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Abstract—Existing path planning algorithms are capable of
finding physically feasible, shortest, and energy-efficient paths for
mobile robots navigating on uneven terrains. However, shortest
paths on uneven terrains are often energy inefficient while
energy-optimal paths usually take long time to be traversed.
Therefore, due to time and energy constraints imposed on
mobile robots, these shortest and energy-optimal paths might not
be applicable. We propose a multiobjective path planner that
can find pareto-optimal solutions in terms of path length and
energy consumption. It is based on NAMOA* search algorithm
that utilizes a proposed monotone heuristic cost function. The
simulation results show that nondominated path options found
by the proposed path planner can be very useful in many real-
world applications.

Index Terms—Multiobjective, pareto-optimal, path planning,
heuristic search, uneven terrains.

I. INTRODUCTION

Path planning algorithms are widely adopted in three di-

mensional terrain navigation to find feasible paths between

two selected points. In an early attempt on finding feasible

paths on uneven terrains, Rowe and Ross [1] introduced a

physical model which captures terrain properties along with

the external forces, such as friction and gravity, imposed on

mobile robots. They also introduced anisotropism to their

model by considering impermissible traversal directions due

to overturn dangers and power limitations. Lanthier et al.

[2] proposed an algorithm for computing an approximation

to a shortest path on a given terrain based on the physical

model proposed in [1]. They introduced a terrain face weight

concept, which apprehends the nature of the terrain, slope of

each terrain face, and friction. They discretized the terrain

by placing Steiner points on boundaries of the terrain faces

and connecting them with weighted edges. A path with the

minimum total weight in a graph is found using the Dijkstra’s

algorithm [3].

Shortest paths, however, can be highly energy inefficient

on uneven terrains [4]. As a solution, Rowe and Ross used

their physical model together with A* search algorithm [5]

to find energy-optimal paths on uneven terrains [1]. Based

on the terrain face weight concept, Sun and Reif also intro-

duced an energy-efficient path planning algorithm for mobile

robots navigating on uneven terrains [6]. However, both these

algorithms assume that a terrain surface is a combination of

multiple flat surfaces. Hence, energy-efficient paths generated

on such approximated terrains may differ from the energy-

efficient paths on actual terrain. Recently, Ganganath et at.

proposed an efficient heuristic search algorithm to find energy-

efficient paths on high-resolution grid-based elevation maps

[7]. They also proposed strategies for rapid replanning of

energy-efficient paths on partially known terrains [8], [9].

According to our studies in this paper, shortest paths nor-

mally travel through both peaks and valleys consuming large

amount of energy while energy-optimal paths tend to lie more

along valleys on uneven terrains and they are much longer than

shortest paths. Mobile robots utilized in outdoor applications

are normally powered with portable energy sources with lim-

ited capacities. These robots are usually assigned to perform

certain tasks within specified time durations. Thus, when it

comes to mobile robot navigation on uneven terrains, there is

always a trade-off between shortest and energy-optimal paths,

rather than biasing toward any of them. The focus of this paper

is dedicated for finding nondominated cost paths in terms of

path length and energy consumption.

The rest of the paper is organized as follows. Section II

presents the problem formulation. Section III explains how

to construct a graph for multiobjective path planning using

an elevation map of a given terrain. It also briefly discusses

impermissible headings on uneven terrains. Multiobjective

path planning and heuristic cost estimation are explained in

Section IV. Simulation results of the proposed path planner

are presented and analyzed in Section V. Concluding remarks

are given in Section VI.

II. PROBLEM FORMULATION

The multiobjective path planning problem considered in this

work is to find all physically feasible nondominated cost paths,

in terms of path length and associated energy consumption,

between two selected points on a given gird-based elevation

map of a terrain.
III. PRELIMINARIES

A. Construction of a Graph

High resolution grid-based elevation maps are available for

many geographical locations as a result of recent advances

in geographical information systems. To facilitate the path

planning process, such a map of a terrain is transformed into

a weighted digraph G made of 8-connected neighborhoods,

whose nodes represent points on the terrain surface, i.e. each
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grid center in the map is represented using a node which is

connected to nodes that represent up to 8 neighboring grids

(grids on edges of the map have less than 8 neighboring grids).

Let n be an arbitrary node in G and n′ be a neighboring node

of n. The cost of the edge from n to n′ is denoted as

~c(n, n′) = [cd(n, n
′), ce(n, n

′)],

where cd(n, n
′) and ce(n, n

′) respectively represent distance

and energy costs associated with nn′ traversal. One should

note that ~c(n, n′) is not always equal to ~c(n′, n). In order to

determine values of cd and ce, first we need to understand

certain physical properties of the robot and the terrain.

B. Impermissible Headings

We denote coordinates of a node n in G as (n.x, n.y, n.z).
The projected length of the straight line nn′ on the x-y plane

can be calculated as

d(n, n′) =
√

(n′.x− n.x)2 + (n′.y − n.y)2.

Then, the Euclidean distance s between n and n′ in the 3D

space can be calculated as

s(n, n′) =
√

d(n, n′)2 +∆(n, n′)2

Here, the elevation difference between n and n′ is given by

∆(n, n′) = n′.z − n.z.

