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Unified framework for detecting phase synchronization in coupled time series
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Phase synchronization (PS) has drawn increasing attention in recent years for its extensive applications in
analyzing time series observed from coupled systems. In this paper, we examine the detection of PS in
bivariate time series from the viewpoints of signal processing and circular statistics. Several definitions of
instantaneous phase (IP) are first revisited and further unified into a framework, which defines IP as the
argument of the signal with a specific bandpass filter applied. With this framework, the constraints for IP
definition are discussed and the effect of noise in IP estimation is studied. The estimate error of IP, which is due
to noise, is shown to obey a scale mixture of normal (SMN) distributions. Further, under the assumption that
the SMN of IP error can be approximated by a particular normal distribution, the estimate of mean phase
coherence of bivariate time series is shown to be degraded by a factor, which is determined by only the level
of in-band noise. Finally, simulations are provided to support the theoretical results.
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I. INTRODUCTION

Synchronization is a cooperative behavior, which means
that the coupled systems evolve with the same rhythm. It is
ubiquitous in both natural and engineering systems. Ex-
amples include coupled chaotic oscillators [1], human brain
activities and muscle activities [2], neuronal oscillations
[3.4], chaotic laser arrays [5], electrochemical oscillations
[6], and coupled nanomechanical oscillators [7]. This phe-
nomenon can not only reveal the mechanism and function of
the coupled systems (e.g., communication during cognitive
processing in human brain [3]) but also helps to gain new
applications such as clinical treatment for Parkinson disease
[8]. Therefore, it has drawn increasing attention in recent
years (for a review, cf. Refs. [9,10]).

There are several different types of synchronization, such
as complete synchronization (CS), generalized synchroniza-
tion (GS), and phase synchronization (PS) [11]. Note that it
is difficult to apply CS and GS to analyze bivariate time
series observed from experimental systems. Nevertheless,
PS, a weaker form of synchronization, is a suitable tool for
observed time series and has been extensively applied. Let
¢ 5(1) denote the instantaneous phases (IP) of two coupled
systems, respectively. Then the coupled systems are said to
be in PS when the inequality |/¢, (1) —me,(t)| <const holds,
where [ and m are positive integers. When [:m=1:1, the [:m
PS reduces to be the most straightforward form, i.e., 1:1 PS.
Various methods have been introduced to detect synchroni-
zation [12-14]. However, to reliably detect synchronization
is not so easy, especially for the case when one has only the
observed time series, which are noncoherent (i.e., with broad
power spectra) and unavoidably contaminated by noise
[12,15,16]. The performance of various synchronization in-
dexes, including PS indexes, can be greatly degraded when
the noise level is relatively high [15]. Usually, the noisy data
are prefiltered with a bandpass filter. A data-driven optimal
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filter has been designed for noisy data in IP estimation [17]
and some other algorithms have also been proposed to pro-
vide robust detection of PS in noisy data [14,18].

To detect PS in observed time series, an appropriate defi-
nition of IP is very important. Various definitions of IP have
been introduced. Most of them are based on particular trans-
forms, such as the Hilbert transform [1], the derivative of the
Hilbert transform [6], a generalized transform with Gaussian
filter [5], and the wavelet transform [19], of the observed
data. To the best of our knowledge, although various defini-
tions have been proposed, there are still several key points
left to be addressed. The first problem is how to treat nonco-
herent data [20]. For noncoherent data, negative instanta-
neous frequency (IF) (defined as the derivative of IP with
respect to time), which is physically meaningless, may be
introduced by the Hilbert transform [21,22]. Usually, a nar-
row bandpass filter is applied as preprocessing. Then the first
problem becomes what type of filter should be used. The
second problem concerns the relationship among the various
definitions of IP. To date, these IP definitions have been com-
pared numerically with both simulation data and experimen-
tal signals [12,15]. However, their relationship has not been
well understood theoretically. Beyond the suggestions given
by numerical comparison, the puzzle of which IP definition
is more appropriate for analyzing particular signals still ex-
ists. The third problem is how, quantitatively, the noise will
affect the detection of PS. For contaminated data, artificial
phase slips, introduced by noise, will reduce the reliability of
the estimated PS index. A bandpass prefiltering may suppress
the effect of noise but may introduce spurious overestimation
of PS index as well [23]. Thus, an analytical study on the
effect of noise is greatly desired.

In this paper, the above problems are treated from the
viewpoints of signal processing and circular statistics. Sev-
eral definitions of IP are revisited and further unified into a
framework, which defines IP as the argument of the signal
with a specific bandpass filter applied. With this framework,
the constraints for IP definition are examined based on the
theory of signal processing, and the relationship among sev-
eral IP definitions is demonstrated. Furthermore, an analyti-
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cal study of the effect of noise in IP estimation and PS de-
tection is given. The distribution of the IP error induced by
noise is shown to be a scale mixture of normal (SMN) dis-
tributions. Under the assumption that the SMN of IP error
can be approximated by a particular normal distribution, the
estimate of PS index is shown to be degraded by a factor,
which is determined by only the noise level in the pass band.
Finally, these theoretical results are verified by numerical
simulations.

The organization of this paper is as follows. In Sec. II,
several definitions of IP are revisited and relevant comments
are given. In Sec. III, a framework of IP definition is intro-
duced, the constraints for IP definition are examined, and the
relationship between IP and the Fourier transform is dis-
cussed. In Sec. IV, an analytical study of the effect of noise
in IP estimation and PS detection is given. In Sec. V, simu-
lations are performed to verify the analytical study on the
effect of noise. Finally, a conclusion is given in Sec. VI.

II. REVISITING THE DEFINITION OF IP

In this section, we will revisit four definitions of IP and
show that the IPs are actually defined as the arguments of the
outputs of specific filters which are applied to the original
observed signal. The differences of these IP definitions are
the forms of the corresponding filters.

