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We propose a phenomenological theory to model shear banding, shear-band propagation and branching on
mesoscopic scales in metallic glasses by using Ginzburg-Landau formulism. The disordering caused by me-
chanical or thermal agitation is represented by atomic volume dilatation and used as an order parameter. This
model captures several important features in the deformation process, namely, shear localization or banding,
shear-band propagation and branching, and crack propagation and its velocity. We also assessed the relation
between the crack propagation velocity and local heating and the connection between the serrated flow and
shear band branching.
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One of the most promising developments in metallic ma-
terials in recent years is the invention of bulk metallic
glasses �BMGs�.1,2 BMGs are topologically disordered solids
without the long-range translational order as seen in crystal-
line materials. The disordered structure with atoms packed
randomly leads to many unique and outstanding properties.
Perhaps the most interesting is the phenomenon called shear
localization: when a metallic glass subject to external load
reaches the flow stress, plastic deformation occurs in narrow
bands. The deformation strain inside the band is many times
larger than that outside, causing samples to fail locally and
quickly. The shear localization is by far identified as the only
mechanism that affects the strength, ductility, and thus appli-
cation of the BMGs which otherwise have many potential
applications derived from the superb properties.1–4 Shear
banding consists of three stages: nucleation, growth and
propagation, and final failure; and each stage occurs on a
different spatial and temporal scale. Shear-band nucleation
occurs in less than microsecond and with the critical nucle-
ation size of about 10 to several hundred nanometers, de-
pending on the material and ambient conditions.1–5 Once the
critical state is approached, the band could grow and propa-
gate; the bands grow into steady state, or maturity with typi-
cal thickness of tens of nanometers to hundreds of nanom-
eters and length of many times larger than the thickness,
depending on the propagation condition.1–5 A propagating
shear band often becomes unstable, resulting in branching
into subbands.1–5 The mechanical properties of metallic
glasses are determined by the detailed behavior of the shear-
band evolution. For example, a shear band starting propagat-
ing would affect yielding, or strength, and its propagation
and branching would contribute to ductility as more defor-
mation is concentrated inside the bands, absorbing more de-
formation energy and thus contributing to higher toughness.
In addition, as we identify below, shear-band branching may
be a major reason for the serrated flow observed during plas-
tic deformation.

The evolution exhibited in a localized shear band is a
complex interplay of many factors. The initiation of a shear
band is related to the local stress concentration and increase
of the number of displaced atoms during deformation via
atomic volume dilatation �AVD�.6,7 As shown by extensive
molecular-dynamics �MD� simulation recently,8,9 the volu-
metric change is necessary for atomic displacement in the

environment that has no obvious plastic-strain-carrier defects
such as dislocations as in crystals. Such mechanism was first
hypothesized by Erying10 for viscous flow in liquids and
later by Spaepen in deformation of metallic glasses.6,7 Fur-
thermore, the growth and propagation of a shear band is a
result of not only atomic volume dilatation, but also local
stress state, temperature, and other structural entities such as
inclusions, voids, and chemical heterogeneities.1–5,11 Despite
encouraging progresses made so far, our understanding of
shear-banding process in terms of quantitative description
and modeling of various shear-banding phenomena observed
in experiments are still very limited, largely due to the vast
span of the length and time scales in the processes. For in-
stance, the shear bands, especially those in the propagation
state, are either too large for MD simulation to simulate their
branching and interaction processes,8,9 or too small for the
finite element method �FEM� to capture its atomistic scale
deformation details.12,13 In this paper, we develop a phenom-
enological theory on mesoscopic scale to bridge this gap and
use phase-field approach to simulate shear-band formation
and propagation in metallic glasses.

