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The ever-more-capable smart mobile phone gave birth to a novel sensing paradigm, participatory sensing. In the application
environment of mobile participatory sensing networks, mobile equipment is usually weakly connected. Due to uncertainty of
connection,mobile nodes sometimes need encounter opportunities to accomplish data communication and transmission.However,
the participants’ reluctance would diminish their enthusiasm if there is no incentivemechanism. To address this nontrivial issue, we
propose reputation-based incentive schemes to motivate participants to disseminate reliable data in participatory sensing system,
namedRIDD,whileminimizing incentive cost formaintaining sufficient number of reliable participants.When an intended receiver
receives the data packet from a participant, the receiver authorizes the participant by an acknowledgment message within an
encryption code automatically generated by the data packet, which serves as a proof of successful data delivery. RIDD evaluates
participants using reputation degree calculated according to the encryption code, encouraging reliable participants to keep being
interested in the participatory service with rewards. We conduct simulations in different scenarios. The results show that RIDD
remarkably increases the winning probability of participants who disseminate accurate data and reduces the cost for retaining
sufficient number of reliable participants.

1. Introduction

Smart phones are penetrating human life and over 1 billion
people make use of them globally. With the high process-
ing power, sophisticated embedded sensors, larger storage
support, and full networking capability, the mobile phones
promise to support services like information sharing, mobile
social networking, environmental detection, and trafficmon-
itoring by integrating ubiquitous sensing, large-scale data
collection, and cloud computing. These are the advantages
that gave birth to a novel and exiting sensing paradigm,
participatory sensing [1, 2]. Several universities and institutes
have done relevant research in this area and a plethora of
exciting participatory sensing applications have emerged in
recent years. PEIR [3] is a participatory sensing application
which tries to estimate the environment impact to their action
based on their location information provided by mobile
phone. CarTel [4] is a vehicle participatory sensing system
designed to collect, process, deliver, and visualize traffic data

from vehicles. Bubble-Sensing [5] is a new sensor network
abstraction that allows mobile phones users to create a
binding between tasks (e.g., take a photo or sample audio
every hour indefinitely) and the physical world at locations of
interest, which remains active for a duration set by the user.

The mobile nodes communicate with each other via
cellular base stations in the traditional cell networks. With
the increasing demand for faster data connectivity, different
wireless technologies have been deployed in the last decade,
creating a heterogeneous wireless environment. Suchwireless
diversity is mainly composed of 2G/3G/4G cellular base
stations, IEEE 802.11 hotspots, and Community Networks
[6]. Mobile participatory sensing network is often created for
a local community in which the participants have frequent
interactions. Smart phones can communicate with each other
and exchange sensing data via their short range radios
(e.g., WiFi, Bluetooth, Zigbee, andWiFi-direct). Such mobile
device-to-device data transmission can increase network per-
formance and reduce communication cost for both service
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providers and individual users. A crucial issue is how source
nodes choose forwarding participants. The goal is to choose
a participant which delivers a message to destination with
high probability. Except for that goal, reliable data delivery is
also very important in the realistic application environment.
However, participants will eventually lose enthusiasm to
remain active in participatory sensing applications without
being fairly rewarded. Namely, participants may drop out
unless the reward is greater than their expectation. Further-
more, there are some malicious participants who will dis-
seminate bogus sensing data when the realistic participatory
sensing networks are deployed. Malicious participants may
supplant normal ones and it may be worse when they collude
with each other. In such circumstances, normal participants
drop out and malicious ones will control the system without
hesitation. To fill this gap, we design an incentive mechanism
to motivate participants to disseminate reliable sensory data.

Within the scope of this paper, we propose the reputation-
based incentives for data dissemination (RIDD) to categorize
and motivate participants, while minimizing incentive cost
for maintaining sufficient normal participants which always
disseminate reliable sensing data.

RIDD first analyzes the disseminated data to evaluate the
trustworthiness of participants using accumulated reputation
degree. Then a multidimensional reverse auction will be
performed by RIDD and reputable participants who bid
lower price will win the reward. Furthermore, RIDD will
adjust each participant’s bid price and increase winning
probability of loser in the next auction round according to
their reputation level.

The following is a list of our main contributions.

(i) We establish reputation model to evaluate the trust-
worthiness of participants by reputation degree. The
reputation degree is calculated according to reliability
of disseminating data. High reputation degree reflects
accumulation of good historical participations and
vice versa.

(ii) We design reputation-based incentive scheme (RIS)
for data dissemination in mobile participatory sens-
ing networks. RIS can remarkably decrease incentive
cost for maintaining sufficient participants through
multidimensional reverse auction where bid price
and reputation degree are both considered. Virtual
coupon is introduced in RIS in order to increase
winning probability of the reputable participants in
the next auction round.

(iii) We design data dissemination algorithms based on
RIS, named RIDD. RIDD is an efficient data dis-
semination algorithm to encourage mobile nodes
to continuously participate in data dissemination
activities and provide reliable data messages with low
transmission cost and high delivery ratio.

The remainder of this paper is organized as follows.
In Section 2, related works about data dissemination algo-
rithm, reputationmodel, and incentive scheme are illustrated.
Section 3 gives details of RIDD. In Section 4, RIDD is

evaluated in various simulations. Finally, we conclude this
paper in Section 5.

2. Related Work

2.1. Data Dissemination in Mobile Participatory Sensing
Networks. Data dissemination in the mobile participatory
sensing networks has opportunistic and community charac-
teristics. The mobile nodes transmit data messages by the
store-carry-forward way. The mobile node utilizes commu-
nication opportunities obtained from node movement to
relay packets. Such data dissemination schemes are pro-
posed in social opportunistic networks applications. The
data dissemination in PeopleNet [7] is based on epidemic
dissemination. A contact aware duplication algorithm [8]
is proposed for data sharing in interconnectivity mobile
network. In [9], the scheme is proposed for information
sharing among people onboard vehicles. However, all of
these dissemination schemes assume nodal cooperation in
opportunistic networks.