A. Definition of IP based on the Hilbert transform

The most popular definition of IP is based on the Hilbert
transform. Given an observable signal s(7), its analytic signal
is defined as

(1) = 5(1) + j5(0) = AP (1)l "0 (1)
where
E@=HMN=lMJ LG (2)
T =T

is the Hilbert transform of s(z) (here PV means that the inte-
gral is taken in the sense of Cauchy principal value), A" ()
is the instantaneous amplitude (IA), and ¢™(r), which is
given by

&P(1) = arg[s"(1)] = arctan% (3)

is the IP of signal s(¢). The analytic signal s"(r) can be
written as the convolution of s(¢) with a complex- response
filter, i.e., s (z)=s(¢) = b"(r), where b ()= 8(r) +]— In the
frequency domain, s”(¢) is S (f)=S(f)B"(f), where S(f)
and B"(f) are the Fourier transform of s(r) and b"(7), re-
spectively. By definition, the analytic signal can be obtained
in the frequency domain by setting the negative frequency
components of the Fourier transform of signal s(7) to be zero
and doubling the amplitudes of the positive frequency com-
ponents, that is, the filter BM(f) should be
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2 if f>0
BP(H={1 if f=0 (4)
0 if £<0.

For coherent data (i.e., with one dominating frequency com-
ponent), the so-defined IP increases monotonically, while for
noncoherent data, the so-defined IP may decrease at some
instants and, thus, the corresponding IF may be negative,
which is physically meaningless [21,22]. For this case, IP is
not a one-to-one transformation to the analytic trajectory and
ambiguity occurs in PS detection [18,20].

B. Definition of IP based on the idea of curvature

To deal with noncoherent data, some other IP definitions
have been proposed. One of them defines IP as the argument
of the derivative of the analytic signal s"(1), i.e.,
(1) =arg[s'D(r)], where s (r)= J;ﬁ M [6]. We can
wite 00 a0 =E0 g (604
—WHJMH“Jﬂm%(ﬁwmmHNﬁSMJﬁ

In the frequency domain, s@(r) appears as
SD(f)=S(f)B(f), where
jAmf if >0
BO(f) =4 j2mf if f=0 5)
0 if £<0

is the Fourier transform of b (z). Obviously, this filter am-
plifies the high-frequency components. Note that this IP defi-
nition is based on the idea of the curvature of an arbitrary
curve [24]. If the curvature of curve C,=[s(z),5(r)], which is
defined in the [s(z),5(z)] plane, is positive, the curve C,
—[%ﬁ%tﬁ] will cycle monotonically around a fixed point
and, thus, the IP ¢'¥(r)=arg[s)(¢)] will increase monotoni-
cally. However, for noncoherent data, the curvature of curve
C, is not always positive. For the instants the curvature turns
from positive to negative, the corresponding IP will decrease.
Thus, this definition is not always applicable to arbitrary
noncoherent data.

C. Definition of IP with Gaussian filter

As discussed above, the analytic signal is obtained by
applying a specific filter to the real signal s(7). With this fact,
a generalized definition of IP is proposed by applying a
Gaussian filter (its envelope is a Gaussian function and thus
named) b 3)(t)—2—Te" 12T gi2fut 1 s(), ie., s©%)
=5(¢) *b®(¢) [5]. In the frequency domain, s®'(¢) turns out to
be S¥(f)=S(f)B®)(f), where

BYO(f) = 2010, (6)

Actually b®(r) is a narrow-band Gaussian filter [i.e.,

11
2—T 1, which is shifted by the nominal frequency f,, in

046219-2



UNIFIED FRAMEWORK FOR DETECTING PHASE ...

the frequency domain.' Then the IP is defined as
@9(r)=arg[s'¥(r)]. This definition has been applied success-
fully in detecting PS of coupled laser arrays, which the
method based on the Hilbert transform has failed to reveal
[5]. This is because PS only exists between the components
in a particular frequency band of the laser data. If these com-
ponents are not extracted by a bandpass filter, PS between
them will be submerged by noise and the components in
other bands and thus cannot be detected.

D. Definition of IP based on the wavelet transform

One more IP definition is based on the Wavelet transform
[19]. With the Gabor wavelet y(r)= g(t)eﬂ’”” the wavelet
transform of s(t) is s"(u,a)=["s(= =y (%*)dt, where

g()=(T2m)V4e™ 07 s the envelope. Let ()= —z,b (),
then

s (u,a) = f ’ s(B (u = D)dr = s(u) * b (u),

where

b(W)(u) — L_g(__l't)eﬂm/u/a — L (M) Jj2mvula
¢ va \ a Z

because g(#) is symmetrical. Let fn—'-’ and v=1. Then
) (u,a)=s(u)*b"(u), where b™ (1) =, /2g(f u)el? ™t The
dlfference between b™(1)=fA(T2 )4 @) g2l and
g)(t)——Te" 1QT) i2fut §s the amplitude and the width of
the Gaussian window, that is, b™)(r) is scaled by f,,. In the

frequency domain, g(7) appears as G(f)=(47T?)"4e 2w P T
and b™(7) is
]4« f
GE UZG( 7 ) (7)

Therefore, this method obtains the analytic signal by apply-
ing a scaled bandpass filter to the signal s(z).

III. FRAMEWORK FOR IP DEFINITION

In this section, we first show that the IP definitions dis-
cussed above can be unified into one common framework:
applying a particular filter to the observable signal s(¢) and
further defining the IP as the argument of the output of the
filter. Furthermore, we study the constraints for defining IP
and the requirements for the filter. After that, we discuss the
relation between the so-defined IP and the Fourier transform
from the viewpoint of signal processing.

A. Defining IP with bandpass filter

In the field of signal processing, IF, which is commonly
defined as the derivative of IP, is an important concept and

'"The nominal frequency denotes the midpoint in the pass band or
the arithmetic mean between the high and the low cut-off frequen-
cies of the filter. It also denotes the desired center frequency of a
crystal or oscillator.
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has been widely studied [25-27]. The filter b(f)=g(f)e/>™n,
which has a complex response, has been introduced to esti-
mate IP [28], where g(t):ﬁe"z/ (@7 is the envelope of the
filter and T is the response duration. In the frequency do-
main, b(r) is

B(f) = b(z)e-ﬂ"f’dr— f g(Ne P dr = G(f - £,),

(8)

where G(f):e‘z”zf *1 is the Fourier transform of g(r). When
the signal s(7) is passed through this filter, the output of the
filter, i.e., s”(r)=s(r)*b(z), is analytic if the bandwidth of
the filter is smaller than 2f, [28], since its spectra at negative
frequencies are eliminated by the bandpass filter.” Then IP is
defined as ¢P(r)=arg[s”)(r)]. If the envelope g(r) is a
Gaussian function, this method is exactly the one based on a
Gaussian filter, which has been introduced in Sec. II C. Of
course, some other windows, such as the Hamming window,
can be used as the envelope as well. No matter what filter is
used, it is applied to constrain the output of the filter to be
coherent, i.e., narrow band with only one prominent spectral
component.