As mentioned above, the basic premise of the theory is
that plastic deformation is carried by the microscopic flow
defects, AVD. As proposed by Eyring,10 the deforming atoms
swapping positions with the dilated open space nearby en-
able the flow or plastic deformation. Such an open space was
called free volume as its size was thought to be comparable
to a hole about the size of an atom,7,14 thus costing nearly no
energy for the atom-hole swapping. However, we shall not
follow this definition here as we have known from the ato-
mistic simulations that it is not necessary to have such a
large hole, or free volume, for the system to execute plastic
flow.8,9,15 For this reason, we simply use the dilatation of
atomic volume defined by v f =vi−v0, where vi is the atomic
volume defined as, for instance, the volume of the Voronoi
polyhedron of the ith atom, v0 is the molar volume in the
undeformed ideal random close packing �RCP� state. The
detailed description of the quantities and their rendition on
atomic scale can be found in Refs. 8 and 9. In the theory, we
shall use the fraction or density of AVD as an order param-
eter represented by a coarse-grained scalar phase field at po-
sition r� as ��r��=v f / �vm−v0�, where vm is the maximum di-
lated volume when complete decohesion occurs at that
position, which corresponds to a reasonable estimate of vm of
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a few atomic spacing. We should mention in passing that the
reference state defined above does not affect the results for
deformation as long as we can define such a state consis-
tently. Based on the nature of AVD defects and the charac-
teristics of plastic deformation of glassy alloy, clearly, the
order parameter defined this way is not conserved while the
mass is, which is very different from the deformation in crys-
talline materials where volumetric change is negligible. The
dilatation can be thermally or mechanically activated. As
shown in both experiment1–5 and atomistic simulations,8,9 at
temperature well below the glass transition temperature Tg
and under the applied stress ��� f, where � f is the flow
stress, the amorphous solid acts like an elastic medium with
few sites with large AVD activated. As � approaches � f, the
AVD sites can be activated by applied stress,7,15 or by local
heating3,16 due to excessive plastic deformation. When the
accumulation of these activated AVD sites reaches a critical
value, shear bands are observed to form.6,7,17 Further growth
of the AVD defects could lead to fracture.

Based on these phenomenological accounts for the defor-
mation and fracture characteristics of metallic glasses from
atomic scales, known also experimentally on continuum
level, we could write the free-energy density of the system as
a function of the AVD through a Ginzburg-Landau for-
mulism as18

f� =
a

2
�2 +

b

3
�3 +

c

4
�4 + ¯ , �1�

where a, b, and c are the Landau coefficients depending on
temperature, strain, chemical composition, or other state
variables. We should make a note that the use of a single
scalar quantity � as a “state variable” to describe the defor-
mation process in metallic glasses is tantamount to assuming
that it encapsulates the changes from other quantities such as
local atomic packing, chemical composition, and short- and
medium-range topological order, and so on. In fact, the ato-
mistic simulation did provide some direct support for this
assumption.8,9 Incidentally, one could include these quanti-
ties explicitly in a statistical physics model such as ours. But
it would be much complicated, if not impossible, to monitor
the evolution of the state of the system in a simple and trans-
parent way, especially in the disordered systems such as me-
tallic glasses. For these considerations, we shall use the
AVD, a scalar quantity for the time being. Specifically, the
selection of the expression of Eq. �1� is based on the follow-
ing reasoning: �1� when ��r��→0, f�=0, where the system
remains in an undeformed, ideal RCP state. �2� The presence
of certain degree of disorder from the reference state gives
rise to the increase in free energy at the state represented by
��r���0. The cubic term indicates such a state while a nega-
tive value for ��r�� is not realistic. Therefore, each different
��r�� represents a state in the free-energy landscape, which
naturally includes an infinite number of these states with
different ��r�� in the metastable glassy system under deforma-
tion. �3� Fracture occurs when ��r��→1.