Selfishness of mobile nodes has been investigated in the
context of mobile ad hoc networks. Their ultimate goal is
to stimulate nodes to help by forwarding packets for others.
However, these incentive approaches are not directly applica-
ble in DTNs. In [10–13], these schemes have reputation-based
or credit-based incentive schemes. In all of these scenarios,
receivers are beneficiary and paid for data delivery services
in one way or another. Clearly, they are different from the
participatory sensing data dissemination application studied
in this work, where individual nodes can be data providers
and push data packets to a set of receivers. All these schemes
cannot preserve the reliability of the data message and
prevent the malicious behaviors of the participants.

In [14], TB-SnW is a data dissemination algorithm
designed based on trust management in delay tolerant net-
works (DTNs) that suffer from black hole attacks, which
solves the issue that malicious nodes discard the data packet
but not the integrity and security of the transmitted data.
RCAR [15] is a reputation-based approach to tolerate misbe-
havingCarriers inDTNs, and there is no global agreed notion
of reputation. In [16], if a relay node fails to show successful
relay proofs, it is excluded from future communication.
However, the permanent penalty on selfishness leads to the
participants reluctant to join the participatory service.

An incentive mechanism based on being self-interest-
driven (SID) is presented in [17], where cooperation between
selfish nodes for ad dissemination in autonomous mobile
social networks is stimulated. It provides virtual checks
schemes to reward the mobile nodes in an autonomous
mobile social network. We will compare SID with RIDD in
Section 4.

2.2. Incentive Scheme. In order to stimulate the mobile nodes
to provide reliable data dissemination service, the incentive
scheme is designed in our data dissemination algorithm.
Generally, incentive schemes can be classified in to two cat-
egories: Extrinsic Incentive and Intrinsic Incentive. Extrinsic
Incentive involves financial rewards [18, 19] and reputation
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[15]. Reversely, Intrinsic Incentive confines to fun interest
[17], self-improvement, self-expression, and charity.

What we consider as the most relevant work is incentive
mechanism of financial rewards. In this way, the active and
well-behaved nodes can obtain some remuneration for their
participation [20]. The mechanism of distinguishing services
mainly provides different level services to sensors according
to their behavior [21]. The mechanism, by its very nature,
offers more resources and services to incentive reputable
nodes.

Reverse auction is a special form of offering rewards. In
a general auction, buyers become bidders and the seller is
an auctioneer. By comparison, in a reverse auction there is
a single buyer that becomes an auctioneer while many sellers
become bidders. In terms of bidding sides, auctions can also
be classified as single or double ones. In a single auction,
only one side of participants can bid. On the other hand, in a
double auction, both sides of participants can bid.

All abovementioned auction types use bids that comprise
only price, so we call it one-dimensional reverse auction. In
contrast, a multidimensional reverse auction allows bidders
to bid on various attributes beyond the price. Since the
auctioneer selects winners based on all bidding attributes, the
overall utility of a bid should be computed following various
utility functions. General procedures for multidimensional
auctions in e-markets have been described in [22].

Recent studies in [19] have proposed amotivation system,
named the reverse auction based dynamic price incentive
mechanism with virtual participation credit (RADP-VPC).

To the best of our knowledge, few studies address incen-
tive mechanisms with multidimensional reverse auction in
participatory sensing systemwell. RIS is the reputation-based
incentive systemwhere amultidimensional reverse auction is
introduced with considering participants’ reputation.

2.3. Reputation Model. Reputation model is the measure
of weight quality of the data services, which have been
used in ad hoc wireless networks [23–26]. In [23, 24],
reputationmodel based on game theory attempted to address
the selfish routing problem in such networks. In [25, 26],
Bayesian analysis is used to formulate a similar problem and
the resulting reputation models are shown to counter any
misbehaving nodes. Bayesian reputation models are quite
flexible and can be adaptedwith relative ease in different types
of applications and environments [27, 28]. The reputation
frame work proposed in [29] makes use of Beta reputation
[27] for associating a reputation score with each sensor node
in a traditional embedded wireless sensor network. However,
it takes a less aggressive approach in penalizing participants
that contribute corrupted data.

To the best of our knowledge, a few research works
are conducted on reputation in mobile participatory sensing
networks. Huang et al. in [30] implements a noisemonitoring
system to identify corrupted noise data. However, the system
only focuses on the sensing data provided by participants in
currentmonitoring applicationwithout considering accumu-
lated reputation of participants. Haofan et al. proposes using
reputation management to classify the gathered data and

provide useful information for campaign organizers and data
analysts to facilitate their decisions [18]. However, the author
just provides a simple reputation method and cannot adapt
to the changeable environment when participatory sensing
system deploys in the real world.

All abovementioned reputation models are not used
in the data dissemination service in mobile participatory
sensing networks and are not combined with the incentive
schemes to measure the integrity and security of the deliv-
ering data. In our algorithm, reputation model is established
to weigh the reliability of participants and provide evidence
to the incentive scheme which gives rewards to recruit
more reputable participants to finish the data dissemination
service.

3. Reputation-Based Incentive Mechanism

In this section, we propose the reputation-based incentives
for data dissemination (RIDD) in the context of mobile
participatory sensing systems.

3.1. System Overview. A mobile participatory sensing net-
work is a mixture of an opportunistic network and a central-
ized infrastructure (as shown in Figure 1). The opportunistic
network consists of a set of intermittently connected mobile
nodes. The data exchanged in this scenario is assumed to
be of high magnitude, and data transmission can only occur
between mobile nodes by short range communication dur-
ing the contact opportunity. The centralized infrastructure
consists of a number of wireless access points (APs) and a
backbone connecting the APs. Mobile nodes (carrying smart
devices) can only access the network when they are walking
into the transmission range of any AP.The centralized server
is merely responsible for executing the reputation-based
incentive scheme (RIS), only exchanging control messages
with mobile nodes. Each mobile node can act as a sensing
data provider, a participant to disseminate the sensing data,
or a data receiver. The mobile nodes can play different roles
or act those roles simultaneously. A sensing data provider
senses the data from his environment according to what
the system desires. The participant is the mobile node who
applies for participating in the data dissemination service.
The participant obtains data from the provider and then
transforms the datamessage to the data receiver or to the next
mobile nodes.