The analytic signal s”)(r)=s(¢)b(r) can be interpreted as
a combination of the Hilbert transform and a real bandpass
filter. Let s (1) =s(r) * R[b(1)|=s(2) # [ g(t)cos(27f,t) ], where
R(-) denotes the real part of the complex variable (-). In the
frequency domain, s (¢) appears as

sU() =5( G(f+fn) + G(f ] ©)
As Eq. (4) indicates, the analytic signal of s)(¢) can be ob-
tained in the frequency domain by eliminating the negative
frequency components of s)(¢) but doubling the amplitudes
of the positive frequency components. Therefore, the ana-
lytic signal of s)(¢) can be obtained by the inverse Fourier
transform of S(H)BM(f), i.e.,

FS(HBM(f)]
—FI{S(f)[ ~G(f+f,) + G(f fn)]B(’”(f)}

=FSNG(f = f)l=s(t) * FG(f = £,)]
=5(1) * [g(ne”*™] = 5P1), (10)

where F!(-) denotes the inverse Fourier transform operator.

B. Constraints for IP definition

In the sections above, it is shown that IP can be defined as
the argument of the signal with a particular filter applied.

’Note that here we consider that the frequency components out-
side the pass band are completely eliminated. For real implementa-
tion of filter, the frequency components outside the pass band may
not be eliminated completely but suppressed to a very low level. So,
precisely speaking, s”)(¢) only approximates an analytic signal. The
approximation error has been discussed in Refs. [29,30].

046219-3



JUNFENG SUN AND MICHAEL SMALL

Then are there any constraints for the filter in defining IP? In
this section, we will address this problem from the viewpoint
of signal processing.

The signal s() can be written as s(f)=R[A()e/?"], i.e.,
the real part of a complex variable. Usually, the correspond-
ing imaginary counterpart Z[A(t)e/#”] cannot be observed
and is assumed to relate to s(7) by a certain operation, i.e.,
I[A(1)e!*D)=H[s(r)]. To define IP, various operators H(-)
have been proposed and the Hilbert transform H(-) is the
most popular one. Three physical conditions have been pro-

posed to constrain the operator H(-) [25]:

(i) Condition I: amplitude continuity and differentiability.
This condition guarantees that the associated amplitude A(z)
is continuous and differentiable.

(ii)) Condition II: phase independence of scaling
and homogeneity. This condition means that the IPs of
signals s(¢) and c-s(¢) are the same. In other words, this
condition requires that the operator possesses the property
Hes(D)]=cH[s(1)].

(iii) Condition III: harmonic correspondence. This condi-
tion requires that for any constant amplitude A >0, fre-
quency >0, and phase ¢, the operator satisfies
H[A cos(wi+)]=A sin(wi+ ).

The Hilbert transform () has been proven to be the
only one that satisfies these physical conditions [25]. Con-
sidering this, we only investigate the IP definition based on
the Hilbert transform in this paper. More discussions in these
conditions can be found in Ref. [25].

For a coherent signal, the Hilbert transform works well
and the so-defined IP [Eq. (3)] increases monotonically. But
for a noncoherent signal, the corresponding IP no longer in-
creases monotonically, resulting in negative IF at some in-
stants, which is physically meaningless. This problem can be
addressed with the Bedrosian theorem [29,30]. This theorem
states that for a low-frequency term /() and a high-frequency
term h(r), which have no spectra overlapping, the relation

HUOA(@)] = 1OH[A()] (11

holds; that is, the low-frequency term can be taken out of
the Hilbert transform. For a signal of the form
s(t)=A(t)cos ¢(t), A(r) and cos ¢(r) correspond to the low-
frequency term [(r) and the high-frequency term A(z), respec-
tively. Straightforwardly, a complex form of signal s(z) is
defined as s5,(t)=A(1)e/?", which is called the quadrature
model of s(t). This model is used before the introduction of
the concept of analytic signal. It seems natural to take ¢(7) as
IP. However, this model does not tell how to estimate A(f)
and ¢(r) from only the observable signal s(z) and thus is
difficult to be applied to observed time series. There is a
difference between s,(f) and the analytic signal s"(1) [Eq.
(1)], which is estimated with the Hilbert transform. The en-
ergy of the difference is twice the energy of the negative
frequency components of the quadrature model [30]. This
difference tends to vanish as A(r) and cos ¢(¢) fulfill the
Bedrosian theorem. In other words, the more noncoherent
the signal (i.e., the broader of the spectra of the signal), the

bigger the difference. Condition II, i.e., H[cs(r)]=cH[s(2)],
sets a constraint on the operator. Additionally, the Bedrosian
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FIG. 1. (Color online) Schematic diagram of IP definitions. (a)
S(f), the Fourier transform of a coherent signal s(r); (b) B®(f), the
filter for IP definition based on the Hilbert transform [Eq. (4)]; (c)
SW(H=S(f)BM(f), the Fourier transform of the analytic signal
() =s(r)=b"(2); (d) S(f), the Fourier transform of a noncoherent
signal; (e) B(f), a narrow bandpass complex-response filter with
nominal frequency f, [Eq. (8)]; (f) S©(f)=S(f)B(f), the Fourier
transform of the analytic signal s©(r)=s(t)*b(1); (g) BY(f), the
Fourier  transform  of  g(f)cos(2mfyr), i.e., the filter
b(1)=R[g()e*™"]; (h) BY(f): (i) [B)(f)| [Eq. (5)]. the complex-
response filter for IP definition based on the idea of curvature; (j)
|BE(f)|, where B)(f)=1-jel2m7, f0=4LT; and (k) |BY(f)|, where
BY(f)=1+2pmf, fo=5,--

theorem sets a constraint, which is similar to condition II, to
the signal. If the low-frequency term [(¢) is a constant, then
Hlcs(t)]=cH[s(t)] obviously holds.