In addition, in a deforming continuum media, there is also
the strain energy associated with long-range elastic field
originated from the external applied load and the defects, i.e.,

AVD, produced during deformation process. We can write
the strain energy of an isotropic medium as

e��� =
1

2
Cijkl�kl�ij , �2�

where �ij is the strain tensor defined by the displacement
field u through the relation �ij = ��uj /�xi+�ui /�xj� /2 with
i , j=1,2 ,3; Cijkl=���ik� jl+�il� jk�+��ik� jl is the elastic con-
stants; � is the shear modulus and � is Lamé coefficient
related to the bulk modulus B by B=�+2� /3. Therefore, for
a metallic glass subject to external loading, the total free-
energy density can be written as

f��,�ij� = e��ij� + f� = e��ij� +
a

2
�2 +

b

3
�3 +

c

4
�4 + O��5� . �3�

Equation �3� is a general expression for the free energy
contributed from the primary order parameter, �, and a sec-
ondary order parameter �ij. As we mentioned, physically we
would expect to see the interaction between the two as the
AVD is influenced by deformation, and vise versa. Since the
free energy f�� ,�ij� on the left-hand side of Eq. �3� is a
scalar, we can only allow the interaction energy, to the few
lower order terms in terms of � and �ij. Such approach, as
done routinely in Landau theory, can be recovered by using a
perturbation scheme as shown in the following: Because the
magnitude of AVD is usually very small �0.1–1.0 % �Refs.
8, 9, and 15�� in the elastic region ��	� f�, we can expand
the coefficients of Eq. �1� in terms of 
e=e��ij�−e0 at �
�� f when the sample is undergoing plastic deformation,

a = a0 + a1
e + a2�
e�2 + ¯ ,

b = b0 + b1
e + b2�
e�2 + ¯ ,

c = c0 + c1
e + c2�
e�2 + . . . , �4�

where e0 is the strain energy at the elastic limit. a0, b0 and c0
are independent of the strain. Since for most metallic glasses,
the increment of the strain at the onset of plastic flow is
limited, the expansion in terms of the plastic work 
e is
justified, thus providing a coupling between AVD and strain.
Assuming the leading error term of 
e ·�4 or �
e�2 ·�2 in Eq.
�1�, the local free-energy density of a metallic glass can thus
be approximated as19

f��,�ij� = e��ij� +
a0

2
�2 +

b0

3
�3 +

c0

4
�4 + �a1

2
�2 +

b1

3
�3��e��ij�

− e0� . �5�

The coefficients a0, b0, and c0 of Eq. �5� depend on other
external state variables. Therefore, Eq. �5� describes the en-
ergy landscape of a metallic glass containing AVD defects
when subject to deformation. The advantage of the above
approach is that we may take into account some of the plastic
strains at the onset of flow in the Landau theory which oth-
erwise would be limited to the elastic regime �Eq. �3��. Since
the dependence of AVD is explicitly specified in the above
formulation, we describe the temperature dependence of the
AVDs by assuming a linear relation between a0 and tempera-
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ture T, a0=a�−b�
T
Tg

, where a� and b� are constants.
To describe the evolution of the AVDs and thus shear

band which is nothing but a spatial variation of deformation
in the sample described by two variables, � and �ij, we also

include the kinetic energy, K=
�0

2 �u�
•

�2 and the gradient term of
the AVD in the free energy,

F =� 	�0

2
�u�

•

�2 + f��,�ij� +
�

2

�� �
2�dV , �6�

where �0 is the mass density of the sample. The second term
in the integral is described in Eq. �5� and the third term is the
gradient energy of the AVDs where � represents the “inter-
facial” energy between the regions with different amount of
deformation or AVD. When a crack appears, it becomes the
surface energy, which is depicted by the Griffith model.19

From the standard protocols of the Ginzburg-Landau for-
mulism, the equations of motions for u� and � are described
respectively by