The mixture network model enhances traditional oppor-
tunistic networks with the centralized infrastructure which
takes good advantage of existing AP assets but does not
burden current network. The control message is very tiny
compared with the data message, so the transmission over-
head of the control message can be negligible. The APs are
deployed according to the density of the mobile nodes. For
example, in the campus scenario, each room in the teaching
buildings and library deploys at least an AP router.Therefore,
the system model can avoid the hotspot problem.

The RIS server provides the services on reputation calcu-
lation and the incentivemechanism execution.TheRIS server
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Figure 1: Data dissemination model based on RIS.

transmits only control messages but not data messages. The
data messages are delivered by the participatory nodes.

3.2. Reputation-Based Incentive Schemes. In the data dissem-
ination systems, the reliable data dissemination is vital to
the quality of service. The schemes should be designed to
preserve the integrity and reliability of the data message. In
the proposed system, the data message is transferred between
the participants and the receivers. If the participant corrupts
the data message or discards the data message, only to cheat
the system rewards, the RIS server could not detect the
malicious behaviors of the participants.

3.2.1. The Framework of RIS. In order to tackle issue of
malicious behaviors of participants, the encryption code gen-
eration scheme is proposed. When the participant transmits
the data message to the receiver node, the receiver node will
give feedback by an ack message to the participants.

The format of the ack message is ack<copy id, data
id, digital signature, encryption code>. Digital signature is
generated by the receiver node, which is the identification
of the mobile node. This metric is used to estimate the data
discarding behavior of the participant. If the participant really
finished a data transmission, it can get the digital signature of
the receiver.Encryption code is generated by the data provider.
The encryption code can be a hash code of the data, which
is uniquely represented by the original data. If the data have
been distorted or corrupted, the encryption code will change.
In the proposed system, the RIS server is authorized to be
creditable. Finally, the participant accomplishes the task and
submits all the feedback messages to the RIS server. The RIS
server will calculate the encryption code set categorized by
the data id to give out the reputation of the participant.

Figure 2 depicts the framework of RIS. Generally, data
dissemination request is sent (e.g., by smart phone or PDA)
to the participants throughRIS server inmobile participatory
sensing networks. After data dissemination, each participant
submits the feedback messages to the server and RIS residing
in the server processes all data obtained from participants.

Firstly, encryption code will be uploaded to the Reputa-
tion Module where the reputation score of the participant is
produced, respectively. After that, the reputation degree can
be successfully derived based on game theory.

Then, amultidimensional reverse auction in the Incentive
Module selects winners in terms of Rank Prices which are
calculated based on participants’ bid prices and the virtual
coupon they possess.

Finally, the participants with lower Rank Prices win
out, get reward, and reset their virtual coupon to zero.
Nevertheless losers will obtain virtual coupon to raise their
winning probability.

3.2.2. Reputation Model. In general, the number of normal
participants is usually larger than that of malicious par-
ticipants in a target field, so we choose the density-based
outlier detection algorithm proposed in [31] to preprocess the
encryption code set of disseminating data 𝑆 = {𝑠
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As shown in Figure 2, the algorithm is iterative in nature.
At first, it defines and initializes 𝑀

𝑖
= 1/𝑛. 𝐴 and 𝑀

𝑖
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are computed in each iteration. 𝑀𝑓
𝑖
equals 𝑀𝑙+1

𝑖
when the

convergence |𝑀
𝑙+1

𝑖
− 𝑀
𝑙

𝑖
| < 𝜂 is observed in the (𝑙 + 1)th

iteration.
It is obvious that tighter convergences could be chosen to

produce more accurate result according to specific scenarios.
𝜀 is a small positive constant for adjustment and more
discussion can be found in [31].

As mentioned in Algorithm 1, normal participants are
usually more than malicious ones in mobile participatory
sensing networks. Consequently, the majority of participants
who provide similar sensing data will have higher 𝑀

𝑓

𝑖
.

This takes the fact that most participants generate relatively
accurate sensing data.

However, in particular circumstances, the number of
malicious participants would be larger than that of normal
ones in sensing field which will affect overall data accuracy. It
may lead to fatal error when making decisions based on such
corrupted data provided by malicious ones in the networks.
To tackle this issue, the source data node can generate the
encryption code to the RIS server.

After several rounds, a participant will present its trust-
worthiness through its historical behaviors. The trimmed-
mean method [32] is introduced to reflect the long-term
trends accordingly. The method is a statistical measure of
central tendency and involves the calculation of mean value
after discarding given parts of a probability distribution or
sample at the high and low ends and typically discarding an
equal amount of both.

The reputation score 𝑅 = {𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
} is computed

based on historical𝑀𝑓
𝑖
using the trimmed-meanmethod and

is depicted in
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where 𝑚 represents the number of observations and 𝜎 ∈

[0, 1/2).

3.2.3. Incentive Module. To motivate participants, a multi-
dimensional reverse auction is introduced in the Incentive
Module. The objective of RBPIA is to maintain adequate
number of participants for desired service quality whilemini-
mizing incentive cost by preventing cost explosion during the
multidimensional reverse auction.

Intuitively, participants who bid lower price are more
likely to becomewinners in one-dimensional reverse auction,
as shown in Figure 3. However, the participants who always
lose in auction may drop out. As a result, the winners can
manipulate subsequent auctions and increase bid price to
maximize their profits.

To maintain fair competition and prevent incentive cost
explosion, enough participants should participate continu-
ously in reverse auctions of RIS. For this goal, the proposed
Incentive Module provides a novel winner selection strategy
using virtual coupon and reputation degree.

Participant (i.e., bidder) 𝑖 will receive virtual coupon as
a reward when they lost in the previous auction round to
increase winning probability in the next round. The virtual
coupon𝐷 = {𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛
} can be defined as

𝑑
𝑖
=

{

{

{

𝛾 ⋅ 𝑟
𝑖

if participant 𝑖 lost in the previous round

0 otherwise,
(3)

where 𝛾 denotes the amount of virtual coupon and 𝑟
𝑖
is a

weight created by the Reputation Module. Hence, whenever
participant 𝑖 loses in an auction round, an amount of coupon
𝛾 weighted by reputation degree 𝑟

𝑖
equals virtual coupon 𝑑

𝑖
.