To fulfill the Bedrosian theorem, we a%)g)ly a bandpass
filter b(7) to the noncoherent signal, i.e., s”)=s()*b(1), so
that the filtered signal is coherent. For the filtered signal, its
IA A®)(z) varies much more slowly than cos gb(b)(t), which
means that the effective frequency band of A®)(r) is much
lower than that of cos ¢ (¢) [30]. The effective bandwidth
of the filter b(f) is Af=1/(2\27T) [28]. To let the filtered
signal fulfill the Bedrosian theorem, %Z should be less than

£, which gives T>1/(4\2xf,). The IF ﬁd—d%ﬂ of the com-
ponents in the pass band approaches the nominal frequency
f, in an asymptotic sense as the pass band of b(¢) becomes
narrower to be a delta function, i.e., &(f—f,), in the fre-
quency domain [26]. Note that for the method based on the
wavelet transform, a similar theorem gives the constraint for
estimating the analytic signal s*(¢) ([31], p. 91-93).

Based on the three physical conditions and the Bedrosian
theorem, we give some comments on several IP definitions
with a schematic diagram (Fig. 1). For a coherent signal [Fig.
1(a)], the TP definition based on the Hilbert transform [Fig.
1(b)] is a proper choice for the signal itself fulfills the Bed-
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rosian theorem, and the other three IP definitions introduced
in Sec. II are also applicable, though they are not indeed
required for a coherent signal. For a noncoherent signal [Fig.
1(d)], the Hilbert transform-based method no longer works
well for the signal does not fulfill the Bedrosian theorem. In
Sec. III' A, a narrow complex-response bandpass filter
[Fig. 1(e)] is applied to make the filtered signal coherent
[Fig. 1(f)]. As we have demonstrated, this filter [i.e., B(f),
Eq. (8)] can be considered as the combination of B")(f) and
BM(f), i.e., B(f)=B"(f)B"(f) [Egs. (9) and (10); Figs. 1(e),
1(g), and 1(h)]. Actually, the IP definition with Gaussian fil-
ter [Sec. II C; Eq. (6)] and the IP definition based on the
wavelet transform [Sec. II D; Eq. (7)] are both similar with
the IP definition with bandpass filter B(f). The differences
between these filters are the shape of the pass band of the
filter. Thus, these two IP definitions work well for noncoher-
ent signals if their bandwidths and nominal frequencies are
properly set so that the filter can shape the original signals to
be coherent.

The Hilbert transform has been proved to be the unique
operator that satisfies the three physical conditions. For the
IP definition based on the Hilbert transform, the filter B(h)(f)
deletes all the negative frequency components of the Fourier
transform of the real signal s(r) to generate its analytic signal

"(r). So for any other IP definitions, the negative frequency
components the complex signal generated from the real sig-
nal s(r) must be zero, such as S™(f) in Fig. 1(c) and S®)(f) in
Fig. 1(f), before the argument of the complex signal can be
defined as IP. Additionally, the Bedrosian theorem requires
that the complex signal must be coherent, i.e., with narrow-
band spectra. For a general noncoherent signal, we suggest
that the IP can be defined by applying a complex-response
bandpass filter as that proposed in Sec. III A.

For the IP definition based on the idea of curvature, the
complex-response filter is B (f) [Eq. (5)]. As Fig. 1(i) indi-
cates, this filter deletes all the negative frequency compo-
nents but amplifies the amplitudes of the positive high-
frequency components. For a coherent signal, this IP
definition works, though the amplification of the positive
high-frequency components will lead the so-defined IP to be
different from that defined by the method based on the Hil-
bert transform. For noncoherent signals, this definition may
work for particular cases as have been reported [24], but it is
not generally applicable for any case because the filter B (f)
does not assure that the filtered signal s@(¢)=s(¢) *b (1) is
coherent.

Two variations in the generalized IP have been
discussed in Ref. [5]. The first variation is with filter
BO(f)=1—je/>™". In the time domain, this filter is
bO(1)=8(1)—jS(t+7), and s(r)=s(r) b () =s(t)— js(t+7).
We can obtain s (f)=s(f)+js(r+7) by changing the filter
slightly to be b“)(r)=&(r)+j8(t+7). Now the so-defined IP
@(r)=arg[s(1)] can be interpreted as the angle of the re-
constructed phase trajectory in the two-dimensional surface
of time delay embedding, i.e., [s(¢),s(¢+7)], where 7 is the
time delay [32]. As Fig. 1(j) indicates, the filter B)(f) can
only eliminate the negative frequency components of the
Fourier transform of signal s(r) at the frequency bins
-(k ) where k is a nonpositive 1nteger So only for the
coherent signal with spectra that locate at (-—k) the filter
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B“(f) can guarantee that the filtered signal fulfills the con-
straints for IP definition.

The second variation is with filter BY)(f)=1+2unf. In
the time domain, this filter is bW (r)=&(r)—jud . With
SO =5 xbO (D) =5()—ju™2, the TP is defined as
¢ (r)=arg[s)(r)]. This definition is similar with the one
defined by Mandelstam’s method, which is widely used in
the nonlinear oscillation theory [25]. Mandelstam’s method
defines IP in the plane [s(7),— T Adtﬁ] where fn is the nomi-
nal frequency of the oscillation. When w= 277 , these two
definitions are the same. Furthermore, if u=1, ¢>(”)(t) can be
interpreted as the angle of the state of displacement versus
velocity. However, as Fig. 1(k) indicates, the filter BY)(f)
does not suppress all the negative frequency components.
Only for the signal of frequency f—_z,m’ this IP definition
satisfies the constraints for IP definition. For any other signal,
this definition will introduce oscillation and distortion for the
so-defined IP. More discussions on this IP definition can be
found in Ref. [25] and references therein.