��

��

�t
= −

�F

��
= ��2� − �a0� + b0�2 + c0�3� − ��a1 + b1��

�e��ij� − e0� �7a�

and

�0
�2u�

�t2 = − � · � �F

��ij
 = � � · 	�1 + �2�a1

2
+

b1

3
�� � u�� ,

�7b�

where �� is the characteristic time for AVD activation. Equa-
tions �2� and �7� govern the local strains and the evolution of
AVDs generated by both the plastic and the plastic deforma-
tion in metallic glasses respectively and thus form a com-
plete set of equations describing the dynamics of deforma-
tion and fracture. It is worth to point out that an effective
shear elastic modulus obtained in Eq. �7b� for a locally ho-
mogeneous system, is dependent of the amount of AVD,
which is inline with the observation of the softening of the
elastic modulus caused by deformation found in atomistic
simulation17 as well as experiment.1–5 Moreover, the local
heating due to the localized plastic strain can be described by
the heat conduction equation,

k�2T + �
�Q

�t
= CP�0

�T

�t
, �7c�

where Q=��ijd�ij is the total mechanical work and � is the
coefficient representing the percentage of the conversion of
mechanical work into heat, or Taylor-Quinney coefficient.
�=1 represents the adiabatic heating whereas �=0 is the
isothermal process. k is the thermal conductivity and CP is
the heat capacity. By solving Eq. �7�, the shear banding re-
sulting from the evolution of mechanical deformation and
AVDs can be readily obtained.

In the following, we shall present a simple case study
using this theory for shear-band propagation, branching,
and cracking, as we know that neither atomistic simula-
tion nor continuum modeling could treat this case
satisfactorily.8,9,12,13 The reason to choose this case first is

based on the following considerations: First, as known shear
bands are often generated from cracks1–5 and second, it is
relatively easy numerically to implement the theory and gen-
erate localized deformation from a crack. More case studies
with different scenarios and loading modes will be presented
elsewhere. We consider a model glass made of Vitrelloy 1
�Zr41Ti14Ni10Cu12.5Be22.5� under a mode I cracking since the
experimental measurement of various properties for this sys-
tem is the most complete and available. As shown in Fig.
1�a�, the system used has dimensions of 20202 �m3,
and a rectangular crack with dimensions of 0.40.05 �m2.
The materials properties are listed as follows:20,21

Tg=625 K, the Young’s modulus E=95 GPa, Poisson’s
ratio �=0.35, �0=6050 kg /m3, k=5 �W /m�K−1, CP
=475 �J /kg�K−1. The elastic strain limit under uniaxial ten-
sion is � f �2%. The characteristic time of AVD activation is
��=0.25 ns.22 The coefficients of Eq. �7� are given by a0
=4�2−T /Tg�
G, b0=−32
G, and c0=16
G, where the
AVD activation energy 
G is estimated as 4.6 eV at T
=300 K.23 We choose a1=4 and b1=−9 to quantitatively de-
scribe the shear softening in glassy alloy, which is consistent
with experiments and MD simulation.17,21 In particular, such
chosen coefficients reflect the fact that the shear modulus
tends to decrease and approaches zero when ��r��→1. We
define that a shear band forms in a region where ���c
=0.8 �Ref. 24� and cracking or fracture occurs if �→1. The
parameter � in Eq. �7� cannot be directly obtained from ex-
periment but could be estimated from the surface energy �
by �=�R, where R=0.56 �m is the characteristic length of
the vein pattern at the fracture surface of Zr-based BMG
observed in experiments. We have calculated � for
Zr41Ti14Ni10Cu12.5Be22.5 using density-functional theory25

and found ��1.97 J /m2.26

We solve the partial differential equations numerically in
the model system shown in Fig. 1�a�. The length rescale
factor lr=�� /�e0 and time rescale factor t0= lr /�� /�0 are
used to reduce Eq. �7� to dimensionless equations. Hence lr
and t0 represent the characteristic length and the time scale of
the system respectively. We use triangle meshes for the
model system. The sizes of meshes can be as small as 2 nm
near the regions of initial crack. These features are essential
in the numerical simulation since Eq. �7� are typical stiff
equations because of the shear localization. We made sure
that the size is large enough so the simulation results are not
dependent on it. Figure 1�b� shows the stress states near the
shear band.