Reputable participants can obtain more virtual coupon.
The virtual coupon 𝑑

𝑖
is set to zero whenever participant

𝑖 won or dropped out in the previous auction round. The
virtual coupon can only be used for decreasing bid price,
thus increasing winning probability of participant for current
auction round.
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(4) Compute 𝐴 using (1);
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Algorithm 1
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Figure 3: Winners and losers in one-dimensional reverse auction.

Two types of bid prices are defined. One is actual bid price
and the other is Rank Price. The actual bid price 𝑏

𝑖
is claimed

by participant 𝑖 and the Rank Price 𝑝
𝑖
can be defined as

𝑝
𝑖
= 𝑏
𝑖
− 𝑑
𝑖
. (4)

In the proposed Incentive Module, the Rank Price 𝑝
𝑖
is

used for selecting winners in each auction round and RIM
increases the winning probability of the bidder by decreasing
Rank Price using virtual coupon.

Even participants who bid higher price can be winners by
participating continuously (as shown in Figure 4). Therefore,
RIS encourages continuous participation of participants in
the system.

3.3. The Process of RIDD. The reputation degree is calculated
by the RIS server; it will not influence the data transmission
event. In order to increase the opportunity to transmit the
data, each participant can obtain the data messages. The RIS
server will estimate the reputation of every participant. If the
participant misbehaved, it will be punished with no rewards.
Otherwise, the participant with high reputation will gain
rewards and also obtain the virtual coupon. Therefore, the
high reputation the participant has, the more rewards the
participant gains.

The data dissemination algorithm adopted the LOPSI
[33]. It is deployed in the same scenario; it has a location
prediction server, which can integrate with the RIS server;
each node will choose a node with the max transmission
probability to transform the data.

The LOPSI algorithm is a probabilistic routing protocol
combining location prediction and the ant colony optimiza-
tion. It firstly predicts possible locations of relay nodes and

destinations in successive time series. The mobile nodes
calculate intimacy (contact frequency) with potential relay
nodes usingACOand thenmake a forwarding decision based
on node intimacy and probabilities of node mobility. The
transmission probability is calculated by

𝑝
𝑑

𝑠𝑓
= 𝛾 ∗ 𝑝

𝑑

𝑅𝑠𝑓
+ 𝛿 ∗ 𝑝

𝑑

𝐿𝑠𝑓
, 𝛾 + 𝛿 = 1, (5)

where 𝑝
𝑑

𝑅𝑠𝑓
is the forwarding probability obtained from

the intimacy calculation of mobile nodes and 𝑝
𝑑

𝐿𝑠𝑓
is the

forwarding probability obtained from location prediction
schemes.

The control messages used in the system are defined as
follows.

Definition 1. SREQ is the service request message in which
the data source node is sent to the RIS server. The format of
SREQ is SREQ<data id, category id, source address, destina-
tion list>.

The data id uniquely represents the datamessage.The cat-
egory id is the description of the content of the data message.
Source address is the location information of the data source
node. In the specific application environment, it can be AP
address. The source address is used as a broadcast scope by
the RBPIA server that broadcasts service recruitingmessages.
The destination list involves the destination node addresses
where the data message will be sent. The destination node is
usually the data aggregation server or the node who desires
the data message.
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With virtual coupon
Higher bid price Lower bid priceLower bid price

· · · · · · · · ·

Figure 4: Winners and losers in multidimensional reverse auction with virtual coupon.

Definition 2. PAT is the participatory message that the
mobile node sends to the RIS server. The format of PAT
is PAT<participatory id, bid price, copy number, additional
data>.

Additional data can be the transmission probability of
the node to the source node. The bid price equals the
consumption that the participant transmits one data copy.
The system will pay more than the participant consumes, so
the mobile nodes are willing to participate in the service.
The maximum number of data copies one participant can
disseminate equals copy number.

The data dissemination process is as follows.

Step 1. The data source node sends a SREQ message to the
RBPIA server. When the data sensing node finishes the data
dissemination service, it will send the encryption code of the
data message to the RBPIA. The encryption code may be
the hash code generated by the data message. It is used to
calculate the trustworthiness on disseminating data.

Step 2. The RBPIA server broadcasts the SREQ messages to
the mobile nodes nearby the source address. The broadcast
domains in the campus scenario are coverage areas of the
communication radius of the APs to which the data source
node connects.

Step 3. When the mobile nodeNi receives the SREQmessage
from the RBPIA server and would like to participate in the
data dissemination service, Ni will send the control message
PAT to the RIS.

Step 4. If mobile node Ni wins the bid round, it becomes the
participants.

Step 5. When participant 𝑖 encounters a mobile node, the
former firstly transmits the destination address to the latter.
If it is the receiver, the data message will be directly delivered.
And the participant will get an ackmessage from the receiver.
Otherwise, if the node meets a mobile node who has a higher
transmission probability than the participants, the former
will transform the data message to the latter. And the latter
node returns an ack message to the participant who would
like to forward the data message.

Step 6. The participant I transmits a data message to the data
receiver, it will get an ack message. The accumulated ack

messages will totally send to the RIS server and get back the
rewards.

Step 7. If the mobile node wants to be the participant, it
directly sends PAT message to the RIS server; the communi-
cation cost of send a PAT message is negligible. If the mobile
node agrees with the bid price that the former participant
gains, it receives the datamessage and gets several data copies
from the former nodes and becomes a participant.

Step 8. When participant 𝑖 disseminates all the data copies,
it will send the total ack messages to the RIS, and the RIS
pays for the participant according to the results of reputation
calculation.

4. Performance Evaluation

The purpose of the experimental section is to evaluate RIDD
in two scenarios and illustrate its properties.

4.1. Performance Comparison Algorithms. Spray and Wait
[34] is chosen as the baseline for comparison. It is a leading
opportunistic routing algorithm, without consideration of
selfishness. Under Spray and Wait, a number of copies are
sprayed into the network and then the network “waits” till one
of these nodes meets the destination. Since Spray and Wait
does not consider selfishness of mobile nodes, we implement
its two variants. The first which is denoted by “SaWselfish” is
under the assumption that all nodes are selfish. Thus, a node
only receives its desired datamessage directly from the source
data node. In the other variant named “SaWcooperative,” we
assume that nodes are cooperative and altruistic. A node
always chooses the most valuable data messages to carry for
others after satisfying its own convenience, considering its
resources and routing.