C. Relationship between IP and the Fourier transform

Under the assumption that g(¢) is symmetric, the analytic
signal s (r)=s(r)*b(t) can be written as

®)(f) = fw s(u)b(t —u)du

=f s(u)g(t = u)e> =" gy

—o0

e 2™t dqy

- eﬂwfnrf s(u)g(u—

—00

= PTS,(f) (12)

where S,(f)=J7,s(u)g(u—1)e>™ndy is the short-time Fou-
rier transform of real signal s(¢) with symmetrical Gaussian
window g(t). Note that S,(f) | f=s, is dependent on both time
and the nominal frequency f,. If the bandwidth of S,(f) is
much smaller than the nominal frequency f,, the amplitude
of S,(f)| /=7, can be c0n51dered as the amplitude of the band-
limited analytic signal s)(r). In other words, s”)(r) can be
considered as an amplitude-modulated signal with carrier
frequency £, and S,(f)| r=f, corresponds to the low-frequency
term that is required in Eq. (11). Then the IP can be written
as

¢"(1) = arg[sV] = 2mf 1 + arg[ SNl 1. (13)

Let us further examine two extreme cases of the
bandpass filter b(r). The first one is that the filter b(z) is an
all-pass filter, i.e., g(1)=8(r). For this case, we have
b(t)= 8(1)e?™n' = §(r) and sP(1)=s(t)*b(t)=s(7). As s(7) is a
real signal, arg[s”)(1)]=0, which gives no meaningful infor-
mation of s(f). The second extreme case is that the filter is
b(t)=g(t)e/*™" with envelope g(¢)=1. In the frequency do-
main, g(¢) turns out to be G(f)=&(f), which means that the
filter [i.e., b(f)=e>™/'] is extremely narrow and lets only the
component of frequency f, pass. Then we have
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Mﬂkﬂ=f s(u)g(u — t)e 2™ dy

—0o0

= j s(u)e P2 dy

—00

= ]:[S(M)](f)lf:fn, (14)

where  Fs(u)](f) denotes the Fourier transform
of s(u). From Egs. (12) and (13), we get
sy = Fls ()]s, and (D) =27f,1
+arg{Fs(u) ()| s }. For this case, arg{FLs(u)1(f) = s} s

dependent on f, but not dependent on time ¢. The IF of the

component in the pass band is f},(¢)= LW —MM =f,, which is
actually the nominal frequency of the ﬁlter This is obvious
because

s(h)(t) =s(1) = b(r) = Jm S(f) 5(f_fn)ej2ﬂ-ﬂdf

is the component of frequency f,, which is extracted
from s(7) by filter b(z). As g(t)— 1, the filter b(t) — e/>™n',
then the analytic signal s®(r) approaches to be
I2.8(f)8(f-f,)e’>™'df in an asymptotic sense.

Note that the relationship of techniques based on the Hil-
bert transform, the wavelet transform, and the Fourier trans-
form has also been discussed from other angles [12,33]. In
Ref. [33], it is demonstrated that the spectral analysis based
on the Hilbert transform, the wavelet transform, and the Fou-
rier transform are “in fact formally (i.e., mathematically)
equivalent when using the class of wavelets that is typically
applied in spectral analysis.” This is true when the param-
eters of these three transforms are set in a particular way, and
spectral analyses based on them turn out to be equivalent to
each other. But for other cases, these three transforms have
their own features and advantages for specific applications. It
is not appropriate to claim that they are arbitrarily equiva-
lent. Other discussions on the relationship between these
transforms can be found in Refs. [26,33].

IV. EFFECT OF NOISE IN PS DETECTION

In real applications, the observable signal is contaminated
more or less by noise. In this section, we perform an analyti-
cal study of the effect of noise in IP estimation and PS de-
tection.

Let s(r)=x(r) +w(t) denote the noisy signal, where x() is
the clean signal and w(r) is the noise term. A bandpass filter
b(z) is first applied to the noisy signal s(7), and the output can
be written as

®)(t) = 5(1) * b(1)
=x(t) = b(t) + w(t) = b(r)
= A (DD 4 (), (15)

where w®(r)=w(r) *b(z). Let (?)ff’)(t) denote the estimate of
¢)(Cb)(t) from the noisy signal s(¢) and 6(t)=$ib)(t)—¢ib)(t)
denote the estimate error of IP due to the noise term w(z). It
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has been proved that the distribution of 6(z) is

exp[- AY (207 »)]

0) =
p(6) Y.
A cos 6 A, cos 0 ~AZsin® 6
erf expl ———
\’27T0'W(b) T,(b) 20, )
(16)
where the error function is defined by erf(x)

=2L_77 e /2dy and o, denotes the root mean square of

R[w®(r)] [34]. When the instantaneous signal-to-noise ratio
(iSNR) r?(r)=A i(t)/[2(rw »] in the pass band is large
[F?(1)=5], the term exp[~A%/(20"»)]/(2) in Eq. (16) is
very small and can be neglected, the error function approxi-
mates unity, and sin 8= 6, cos 8= 1, because |6|<1. Then
Eq. (16) is reduced to be a normal distribution, i.e.,

9~ N(0,07%),

p(0) = (27~ e, (17)

where oy=0,1)/A(1). Since 6(¢) is an angle, its distribution
can be wrapped into (—7r7r] and turns out to be the wrapped

normal (WN) distribution ~]V(O,o'28),

0

PPRCE 2hm)1(207) (18)
V2O gk=—mn

p(0)=

where © stands for the wrapped 6, i.e., ®=6(mod 2)

[35,36].
The WN distribution possesses the reproductive

if ®1~1V(,ul,a'%,l) and
®2~]V(,u2,0%2) are independent, the relation (0,-0,)
~]V(,u]—,u2,0'29]+0'292) holds. Here, u;=0,u,=0, and thus
(®,-0,)~N(0, o2 +0'2) For the variables x;,(¢) of the
coupled systems [eg Eq. (26)], their IPs, i.e., qb( (t) can
be obtained. Let ¢= (b(b) ¢(b), o= ¢(b> ¢(b) ¢(b) ¢(b),
and 6= - ¢ [for br1efness, the var1able tin formulas,
such as qﬁffj (1), ié omitted]. Then we have

property [36].  Specifically,

¢-o=[¢" - V1[4V - 4]
=[¢" - p"1- 147 - 4]
=6,-6,. (19)

It is obvious that ($—¢) turns out to be (0,—0,) when it is
wrapped into (—77] and thus obeys the WN distribution
N(O, Tp +07)-

Various PS indices have been proposed [12]. Two popular
indices are based on entropy [2,23] and circular statistics
[36,37], respectively. They both quantify how concentrated
the distribution of IP difference is. In this paper, we adopt the
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latter one,” which is called mean phase coherence (MPC) and
defined as p=||E[¢/?]|. To deduce the effect of noise on the
estimate of MPC, we first express the estimate of MPC for
the noisy signal as

p=E[e/?]| = |ELe/ el = |ELe/E 9] - | ELe#]].
(20)