The angle of inclination from n to n′ (positive for uphilling,

negative for downhilling) can be calculated using

φ(n, n′) = tan−1

[

∆(n, n′)

d(n, n′)

]

.

We adopt a physical model proposed in [1] which assumes

a constant velocity v for the mobile robot. Thus, two major

external forces applying on the robot are gravity and friction,

whose resultant can be given as

mg(µ cosφ+ sinφ),

where m is the mass of the robot, µ is the friction coefficient, φ

is the inclination angle, and g is the gravitational field strength.

In its uphill traversal, the maximum inclination angle that

the robot can overcome due to power constraints, is defined

as

φf = sin−1

(

Pmax

mgv
√

µ2 + 1

)

− tan−1(µ),

where Pmax is the maximum motion power of the robot

[1]. Furthermore, the traction depends on the static friction

coefficient µs at the contact point. An anisotropic traction-

loss phenomena can be observed if the inclination angle is

greater than φs [1], which is defined as

φs = tan−1(µs − µ).

Considering aforementioned scenarios, the critical impermis-

sible angle for the uphill traversal can be defined as

φm = min(φf , φs),

which is the maximum inclined angle that the mobile robot is

capable of overcoming [7].

C. Cost Functions

Based on the impermissible headings explained above, we

can obtain the cost of traversing nn′ in terms of distance as

cd(n, n
′) =

{

∞, if φ(n, n′) > φm,

s(n, n′), otherwise,
(1)

and, in terms of energy consumption [7] as

ce(n, n
′)=



















∞, if φ(n, n′) > φm,

mgs(n, n′)(µ cosφ (n, n′)+sinφ(n, n′)),

if φm ≥ φ(n, n′) > φb,

0, otherwise.

(2)

The critical breaking angle for downhilling [1] is given by

φb = − tan−1(µ).

It is assumed that the robot has to spend a negligible amount

of energy to maintain its constant velocity when the inclination

angle is not greater than φb. In (1) and (2), ∞ indicates that

nn′ cannot be traversed when the inclination angle is greater

than the critical impermissible angle for uphilling.

IV. MULTIOBJECTIVE PATH PLANNING

Let us consider a problem of finding nondominated cost

paths from a starting node s to a goal node t on a digraph G.

A multiobjective search algorithm is said to be admissible if

it can find all such nondominated paths whenever they exist.

Here, we employ admissible NAMOA* search algorithm,

which was proposed for multiobjective graph search with

consistent heuristics [10].

A. NAMOA* Search Algorithm

NAMOA* can be identified as an extension of A* search

algorithm [5] to the multiobjective case. A* algorithm is based

on the best-first search which selects most favorable node n for

expansion. However, in multiobjective graph search problems,

there can be more than one path from s to n which are

nondominated by each other. Hence, NAMOA* utilizes path

selection and expansion as its basic operations to replace node

selection and expansion used in A*. Let Λn be a set of all

feasible paths from s to n and λn ∈ Λn be one such path.

The expected cost of λn to reach t can be defined as

~f(λn) = ~g(λn) + ~h(n), (3)

where ~g(λn) = [gd(λn), ge(λn)] is the cost of λn, which can

be obtained as a summation of ~c along λn. In (3), ~h(n) =
[hd, he] is a heuristic cost estimation from n to t. The path

λn ∈ Λn is said to be dominated by another path λ′n ∈ Λn if

(fd(λ
′

n) ≤ fd(λn)) ∧ (fe(λ
′

n) ≤ fe(λn)) ∧ (~f(λ′n) 6=
~f(λn)),

where fd and fe are the components of the cost vector ~f .

A heuristic cost vector ~h is said to be admissible, if it

satisfies

gd(λ
∗

ni
) + hd(ni) ≤ gd(λ

∗

t ),

ge(λ
∗

ni
) + he(ni) ≤ ge(λ

∗

t ),



for all nondominated paths λ∗t = 〈s, n1, n2, . . . , ni, . . . , t〉 and

each subpath λ∗ni
= 〈s, n1, n2, . . . , ni〉. If ~h is admissible,

NAMOA* guarantees to find all nondominated paths from s

to t given that such paths exist, i.e. NAMOA* is admissible

[10].

A heuristic cost vector is said to be monotone, if it satisfies

hd(n) ≤ cd(n, n
′) + hd(n

′), (4)

he(n) ≤ ce(n, n
′) + he(n

′), (5)

for all the neighboring nodes (n, n′) in G. All monotone

heuristic vectors are admissible as well. If ~h is monotone,

NAMOA* is proven to expand the least number of paths to

find all nondominated paths from s to t in compared with other

admissible multiobjective algorithms over a class of problems

with monotone heuristics. One may refer to [10] for a detailed

explanation of NAMOA* and its properties.