SID is a self-interest-driven incentive scheme to stimulate
cooperation among selfish nodes for ad dissemination in
autonomous mobile social networks. A virtual check is
included in each ad packet. When an intended receiver
receives the packet for the first time from an intermediate
node, the former authorizes the latter a digitally signed check,
which serves as a proof of successful ad delivery. Multiple
copies of a virtual check can be created and signed by different
receivers. When a node that owns a signed check meets the
ad provider, it requests the provider to cash the check. Both
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Table 1: Simulation parameters.

Parameter Value
Simulation time 12 h
Field area 4500m ∗ 3400m
Scene NEU campus
APs 50
Movement speed for cars 2.7–13.9m/s
Number of cars 40
Movement speed for pedestrians 0.5–1.5m/s
Number of pedestrians 160
Maximum transmission range 100m
Maximum queue size 200 data packet
Packet size 500KB–1MB at random
Frequency of creating packets From 25 s to 35 s at random
Maximum number of copies 8

ad packets and signed checks can be traded among mobile
nodes.

4.2. Simulation Setup. The representative participatory sens-
ing data set is UCSDWTDdata set [35], which is employed in
our simulation scenarios. Note that the recent work studying
the nature of human mobility has proved that suitable
movement models can sufficiently present the behavior of
humanmobility [36].Themodel ofmobility pattern deployed
in our platform is SPMBM model [37], which is a mobility
model that integrates temporal and spatial relationships and
selects the shortest path for the node randomlywalking in the
map area.

In our simulation, the simulation parameters are shown
in Table 1. There are totally 200 mobile nodes that involve
160 pedestrians and 40 cars. The number of sensing data
categories is forty. Each node has a default queue size of 200
packets. When a node acts as a data provider, it generates one
data message every 10 minutes in a random data category.
At the same time, a node is also interested in receiving data
in 5 randomly chosen data categories. If the communication
range increases and becomes out of the range of APs, the
mobile devices can exchange data by the distributed part of
LOPSI without using location prediction scheme by different
wireless communication techniques including Wi-Fi direct,
BlueTooth, and ZigBee. In order to evaluate the performance
of the proposed data dissemination algorithms, we conduct
a series of experiments under the parameters in Table 1. The
First-In, First-Out method is applied on buffer management.
The TTL of a packet is set to the expiration time of the
data service. It is initially set in the control packet. In the
simulation, the TTL is set at variable values in order to
compare the performance of the incentive mechanism. The
TTL of a packet indicates how long the packet can live in the
network.

4.3. Evaluation Metrics. In order to compare the incentive
schemes, the proposed mechanism in [19] is deployed in the
simulation. Specifically, as shown in (6) and (7), participants

drop out or rejoin in auctions based on return on investment
(ROI) and expected return on investment (EROI), respec-
tively.

4.3.1. Return on Investment. The value of ROI is derived as
follows:

ROI𝑟
𝑖
=

𝑒
𝑟

𝑖
+ 𝛽
𝑖

𝜌
𝑟

𝑖
⋅ 𝑡
𝑖
+ 𝛽
𝑖

, (6)

where 𝜌𝑟
𝑖
denotes the number of participation of participant

𝑖 until current participation round 𝑟. Hence, 𝜌𝑟
𝑖
⋅ 𝑡
𝑖
and

𝑒
𝑟

𝑖
denote the expected minimum reward and the actual

earned reward of participant 𝑖, respectively. The 𝛽
𝑖
denotes

participant’s tolerance period. A larger 𝛽
𝑖
makes the ROI

value decrease slowly. Therefore, the ROI value is the ratio
of the earned reward (i.e., participant’s return) to expected
minimum reward. We use each participant’s ROI value to
decide whether he/she drops out of the reverse auction for
participatory sensing system. Each participant drops out
when the ROI value goes below 0.5, which we set to a
satisfaction threshold. In the simulation we assign different
tolerance period 𝛽

𝑖
so that each user has different minimum

ROI threshold for dropping out of the reverse auction.
Consider the following:

EROI𝑟+1
𝑖

=

𝑒
𝑟

𝑖
+ 𝜑
𝑟
+ 𝛽
𝑖

(𝜌
𝑟

𝑖
+ 1) ⋅ 𝑡

𝑖
+ 𝛽
𝑖

. (7)

Moreover, (7) is used for describing rejoining behavior
of the dropped out participant. The recruitment mechanism
broadcasts the maximum bid value of winners only to the
dropped out participants. Hence, the dropped out partici-
pants 𝑘 can calculate the expected ROI value EROI𝑟+1

𝑖
for the

next participation round 𝑟 + 1 with the revealed maximum
bid price of winners in the previous auction of participation.
More specifically, 𝜑

𝑟
denotes the revealed maximumwinning

bid price at the previous reverse auction of participatory
round 𝑟. If the computed expected ROI value of the partic-
ipants becomes larger than their minimum ROI threshold,
the participants rejoin the participatory sensing in order to
sell their sensing data. Note that the maximum winning bid
price 𝜑

𝑟
is only visible to dropped out participants so that

we prohibit winners from increasing their bids close to the
maximum bid. In the participant behavior model, we assign
to participants a set of different tolerance periods 𝛽

𝑖
of (6)

and (7) that is uniformly distributed in the range from 3 to 7.
Hence each participant has different minimum threshold for
ROI value for dropping out of the multidimensional reverse
auction in participatory sensing system.

4.3.2. Utility Function. According to the utility function in
[38], the adaptive bidding behavior of auction in simulation
is represented as follows. If a participant loses in the previous
auction round, the bid price will be decreased by 20% of
current bid price for a next participation round. Conversely,
if a participant wins in the last auction round, the bid price
will arise by 10% of the current bid price or stay at the
current bid price with equal probability for next round. For
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Table 2: Disseminating data provided by participants.

Participant Disseminating accurate data
Normal 90–100%
Malicious 10–20%

Table 3: Participant composition in two scenarios.