In statistics, the characteristic function (CHF) of a variable x
is defined as C, (k)=[”, p(x)e/**dx, where p(x) is the prob-
ability density function (pdf) of variable x. Actually, CHF is
the average value of e/*, ie., C (k)=E[¢*]. If x obeys the
WN distribution x~N(u, o), its CHF is C,(k)=e/#h-0%2,
where k is an integer [36,38]. As we have demonstrated that
(¢—¢) obeys the WN distribution N(O, o'2 +a'2 ) when it is

wrapped into (-], we can get C(4_,)(k)=¢ ("0 +0 2 [Eq.
(19)]. Then from Eq. (20), we have

R : (62 402
p=Clo-p(DIl - |E[7]|| = €7 “0,+70)2p, (21)

which implies that the noise introduces a degrading factor,
ie., 6_(0%1-“7?72)/ 2, to the true index p, and this factor is deter-
mined by only the level of in-band noise.

Note that in Egs. (16) and (17), A, (as well as
op=0,m/A,) is a time-dependent variable, i.e., A (), if the
amplitude of signal s)(r) is not a constant. So @ actually
obeys a conditional distribution and Eq. (17) turns out to be

92/(202,)’

p(0loy) = (2moy) e oy> 0. (22)

For the time series {s(n)} sampled from signal s(7), 6(n)
obeys a normal distribution with variance that varies from
one sample to the next. Therefore, the distribution of IP error
of the observed time series {s(n)} is SMN distributions with
different variances. If the pdf of {oy(n)} is known, the em-
pirical distribution of IP error {6(n)} for the observed time
series {s(n)} can be approximated as

K

pu(0) = 2 p(6la)m, (23)
k=1

where {Wk}le are the respective empirical probabilities,
which are estimated from {A (n)} on a finite number of val-
ues {0}, [39]. This means that the distribution of {oy(n)}
depends on the distribution of {A,(n)}. Note that A (n) is the
IA of the clean signal. Thus, for the observed time series
{s(n)}, which is contaminated by noise, the distribution of
{A(n)} is difficult, if not impossible, to be obtained analyti-
cally. In this paper, we do not try to find the exact SMN of
the phase error of {s(n)} but perform simulations by consid-
ering oy as gy=0,,»/max{A,(n)}. In other words, the SMN
of the phase error is approximated by a normal distribution
with a constant standard deviation o,/ max{A (n)}. Simu-
lations with this assumption will be performed in Sec. V.

*In this paper, we adopt the index based on circular statistics be-
cause it will be convenient for us to deduce the effect of noise
analytically. For the index based on entropy, it is difficult, if not
impossible, to deduce an analytical result on the effect of noise.
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With the estimated {¢(n)}-Z), the MPC is estimated as

T 2 -1 2|12
p= [—E cos ¢>(n)} + [ 2 sin <p(n>} . (24)
Ln:O n 0

where L is the number of samples in {s(n) ,ngé

Note that distribution tests of PS have been investigated
from other viewpoints [37,40]. Empirical distributions of 1P
difference of coupled Rossler systems have been tested under
the assumption that IP obeys specific distributions. But this is
applicable only for special cases of PS because the assump-
tion of the distribution of IP is not generally valid for differ-
ent systems [40]. Moreover, the IPs of different samples are
assumed to be independent, which is not the case for dy-
namical systems. The statistical properties of MPC are inves-
tigated in Ref. [37]. The distribution of the estimated MPC is
approximated by a specific distribution, which is valid only
for time series of a large number of samples. This distribu-
tion is dependent on two parameters, i.e., the mean angular
velocity and the diffusion constant. As long as the assump-
tions are fulfilled and the two dependent parameters are re-
liably estimated, a reasonable significance level can be ob-
tained by this model, providing a test for a nonzero
synchronization index.

V. NUMERICAL RESULTS

In Sec. 1V, the effect of noise in IP estimation and PS
detection has been studied analytically. To validate the de-
duced results, we perform simulations based on two typical
examples: sine waves and coupled Rossler systems.

A. Test with sine waves

We define a simple sine wave and an amplitude-
modulated sine wave as

x((¢) = 10 cos(2af 1),

%,(1) = (10 + 4 sin 27Tfat)cos<27rf2t + g) (25)

where f;=2 Hz, f,=2 Hz, and f,=0.2 Hz. Two 40 000-
sample time series are measured from x,(z) and x,(z), respec-
tively, with sampling interval Ar=0.05. The measured time
series are denoted by x; ,(nAr) and their noisy versions are
denoted by s, ,(nAf)=x; ,(nAt)+w, ,(nAt), where wy ,(nAr)
are the noise terms and assumed to be Gaussian white noise

~N(0,0'3V 2). The noise level # 1is defined as
a’x1 R 770'w1 ) v(/here , are the variances of x; ,, and o, W

are the variances of wy 5, respectlvely To simplify the nota-
tion, Ar is omitted and s, ,(nAr) are written as s 5(n) from
now on.

The distributions of IP error {6(n)} due to the added noise
are illustrated in Fig. 2 and the normalities of the distribu-
tions of IP errors are tested with x?> goodness of fit. For x,(z),
its TA is constant, and thus the distribution of IP error {6,(n)}
should be a wrapped normal distribution according to Eq.
(18) when the noise level is not high. For the result shown in
Fig. 2(d), the p value is 0.87, and thus the null hypothesis
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p=—0.001
o =0.042

FIG. 2. (Color online) The pdfs of IP error for a sine wave (the
first row) and an amplitude-modulated sine wave (the second row).
The black curves are the normal distribution fits of the correspond-
ing empirical distributions. These pdfs are calculated from the clean
time series {x; ()} and their corresponding noisy versions {s; »(n)}
with noise level 7=0.2. The values of u and o marked in each
panel are the means and the standard deviations of the correspond-
ing normal fits. The filters are with nominal frequency f,=2 Hz
and bandwidth: (a) and (e) Af;=0.016 Hz, (b) and (f)
Af,=0.064 Hz, (c) and (g) Af3=0.256 Hz, and (d) and (h)
Af,=1.024 Hz. Details about the filter with Gaussian envelope can
be found in Ref. [28].