We first focus on shear-band initiation and propagation
from the crack by neglecting the local heating ��=0�. Shear
band starts from the initial crack and grows into a propagat-
ing crack when the stress intensity factor K=��l� is larger
than 21.03 Mpa�m�1/2, which has been successfully captured
by our phase-filed modeling as shown in Figs. 1�c�–1�e�. We
can see that the shear band accumulated with activated AVDs
is highly localized in a 50-nm-thick region. As shown in
Figs. 1�c�–1�e�, when the applied tensile stress increases, the
shear band could change from a straight line to a wavy curve
and finally become unstable. The instability of the shear-
band propagation results in branching of the shear band. The
fracture toughness obtained from the simulation is KIC
=22.1 Mpa�m�1/2 at which the crack starts to propagate,
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which is consistent with experiments. In addition, under
large applied load, multiband branching �Fig. 1�e�� occurs in
a way similar to that observed in experiments.27

Next we focus on the velocity of a propagating crack, as
we observed that branching has a large effect on propagation.
We found that crack propagation velocity cannot excess a
critical velocity VC, which is an indication of shear-band
branching. From the simulation we see that in the sample
without local heating during deformation, the shear-band
branching always occurs when the crack propagation veloc-
ity reaches VC=0.63VR, where VR is the Rayleigh wave
speed. Here we define the critical velocity VC as the maxi-
mum propagation velocity of a crack tip. Shear-band branch-
ing always occurs after the velocity of crack tip reaches VC.
Figure 1�d� shows the shear-band branching and the arrows
indicate the positions where the crack velocities are VC.

It has been long debated27 that local heating is another
important characteristic cause associated with shear banding,
but at what stage and in what form heating is relevant to
shear banding remains unclear. Because of the rapid advance
of shear-band front and small spatial scale of a shear band,28

temperature rise near the shear-band is difficult to measure
from experiments.29 We now can use the phase-field model
to check how temperature rise affects shear-band propagation
by considering the conduction of heat generated from plastic
work �Eq. �7c��. Figure 2 shows the temperature rise near the
shear band at different values of � for the sample under the
same loading condition. We can observe not only the dra-
matic temperature rise if � is close to 1, but also that the
temperature rise near a shear band significantly affects the
critical velocity VC and the shear-band branching: Shear
band can easily become unstable and branching occurs since
VC drops with increasing shear-band temperature. Such phe-

nomenon is quantitatively characterized here. Figure 3 shows
the velocity V�t� of crack tip and the temperature at the crack
tip under different applied loading stresses in the sample
with �=1. Again we observe that VC is a critical velocity for
shear-band branching since the crack will slow down and
finally stop after the shear-band branching occurs. It is found
that VC is insensitive to the applied stress then, so is the
maximum temperature TR at the crack tip. Interestingly, the
maximum temperature TR always occurs after the crack
propagation velocity reaches VC, suggesting the mechanism
in that the local heating plays a less important role in the
shear-band branching. When � increases from 0 to 1, the
temperature rise 
T=TR-300 �K� changes from 0 K to more
than 2700 K if all the plastic work is converted into heat. The
relation is determined as


T � �x, �8�

where x=0.54 as shown in Fig. 4. By measuring the VC
associated 
T under different ratios �, the relation between
VC and temperature rise is shown in Fig. 4, which follows the
scaling relation,

0.63VR − VC � �
T�y , �9�

where y=1.1. The scaling relation indicates that the maxi-
mum velocity that a crack can achieve in Zr-based BMG is
0.63VR. However, in reality, the actual temperature rise de-
pends on sample size, dimension, and ambient temperature,
and importantly on crack opening which also conducts heat.
So the crack propagation velocity should be well below
0.63VR in most BMGs. Incidentally, the branching that oc-
curs intermittently could cause the serrated flow observed
widely in metallic glasses. Current understanding of the ser-