Scenarios Normal Malicious
A 90% 10%
B 50% 50%

initial bids of participants, we randomly generate the first
bid of each participant uniformly distributed between true
valuation and its 150%. To observe the effect of participant
recruiting mechanism, when the dropped out participant
tries to rejoin based on expected ROI value EROI𝑟+1

𝑖
for the

next auction round 𝑟 + 1, a dropped out participant 𝑘 tosses
the coin and randomly decides to join or not if the expected
satisfaction value of next reverse auction round is larger than
the participant’s ROI threshold.

4.3.3. Malicious Behavior. We classify the participants into
two categories: normal participant andmalicious participant.

As shown in Table 2, normal participants upload accurate
data in 90–100% of participations and bid according to their
true valuation (i.e., the consumption for disseminating the
sensing data).

Malicious participants are supposed to intentionally pro-
vide corrupted sensing data (only provide accurate data in
10–20% of participations) and bid normal prices.The bidding
behaviors of malicious participants do not follow utility
function.

We run simulations in two scenarios (marked as scenario
A and scenario B), and 200 participants are involved in the
simulations (see Table 3).

4.3.4. Performance Metrics of Data Dissemination Algorithms.
The delivery ratio is defined as the ratio of the total number
of accurate delivered data messages (the corrupted data
messages and the discarded ones are excluded) to the total
number of data messages that should be disseminated to the
corresponding receivers.

The average latency measures how long a receiver node
waits to get the data message packet.

The transmission cost is defined as the ratio of the total
number of transmissions to the total number of delivered
messages. Lower overhead means less traffic in the network
and lower resource consumption. In the proposed system, the
control message is much smaller than the data message and,
therefore, its transmission cost is negligible.

The incentive cost of the system, noted as𝐶, measures the
rewards paid to the participants. It is defined in

𝐶 =

𝑛

∑

𝑖=0

𝑄
𝑖
× 𝐵
𝑖

𝑆
𝑖

, (8)
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Figure 5: Incentive cost of RIDD and SaWcooperative in scenario
A.

where 𝑛 is the number of the total participants in the system,
𝑄
𝑖
is the total number of data messages that participant

𝑖 sends, 𝑆
𝑖
is the total number of accurate delivered data

messages that participant 𝑖 sends, and 𝐵
𝑖
is the rewards the

system pays to the participant 𝑖. Therefore, the more accurate
delivered data messages and the lower rewards contribute to
less incentive cost of the system.

4.4. Simulation Results

4.4.1. Incentive Cost. We run simulations for 50 rounds in
scenario A and scenario B (as shown in Table 3).We compare
the RIDD and SaWcooperative under the same reward values.
Figures 5 and 6 depict the tendency of incentive cost in 50
participation rounds.

In scenario A, both RIDD and SaWcooperative mostly
select normal participants, and there are no malicious par-
ticipants in this scenario, so the two schemes both keep
low incentive cost. In contrast, as we can see from Figure 6,
incentive cost of SaWcooperative increases dramatically from
about round 20 in scenario B due to existence of malicious
participants. Such phenomenon means that SaWcooperative
cannot cope with malicious participants. The malicious par-
ticipants disseminate the corrupted data. The system cannot
distinguish the accurate data messages and the corrupted
ones. Therefore, the system pays for all the delivered data
messages, which results in high incentive cost.

4.4.2. Recruiting Reputable Participants. The recruiting
mechanism is introduced into both RIS and RADP-VPC. We
simulate rejoining behaviors of dropped out participants in
two scenarios. The recruiting mechanism helps to increase
the number of active participants and reduce incentive
cost. Specifically, more reputable participants rejoin a
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Figure 7: Number of recruited reputable participants in scenario A.

participatory sensing system to prevent the system from
being controlled by malicious participants.

Without malicious participants, recruitment of RIS and
RADP-VPC can remedy the loss of active participants. As
depicted in Figure 7 (scenario A), the number of recruited
reputable participants in two schemes is about the same.

RADP-VPC selects winners only based on bid prices
and cannot adapt to circumstances with malicious behavior.
More specifically, malicious participants will bid lower prices
to keep winning and kick normal ones out. RIS selects
participants based on the reputation degree and the bid
price. In Figure 8 (scenario B) RIS recruits more dropped out
reputable participants than RADP-VPC.
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Figure 8: Number of recruited reputable participants in scenario B.

4.4.3. Evaluation of Delivery Ratio. With the increasing ratio
of malicious participants, RIDD performs well until the ratio
reaches near 90%. RIDD prevents malicious participants
from delivery corrupted data messages. SID has incentive
mechanisms to stimulate mobile nodes to participate in the
system service, yet without schemes to protect the reliability
of the data messages, so the delivery ration decreases sharply.
Also SaWcooperative cannot deal with the malicious behav-
ior, so the delivery ratio decreases. Yet the collaboration of the
mobile nodes is better than SID, so the decrease ratio is lower
than SID.The initial delivery ratio of SaWdelfish is lower than
the other schemes as the mobile node rejects to transmit the
data message that does not satisfy its convenience and also
have a decrease in delivery ratiowith the increase ofmalicious
participants (Figure 9).

The data dissemination scheme of SID is like the schemes
of PROPHET [37], while RIDD is adopt the LOPSI schemes.
In the proposed system, LOPSI and Spray and Wait out-
perform the PROPHET on delivery ratio, which have been
evaluated in [33].Therefore, the average delivery of RIDDand
SaWcooperative is higher than SID.

4.4.4. Evaluation of Average Lantency. Figures 10 and 11
illustrate the average latency trend by varying such network
parameters as queue size and TTL.

With the increase of the queue size, the average latency
also increases. At the initial stage a larger queue decreases
the delay in SaWCooperative since it can carry more data
messages. However, it simultaneously increases the chance
for the data tomeet their receivers. A larger queue alsomeans
data messages even with a low delivery probability. As for
SaWselfish, it decreases the average latency as a large queue
size increases its own resources. However, when such packets
get delivered, they have already experienced long delay, thus
increasing the average network delay. Therefore, the average
latency increases. On the other hand, the increase of the
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queue size affects the performance of RIDD and SID only
marginally, since RIDD is incentive to forward data for others
by the system rewards and SID exchanges the packets based
on its self-interest and aims to maximize its rewards.They do
not aggressively utilize the increased queue size.