B. Heuristic Cost Estimation

In order to utilize NAMOA* for our problem, we need to

formulate heuristic cost functions hd and he which satisfy (4)

and (5), respectively. We can simply define

hd(n) = s(n, t),

which can easily be proven to satisfy (4) using the triangle

inequality. In order to estimate the heuristic energy-cost, we

adopt a heuristic cost function introduced in [4] as

he(n)=































mg∆(n,t)
sinφm

(µ cosφm+sinφm),

if φ(n, t) > φm,

mgs(n, t)(µ cosφ (n, t) + sinφ(n, t)),

if φm ≥ φ(n, t) > φb,

0, otherwise,

which has already been proven to satisfy the conditions of

monotonicity [7]. Now we have a monotone heuristic cost

vector ~h which can be used with NAMOA* to find physically

feasible nondominated paths on uneven terrains.

V. RESULTS AND DISCUSSION

The proposed multiobjective path planner was evaluated

using numerous computer simulations and results of one set

of simulations are presented and analyzed in this section.

A. Simulation Parameters

The terrain model used in generating simulation results

presented in this paper can be expressed as

z(x, y) = 3.79

[

sin

(

y

3π
+

1

2

)

+ 1.3 cos
( x

3π

)

− 2 sin
( y

3π

)

− 0.3 sin

(

3

√

( x

2π

)2

+
( y

2π

)2
)]2

. (6)

The base of the terrain is defined as a 100 × 100 m2 square

shaped grid map with 100 grids on each side, i.e. there are

10,000 nodes in G that represents (6). The robot model used

in the simulation assumes that m = 22 kg, v = 0.35 ms−1,

Pmax = 72 W. The rest of parameters are defined as µ = 0.01,

µs = 1.00, and g = 9.81 ms−2.

B. Simulation Results

The simulation results given in Fig. 1 illustrate physically

feasible shortest and energy-optimal paths from (10,70) m

to (90,45) m on the terrain given in (6). The shortest path

was obtained by using the Dijkstra’s algorithm [3] with the

distance-cost function given in (1). The length of the shortest

path is 98.47 m and according to the energy-cost function

given in (2), the mobile robot consumes 3177.14 J to traverse

it in 281.34 s. The energy-optimal path was obtained by

using the Z* search algorithm [7]. The length of the energy-

optimal path is 111.97 m and the mobile robot consumes only

240.07 J for the traversing which is completed in 319.91 s.

The physically feasible nondominated paths between the same

start and goal locations were obtained using the proposed

multiobjective path planner and they are illustrated in Fig. 2.

There are 76 nondominated paths in total. Their path length

and corresponding energy consumption are given in Fig. 3.

C. Discussion

According to the results given in Fig. 1, it is obvious that

the shortest path has traveled through both peaks and valleys

consuming large amount of energy. In contrast, the energy-

optimal path has traveled along valleys on the given terrain

consuming considerably lower amount of energy. However,

due to the increased path length of the energy-optimal path,

the mobile robot takes longer time to complete the traversal.

Now assume a scenario in which the mobile robot is powered

by a battery with a capacity of 1500 J and it is required to

reach the goal location within 300 s. In such a situation, the

mobile robot cannot reach the goal location using the shortest

path obtained because it does not have the enough energy for

complete traversal. On the other hand, it cannot utilize the

energy-optimal path either due to the time constraint, even

though it meets energy requirements of the path.

According to the results given in Fig. 2, the proposed path

planner results in multiple nondominated path options, and

Fig. 3 illustrates that there are several such path options which

satisfy both energy and time constraints given above. In fact,

the mobile robot now has possibility to select a shortest path or

an energy-optimal path which satisfies predefined constraints.

Therefore, the proposed multiobjective path planner can be

considered as a more versatile path planner compared to its

counterparts. Furthermore, the availability of multiple path

options increase the adaptability of mobile robots that are

utilized in uncertain environments; if a robot discovers that

it cannot traverse the initially selected path on the half way

through due to a path blockage, it may still be possible to

select another path to continue from the current location as

the proposed path planner provides multiple possibilities.

The proposed multiobjective path planner is based on ba-

sic operations of path selections and expansions which are

inherited to NAMOA*. On the other hand, its counterparts

which are single objective, are based on node selections and

expansions. Therefore, it is difficult to give a direct and

fair comparison of the computational efficiency between the

proposed path planner and its counterparts.
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Fig. 1. Shortest and energy-optimal paths from (10,70) m to (90,45) m.
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Fig. 2. All nondominated paths from (10,70) m to (90,45) m that are obtained
using the proposed multiobjective path planner. Two of these nondominated
paths coincide with the shortest and energy-optimal paths given in Fig. 1.

VI. CONCLUSION

This paper proposed an NAMOA* based multiobjective path

planner for uneven terrain navigation of mobile robots. The

proposed path planner is capable of finding all nondominated

paths between two points. Such nondominated paths provide

practical options for mobile robots when traversing a short-

est or an energy-optimal path is not feasible. In addition,

nondominated paths can be handy in dynamic and uncertain

environments since they allow mobile robots to select another

path without replanning if the current path is not realizable

anymore. Further experiments need to be carried out using

mobile robots to verify the applicability of the proposed path

planner in real-world applications.
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Fig. 3. A pareto frontier obtained using the proposed multiobjective path plan-
ner. It represents path lengths and energy consumptions of the nondominated
paths given in Fig. 2.
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