(i.e., the IP error is a random time series from a normal
distribution) cannot be rejected at the 5% significance level.
While for the cases of Figs. 2(a)-2(c), the null hypothesis
should be rejected [the p value for the case of Fig. 2(c) is
2.04 X 107*, and the p values for the other two cases are even
much smaller]. For x,(z), its amplitude is modulated by a
sine wave, and thus its IA is not constant. Then the distribu-
tion of IP error {6,(n)} is a SMN [Egs. (22) and (23)]. The
empirical distributions of the IP errors for x,(z) are illustrated
in Figs. 2(e)-2(h). The p values for these four cases are very
small (<5.43X107'%), which implies that the SMNs of IP
errors cannot be well approximated by particular normal dis-
tributions. Note that for both x,(z) and x,(¢), the narrower the
bandwidth of the filter, the smaller the p value for the corre-
sponding IP error {6(n)}. This may imply that the rejection of
the null hypothesis for the cases of Figs. 2(a)-2(c) is due to
the numerical error, which is induced by the filter with too
narrow bandwidth.

B. Test with coupled Rossler systems

To illustrate the effect of noise in PS detection, the
coupled Réssler systems [2]

X1p=— V12— 212F f(xz,l - xl,z),
Vip=W X0+ @Y,

Zl,2=B+Zl,2(xl,2_7)s (26)

are taken as an example, where ¢ is the coupling strength.
Data are integrated from variables x, ,, using the fourth-order
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491 792 9] *92 91 792

FIG. 3. (Color online) The pdfs of IP error [p(#6,), the first row]
and IP error difference [p(60,— 6,), the second row] for the coherent
Rossler time series with bandpass filter applied. The filters are with
nominal frequency f,=0.1645 Hz and bandwidth: (a) and (d)
Af=0.016 Hz, (b) and (e) Af,=0.064 Hz, and (c) and (f)
Af3=0.256 Hz. These pdfs are calculated from the clean Rossler
time series and their corresponding noisy time series with noise
level 7=0.2. With coupling strength £=0.035, the coupled systems
are synchronous.

Runge-Kutta method with sampling interval Ar=0.05. The
initial values are set randomly, and 40 000 samples, after
discarding the first 10 000 samples, are adopted for analysis.
Noise is added to the measured time series to generate noisy
time series as done in Sec. V A above. Two cases of the
coupled Réssler systems are studied: (1) coherent systems
with parameters a=0.15, $=0.2, y=10, w,;=1.015, and
w,=0.985 and (2) noncoherent systems with parameters
a=0.25, B=0.2, y=10, ©w;=1.015, and ©,=0.985.

With coupling strength £€=0.035, the coherent systems are
synchronized [1]. The spectral peak of the measured data is
located around frequency 0.1645 Hz. So the bandpass filter
of nominal frequency f,=0.1645 Hz is utilized. The distri-
butions of IP error for different cases are illustrated in Fig. 3
and normality tests show that the null hypothesis should be
rejected for all these cases [ x> goodness of fit, the p value for
the case of Fig. 3(f) is 1.15X 1078, and the p values for other
cases are even smaller]. These results are as expected. As
discussed in Sec. IV, the distribution of IP error {6(n)} is
actually a SMN, which is affected by the distribution of 1A
A (n). However, IA A, (n) is not constant in most cases [e.g.,
see Fig. 4]. So the distribution of IP error p(#) and the dis-
tribution of IP error difference p(6,—6,) usually cannot be
well approximated by particular normal distributions.

As mentioned in Sec. 1V, it is difficult to get an analytical
form of the SMN of IP error with only an observed time
series. So in studying the effect of noise in PS detection, we
perform simulations under the assumption that the IA of the
time series is a constant, and the SMN of the IP error can be
approximated by a normal distribution. Figures 5-7 show the
PS indices of numerical estimates [i.e., estimated from the IP
estimates {¢(n)} via Eq. (24)] and their corresponding theo-
retical predictions [i.e., via Eq. (21)] for synchronous sys-
tems, weakly synchronous systems, and nonsynchronous
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0 500 1000 1500 2000
n

FIG. 4. (Color online) The IA A,(n) and iSNR +?)(n) of the
coherent Rossler time series with bandpass filter applied. The filters
are with nominal frequency f,=0.1645 Hz and bandwidth: (a)
Af;=0.016 Hz, (b) Af>=0.064 Hz, and (c) Af3=0.256 Hz. In
each panel, the blue (gray) solid curve is the IA (the left y axis)
estimated from the clean data, the blue (gray) dashed curve is the
IA estimated from the noisy version of the clean data, and the thick
black curve is the corresponding iSNR (the right y axis). The cou-
pling strength is §=0.035 and the noise level is 7=0.2.

systems, respectively. For these coupled coherent Rossler
systems, it is shown that the theoretical predictions are con-
sistent with the trends of numerical simulations. However,
for coupled noncoherent Rossler systems, simulations show

1

0.99 [

0.98 | ——Af1,NE
« || ARNE
—&— Af3,NE

097 t
—o—-Af,, TP
[ —v— Afo, TP

0.96 [| . —a— Af5, TP

H —6—mno filter

0 05 4 1

0.95 U . . . . . . . .
0o 01 02 03 04 05 06 07 08 09 1
U

FIG. 5. (Color online) The estimated PS indices and the corre-
sponding theoretical predictions for the coupled coherent Rossler
systems with respect to the noise level 7. To examine the effect of
noise on PS index p, one pair of clean Rossler time series are
generated, and for each noise level and each filter, simulations are
performed based on 100 pairs of noisy Rossler time series, which
are generated by adding independent and identically distributed
white Gaussian noise series to that pair of clean Rossler time series.
The results are plotted as mean =* standard deviation. NE denotes
the results of numerical estimates, and TP denotes the correspond-
ing theoretical predictions. Symbol ¢ shown in the inset denotes
the results obtained by the Hilbert transform with no bandpass filter
applied. Af;=0.016 Hz, Af,=0.064 Hz, and Af3=0.256 Hz. The
coupled systems are synchronous with coupling strength £=0.035.
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FIG. 6. (Color online) The estimated PS indices and the corre-
sponding theoretical predictions for the coupled coherent Rossler
systems with respect to the noise level 7. The coupled systems are
weakly synchronous with coupling strength £=0.027. Simulation
strategy and the denotation of each curve are as that in Fig. 5.

that the theoretical predictions are much larger than the nu-
merical estimates, as Fig. 8 indicates. This is because the [As
of the case of noncoherent Rossler systems are far from con-
stant, and thus the SMN of the IP error cannot be approxi-
mated by a normal distribution. Note that we have also ana-
lyzed the effect of additive noise in detecting PS of pairs of
electroencephalogram signals. Results show that the theoret-
ical predictions are not consistent with the corresponding
numerical estimates, which is due to the same reason as the
case of the coupled noncoherent Rossler systems, that is, the
IAs are far from constant.