With a longer TTL, all schemes can deliver more packets
to the destinations, until the communication capacity of the
network becomes the bottleneck and dominates the network
performance. As shown in Figure 11, we notice that the
average delay of RIDD, SaWCooperative, and SID tends to
become stable after TTL increases to 4 hours, while the
delay of SaWselfish continues to increase with longer TTL. It
means that in RIDD, SaWcooperative, and SID schemes most
packets can be delivered within 4 hours, while SaWSelfish
needs to keep data messages staying longer in the nodal
buffer.

4.4.5. Evaluation of Transmission Cost. Figures 12 and 13
illustrate the transmission cost trend by varying such network
parameters as queue size and TTL.

As shown in Figure 12, SaWcooperative gains signifi-
cantly, because a longer queue allows a node to hold more
data packets for a longer time. However, a longer queue
results in a surge of transmission cost, because more dupli-
cation can be held and transmitted by the mobile nodes. The
increase of the queue size affects the performance of RIDD
and SID only marginally, since RIDD and SID exchange the
messages based on the incentives schemes provided by the
system.

As Figure 13 shows, the transmission cost increases with
the increase of TTL. This is because extending TTL allows
packets to stay longer in the network, which thus has a
better chance to be exchanged and duplicated, yielding
more overhead. While the transmission cost trend of RIDD
stabilizes from 1 hour, since the datamessage can be delivered
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Figure 10: Average latency trend with increasing queue size.
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Figure 11: Average latency trend with increasing TTL.

to the receiver with a relative high efficiency. The long TTL
affects marginally the performance of RIDD.

5. Conclusion and Future Work

In this paper, we designed reputation-based incentives for
data dissemination which can be used for motivating partici-
pants to deliver reliable datamessages inmobile participatory
sensing networks. We also address the problem of retaining
a desired number of active reputable participants to provide
adequate level of service quality with low incentive cost. We
presented a set of simulations and highlight the properties
of RIDD. The results show that RIDD remarkably increases
the winning probability of participants who provide accurate
data, preserves the data security in the dissemination process,
and performs well in evaluation of the transmission metrics.
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In future work, we plan to design an adaptive technique
for finding optimal schemes to keep the balance of the
participant rewards and the incentive cost.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by the National Science Foundation
for Distinguished Young Scholars of China under Grant nos.
61225012 and. 71325002, the Specialized Research Fund of
the Doctoral Program of Higher Education for the Priority
Development Areas under Grant no. 20120042130003, China

MOE and China Mobile Joint Research Foundation under
Grant no. MCM20130391, Liaoning BaiQianWan Talents
Program under Grant no. 2013921068, and National Natural
Science Foundation of China under Grant no. 61402097.

References

[1] J. Burke, D. Estrin, M. Hansen et al., “Participatory sensing,” in
Proceedings of the World Sensor Web Workshop, in conjunction
with ACM (SenSys’06), Boulder, Colo, USA, November 2006.

[2] G. Han, H. Guo, C. Zhang, and L. Shu, “Parameter optimisation
in duty-cycled wireless sensor networks under expected net-
work lifetime,” International Journal of Ad Hoc and Ubiquitous
Computing, vol. 15, no. 1–3, pp. 57–67, 2014.

[3] M. Mun, S. Reddy, K. Shilton et al., “PEIR, the personal
environmental impact report, as a platform for participatory
sensing systems research,” in Proceedings of the 7th ACM
International Conference on Mobile Systems, Applications, and
Services (MobiSys ’09), pp. 55–68, June 2009.

[4] B. Hull, V. Bychkovsky, and K. Chen, “CarTel: a distributed
mobile sensor computing system,” in Proceedings of the 4th
International Conference on Embedded Networked Sensor Sys-
tems (SenSys ’06), pp. 125–138, November 2006.

[5] H. Lu, N. D. Lane, S. B. Eisenman, and A. T. Campbell, “Bubble-
sensing: binding sensing tasks to the physical world,” Pervasive
and Mobile Computing, vol. 6, no. 1, pp. 58–71, 2010.

[6] G. Castignani, J. Monetti, N. Montavont, A. Arcia-Moret, R.
Frank, and T. Engel, “A study of urban IEEE 802.11 hotspot
networks: towards a community access network,” in Proceedings
of the 6th IFIP/IEEEWireless Days Conference (WD ’13), pp. 1–8,
November 2013.

[7] M. Motani, V. Srinivasan, and P. S. Nuggehalli, “PeopleNet:
engineering a wireless virtual social network,” in Proceedings of
the 11th Annual International Conference on Mobile Computing
and Networking (MobiCom ’05), pp. 243–257, September 2005.

[8] X. Zhuo, Q. Li, W. Gao, G. Cao, and Y. Dai, “Contact duration
aware data replication in delay tolerant networks,” in Pro-
ceedings of the 19th IEEE International Conference on Network
Protocols (ICNP ’11), pp. 236–245, IEEE, Vancouver, Canada,
October 2011.

[9] U. Lee, J. Lee, J.-S. Park, andM.Gerla, “FleaNet: a virtualmarket
place on vehicular networks,” IEEE Transactions on Vehicular
Technology, vol. 59, no. 1, pp. 344–355, 2010.

[10] L. Buttyan, L. Dora, M. Felegyhazi, and I. Vajda, “Barterbased
cooperation in delay-tolerant personal wireless networks,” in
Proceedings of the IEEE International Symposium on a World of
Wireless, Mobile andMultimedia Networks (WoWMoM ’07), pp.
1–6, Espoo, Finland, June 2007.

[11] T. Ning, Z. Yang, X. Xie, and H. Wu, “Incentive-aware data
dissemination in delay-tolerant mobile networks,” in Proceed-
ings of the 8th Annual IEEE Communications Society Conference
on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON ’11), pp. 539–547, June 2011.

[12] X. Xie, H. Chen, andH.Wu, “Bargain-based Stimulationmech-
anism for selfish mobile nodes in participatory sensing net-
work,” in Proceedings of the 6th Annual IEEE Communications
Society Conference on Sensor,Mesh andAdHocCommunications
and Networks (SECON ’09), pp. 72–80, Rome, Italy, June 2009.