FIG. 1. �a� The model system of a BMG plate �20202 �m3�. A uniaxial tensile stress is applied along the y direction. l
=0.4 �m is the length of initial crack. �b� Indications of stresses ��xx, �yy and �xy� around a single shear band. Both the magnitudes and
directions of the stresses are shown. �c�–�e� Shear bands and crack propagations under stress intensity factors K=25, 35.4, and
100.2 MPam1/2 respectively. Only a strip of the BMG plate is shown. The gray scales correspond to the values of 1−�. The length bar
represents 2 �m.
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rated flow is centered mainly on generation of new shear
bands.1–5,30 Large efforts have been made to correlate each
shear band formation with a serration observed in the force-
displacement curve �or stress-strain relation�. Our results of-
fer a more convincing explanation to the phenomenon.
Branching or shear band instability during propagation
makes a considerable contribution to the serrated flow since
nucleating a new shear band is much more costly energeti-
cally when there is already a propagating shear band.

In summary, based on the available results from both ato-
mistic simulation and experiment, a Ginzburg-Landau for-
mulism is developed to describe deformation in metallic
glasses, in particular shear localization. The basis of this
theory is that �1� the atomic volume dilatation is a primary
internal state variable that describes the state of deformation
and reflects the change of local topological and chemical
order and thermal mechanical property change, �2� the defor-
mation in metallic glass is governed by the evolution of the

free energy consisting of the contributions from the internal
variable, the atomic volume dilatation, the strain energy of
the sample under deformation, and the interaction between

FIG. 2. �Color online� Temperature distribution around the shear
band in the BMG with various plastic work to heat conversion
ratios � and stress intensity factors K. �a� �=0.1. K
=27.7 MPam1/2. �b� �=0.5. K=24.3 MPam1/2. �c� �=1. K
=20.1 MPam1/2. The color bars are for the contour plots of tem-
peratures. Shear bands are shown in gray with the same scale as that
in Fig. 1.

FIG. 3. �Color online� Crack propagation velocity and tempera-
ture rise of a shear band in the Zr-based BMG plate with a plastic
work to heat conversion ratios �=1. Upper: The time-dependent
velocity V�t� of crack tip after it propagates from the initial crack.
The time t in unit of t0 is measured with respected to the moment
when a uniaxial tensile stress � is applied. V�t� under various stress
intensity factors K are shown. Lower: The corresponding time-
dependent temperatures at the shear-band tip under various K.

FIG. 4. �Color online� The relation between VC and 
T �solid
symbols� and the relation between 
T and � �open symbols� in
Zr-based metallic glass plates with various plastic work to heat
conversion ratios �. The blue dash line is the fit using Eq. �9�. The
red solid line is the fit for 
T��x using Eq. �8�.
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the two, and �3� the infinite large number of the metastable
states known to the glassy materials can be described in the
free-energy landscape, f�� ,�ij�. Coupled with thermal trans-
port, the dynamic equations �Eqs. �7�� governing � and �ij
form a complete set of relations that determine the evolution
of deformation and shear localization in metallic glasses. We
should mention that the theory is different from the approach
developed by Eyring and Spaepen earlier and later spear-
headed by Langer et al. in that a transition state theory is
used to describe the evolution of the damages incurred in
amorphous solids with the energetics governing the transi-
tion probability supplemented separately.6,7,10,31 We took Zr-
based BMGs as an example and show that the phase-field
model proposed can indeed reproduce some of the salient
features in the deformation processes that otherwise are dif-
ficult to capture with atomistic and continuum modeling: �a�
the formation of shear bands is observed with thickness
about 50 nm prior to fracture, �b� the branching of shear
bands occurs during plastic deformation, and �c� the tem-

perature elevation due to local heating, which can affect the
shear-band branching instability significantly. We also found
that the serrated flow observed often in metallic glasses may
be closely related to the shear-band instability, i.e. branching
and propagation intermittency. This model provides a bridge
for our understanding of the mechanical behaviors of BMG
at mescoscopic scales, which is expected to lead to better
prediction of shear-band behavior and lay a solid foundation
for design and development of strong and ductile BMGs.
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