Moreover, Figs. 5-7 show that, with narrow bandpass fil-
ter, the estimated PS indices, as well as the theoretical predi-
cations, are not so much degraded (compared with the results
with no filter) even when the noise level is high. This implies
that the bandpass filter is necessary and effective in dealing
with data contaminated by additive noise. As Figs. 5 and 6
indicate, the narrower the bandpass filter, the larger the esti-

0.21 1

n

0.17 L . . . . . . . . . .

0 01 02 03 04 05 06 07 08 09 1
n

FIG. 7. (Color online) The estimated PS indices and the corre-
sponding theoretical predictions for the coupled coherent Rossler
systems with respect to the noise level 7. The coupled systems are
nonsynchronous with coupling strength §=0.01. Simulation strategy
and the denotation of each curve are as that in Fig. 5.
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FIG. 8. (Color online) The estimated PS indices and the corre-
sponding theoretical predictions for noncoherent Rossler systems
(@=0.25) with respect to the noise level 7. The coupled systems are
synchronous with coupling strength £§=0.2. f,,=0.134 Hz. Simula-
tion strategy and the denotation of each curve are as that in Fig. 5.

mated PS index. This overestimation of synchronization
level is introduced by the filter and has been discussed in
Ref. [23]. This can be explained with the second extreme
case discussed in Sec. III C. When the filter b(r) becomes
extremely narrow, i.e., a delta filter in the frequency domain,
the components extracted by the filter from signals s,(¢) and
s55(1) are just the spectral components of their Fourier trans-
form at the nominal frequency. Then the IP difference be-
tween these two components is a constant and the corre-
sponding PS index will be unity. Generally, PS index is a
relative measure to compare the synchronization level of
coupled systems under different conditions (e.g., with differ-
ent coupling strengths). For these coupled systems, if the
same bandpass filter is applied, the estimated PS indices can
indicate which coupled pairs have a higher level of synchro-
nization than others because the overestimation induced by
the same filter is likely to be the same.

However, in Fig. 7, the narrower filter gives smaller PS
index. This is because for the cases of Figs. 5 and 6, the
coupled Rossler systems are synchronous and weakly syn-
chronous, respectively, and the prominent spectral compo-
nents of x;(¢) and x,(¢) both locate in the pass band of the
filter applied. In contrast, for the case of Fig. 7, the coupled
Rossler systems are nonsynchronous, and due to the mis-
match of parameters (w;=1.015, w,=0.985), the prominent
spectral components of x;(¢) and x,(¢) are around 0.167 Hz
and 0.1625 Hz, respectively. The filter Af;, possibly as well
as the filter Af,, is with too narrow bandwidth, and thus
greatly attenuates the prominent spectral components of x;(z)
and x,(7), resulting in a lower PS index.

In Sec. III B, it has been suggested that the bandwidth of
the filter should satisfy %£< fn so that the filtered signal
could fulfill the Bedrosian theorem. This requirement gives
the upper bound of the bandwidth of the filter. In real appli-
cations, though the filter with narrower bandwidth may sup-
press more noise, it does not mean that the filter with nar-
rower bandwidth always works better, as the simulation
results in Figs. 2(a)-2(c) and 7 indicate. For the observable
signal s(¢) of time duration T, the physical frequency reso-
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lution of the spectra estimated by the Fourier transform is no
less than TL] [41]. Therefore, the bandwidth Af must satisfy
Af >T%]. In addition, the prominent spectral components of
the signals should locate in the pass band of the filter. So in

real applications, tradeoffs must be made in determining the
bandwidth of the filter.

VI. CONCLUSION

In this paper, we study the definition of IP and the effect
of noise in PS detection from the viewpoints of signal pro-
cessing and circular statistics. We show that several defini-
tions of IP can be unified into one framework: applying a
specific filter to the time series and defining IP as the argu-
ment of the output of the filter. Further, constraints on IP
definitions are given and the relationship among several IP
definitions is discussed. With the unified framework, the es-
timate error of IP, which is due to noise, is shown to obey
SMN distributions. The estimate of MPC is shown to be
degraded by a factor, which is determined by only the level
of in-band noise, under the assumption that the IA of the
observed signal is a constant and thus the SMN of the IP
error can be approximated by a normal distribution. These
results are further verified by numerical simulations and dis-
cussions on the bandwidth of the filter are given. For general
cases, the SMN of the IP error cannot be approximated by a
normal distribution. The empirical distribution is difficult, if
not impossible, to be deduced theoretically. So for real ap-
plications, it is difficult to get a good theoretical prediction of
synchronization level. Nevertheless, the deduced analytic re-
sults can give an implication (theoretically) of how and by
how much the noise affects PS detection.

Moreover, the significance of the estimated PS index
should be tested before it can be claimed that the estimated
index implies that the underlying coupled systems are really
in PS. Several methods, including surrogate tests, have been
proposed to address this problem [10,37,40,42]. Most of the
traditional surrogate methods only mimic the linear proper-
ties such as the individual spectra of each original signal or
the cross spectra of the original signal pair [42]. The surro-
gate data generated by these surrogate methods usually obey
a particular linear stochastic process. However, PS character-
izes the mutual adaption of coupled oscillators but not the
relationship among stochastic processes. Thus, these surro-
gate tests do not work well for PS detection. Recently, a
method called twin surrogates has been proposed based on
recurrence properties of the original data [43]. This method
can mimic both the linear and nonlinear properties of the
original oscillators and seems promising to give significance
test for PS detection.
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