[13] G. Han, J. Jiang, L. Shu, M. Guizani, and S. Nishio, “A two-
step secure localization for wireless sensor networks,”Computer
Journal, vol. 56, no. 10, pp. 1151–1153, 2013.



International Journal of Distributed Sensor Networks 13

[14] A. Al-Hinai, H. Zhang, Y. Chen, and Y. Li, “TB-SnW: trust-
based Spray-and-Wait routing for delay-tolerant networks,”The
Journal of Supercomputing, vol. 69, no. 2, pp. 593–609, 2014.

[15] G. Dini and A. L. Duca, “A reputation-based approach to
tolerate misbehaving carriers in Delay Tolerant Networks,” in
Proceedings of the 15th IEEE Symposium on Computers and
Communications (ISCC ’10), pp. 772–777, June 2010.

[16] A. Mei and J. Stefa, “Give2Get: forwarding in social mobile
wireless networks of selfish individuals,” in Proceedings of the
30th IEEE International Conference on Distributed Computing
Systems (ICDCS ’10), pp. 488–497, Genoa, Italy, June 2010.

[17] T. Ning, Z. Yang, H. Wu, and Z. Han, “Self-interest-driven
incentives for ad dissemination in autonomous mobile social
networks,” in Proceedings of the 32nd IEEE Conference on
Computer Communications, (INFOCOM ’13), pp. 2358–2366,
April 2013.

[18] Y. Haofan, Z. Jinglan, and R. Paul, “Using reputation man-
agement in participatory sensing for data classification,” in
Proceedings of the 2nd International Conference on Ambient
Systems, Networks and Technologies, (ANT ’11)/8th International
Conference on Mobile Web Information Systems (MobiWIS ’11),
Ontario, Canada, September 2011.

[19] J.-S. lee and H. Baik, “Dynamic pricing incentive for participa-
tory sensing,” Pervasive andMobile Computing, vol. 6, no. 6, pp.
693–708, 2010.

[20] B. Yang and H. Garcia-Molina, “PPay: micropayments for peer-
to-peer systems,” in Proceedings of the 10th ACM Conference on
Computer and Communications Security (CCS ’03), pp. 300–310,
Washington, DC, USA, October 2003.

[21] A. Habib and J. Chuang, “Service differentiated peer selection:
an incentive mechanism for peer-to-peer media streaming,”
IEEE Transactions on Multimedia, vol. 8, no. 3, pp. 610–621,
2006.

[22] M. Bichler, The Future of e-Markets: Multidimensional Market
Mechanism, Cambridge University Press, 2001.

[23] S. Buchegger and J.-Y. Le Boudec, “Performance analysis of
the CONFIDANT protocol (Cooperation of nodes: fairness in
dynamic ad-hoc networks),” in Proceedings of the 3rd ACM
International Symposium on Mobile Ad Hoc Networking and
Computing (MOBIHOC ’02), pp. 226–236, June 2002.

[24] P. Michiardi and R. Molva, “Core: a collaborative reputation
mechanism to enforce node cooperation in mobile ad hoc net-
works,” in Proceedings of the IFIP TC6/TC11 6th Joint Working
Conference on Communications and Multimedia Security, pp.
107–121, 2002.

[25] S. Buchegger and J. Y. Le Boudec, “Copingwith false accusations
in misbehavior reputation system for mobile ad-hoc networks,”
EPEL Technical Report NumberIC/2003/31, 2003.

[26] S. Buchegger and J. Y. Le Boudec, “The effect of rumorspreading
in reputation systems for mobile ad-hoc networks,” in Proceed-
ings of the Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks (WiOpt '03), March 2003.

[27] A. Josang and R. Ismail, “The beta reputation system,” in
Proceedings of the 15th Bled Electronic Commerce Conference,
June 2002.

[28] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian
Data Analysis, Chapman & Hall, Boca Raton, Fla, USA, 2003.

[29] S. Ganeriwal and M. Srivastava, “Reputation-based framework
for high integrity sensor networks,” ACM Transactions on
Sensor Networks, vol. 4, no. 3, article 15, 2008.

[30] K. L. Huang, S. S. Kanhere, and W. Hu, “On the need for a
reputation system in mobile phone based sensing,” Ad Hoc
Networks, vol. 12, no. 1, pp. 130–149, 2014.

[31] C. T. Chou, A. Ignjatovic, andW. Hu, “Efficient computation of
robust average in wireless sensor networks using compressive
sensing,” Tech. Rep. UNSW-CSE-TR-0915, 2009.

[32] D. C. Hoaglin, F. Mosteller, and J. W. Tukey, Understanding
Robust and Exploratory Data Analysis, Wiley-Interscience,
2000.

[33] J. Li, X. Wang, J. Jia, P. Wang, Y. Zhou, and Z. Zhao, “Location
prediction-based data dissemination using swarm intelligence
in opportunistic cognitive networks,”Mathematical Problems in
Engineering, vol. 2014, Article ID 453564, 15 pages, 2014.

[34] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and
wait: an efficient routing scheme for intermittently connected
mobile networks,” in Proceedings of the ACM SIGCOMM
Workshop on Delay-Tolerant Networking (WDTN ’05), pp. 252–
259, Philadelphia, Pa, USA, 2005.

[35] M. McNett and G. M. Voelker, UCSD Wireless Topology Dis-
covery Project [EB/OL], 2013, http://www.sysnet.ucsd.edu/wtd/
wtd.html.

[36] V. D. Le, H. Scholten, P. J. M. Havinga, and H. Ngo, “Location-
based data dissemination with human mobility using online
density estimation,” in Proceedings of the IEEE 11th Consumer
Communications & Networking Conference (CCNC ’14), pp.
450–457, Las Vegas, Nev, USA, January 2014.

[37] P. A. Lindgren and A. Droia, “Probabilistic routing protocol for
intermittently connected networks,” 2006, https://tools.ietf.org/
html/draft-irtf-dtnrg-prophet-02.

[38] J. Lee and B. K. Szymanski, “Auctions as a dynamic pricing
mechanism for E-services,” in Service Enterprise Integration, C.
Hsu, Ed., pp. 131–156, Kluwer, 2006.


