agreement between the calculation and the experimental data should
result from the chosen interatomic potential and exchange interaction used in the Hamiltonian in
equation (1). First, the adopted lattice potential is a practical treatment of the possible anharmonicity
of BCC iron during thermal expansion, an issue worried about by the radiation damage community.
The major aim of this potential is the reproduction the experimental bulk properties of BCC iron,
including the lattice constant and elastic constants.17 Second, according to the authors of the spin-
lattice dynamics technique,14 the data used for fitting the exchange integral are obtained from ab
initio density functional theory (DFT) in the local spin density approximation (LSDA), together with
the tight-binding linear-muffin-tin-orbital (TB-LMTO) method in the atomic sphere approximation
(ASA).40–42 The difference between the method by Morán et al. and that by Sabiryanov et al. is that
the former uses the frozen-magnon method, and that the latter uses scattering matrices and Green’s
function. In view of the methods of determining the lattice potential and the exchange integral, both
empirical and theoretical aspects have been considered in the foregoing simulations.

The inflection points in Figs. 1 and 2 can be treated as the stabilizing points of decreasing
magnetization. Because the interatomic distance is related to the magnetic properties of ferromagnetic
materials, the inflection temperature of the magnetization should correspond to the retardation point
of the increase in atomic volume with further temperature increase.

The temperature dependence of the heat capacity shown in Fig. 3 can be explained as follows. It
is known from the thermodynamic relation that CP = T ( ∂S

∂T )P , where S is the entropy related to the
spin-lattice-coupled phase space. Accordingly, the peak of the heat capacity occurs at the point of the
largest change in entropy with respect to temperature. The conclusion that an external field delays
the appearance of the largest entropy, i.e., the lowest magnetic order, to a higher temperature can
be deduced. Additionally, the reduction of the peak CP value with an applied field results from the
enhancement in the maintenance of magnetic order caused by the field and hence from the reduction
in the amount of heat absorbed, which disrupts the spin system.

From Figs. 1–3, it can be seen that the inflection temperature that characterizes the magnetic
phase transition is an important factor that reflects the response of ferromagnetic iron to an external
field during the course of thermal expansion.
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The findings concerning both the atomic volume (Fig. 4) and the thermal expansion coefficient
(Fig. 5) suggest that an external magnetic field suppresses thermal expansion because of the phonon-
phonon interaction resulting from the anharmonicity of the interatomic potential.43 The discrepancy
between the simulated and experimental α in Fig. 5, especially beyond the critical region, most
likely arises because the adopted form of the magnetic potential fails to fully describe the features
of the order parameter beyond the inflection point.

It can be inferred that a magnetic effect should be responsible for the trends of Vatom and α

because Figs. 1 to 5 display anomalies at approximately the same temperatures. The success of
modelling these phenomena is attributed to the SLD simulation approach, which links both lattice
and spin degrees of freedom.

Figs. 4 and 5 illustrate the compromise between temperature and the external field in the
magnetovolume effect at the microscopic level, which can be explained by using Figs. 1 and 2
together with the Hamiltonian in equation (1). First, the atoms gain kinetic energy during thermal
agitation, leading to the increase in the kinetic Hamiltonian. Simultaneously, the short-range spin
alignment is reinforced by increasing the magnetic field strength such that the spin-spin correlation
function 〈ei · e j 〉 approaches its maximum value of 1. The increase in spin-spin correlation enforces
the short-range magnetic order, thereby lowering the Heisenberg exchange Hamiltonian in the third
term of equation (1). However, the presence of an external field preserves the long-range magnetic
order and increases the average magnetization, leading to a decrease in the Hamiltonian component
that is contributed by the external field. In this manner, the total Hamiltonian of the spin subsystem in
equation (1) is reduced. As a result, the restoring force acting on the atoms decreases in magnitude,
followed by a shortening of the interatomic distance Ri j , which leads to bulk shrinkage in an
external field. This shortened interatomic distance enhances the exchange coupling ji j due to its
decreasing nature, which further lowers the Heisenberg exchange Hamiltonian in the third term of
equation (1). The bulk continues to shrink because of the decreasing total Hamiltonian until the
kinetic Hamiltonian that is responsible for thermal expansion can no longer compensate for the
magnetic shrinkage.

An experiment regarding the magnetovolume effect in ferromagnetic materials has been ex-
plained in terms of the disappearance of the magnetic domains beyond the Curie temperature,44

accompanied by a prominent change in volume. Because a typical magnetic domain of ferromag-
netic iron has a dimension on the order of 1 μm to 100 μm, much larger than the simulation box
dimension used in this work (approximately 8.5 nm), the magnetovolume effect at the atomic level
that is demonstrated in this study might be the underlying mechanism at larger scales.

V. CONCLUSION

Magnetovolume effect can be demonstrated by the recent simulation approach of spin-lattice
dynamics (SLD), even though it appears limited due to the stiff interatomic potential used in this
work. Firstly, the magnetic anomaly, reflected by the inflection temperature, can be identified through
the Hamiltonian used in SLD, which has incorporated spin degrees of freedom in addition to those for
position and momentum. Secondly, it is realized from the various results that the magnetic anomaly
corresponds to the volumetric anomaly at the corresponding anomaly temperature for a given field,
implying that SLD is able to demonstrate the phenomenon of the magnetovolume effect arising
from variation of magnetic properties. Besides, it is the compromise between thermal expansion and
magnetic shrinkage that is responsible for the magneto-volume effect in thermal equilibrium.

ACKNOWLEDGMENTS

C. P. C. wishes to thank the Hong Kong Polytechnic University for providing CUDA computing
servers.
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