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Rich-club, assortativity and clustering coefficients are frequently used measures to estimate topological
properties of complex networks. Here we find that the connectivity among a very small portion of the richest
nodes can dominate the assortativity and clustering coefficients of a large network, which reveals that the
rich-club connectivity is leveraged throughout the network. Our study suggests that more attention should be
paid to the organization pattern of rich nodes, for the structure of a complex system as a whole is determined
by the associations between the most influential individuals. Moreover, by manipulating the connectivity
pattern in a very small rich-club, it is sufficient to produce a network with desired assortativity or transitivity.
Conversely, our findings offer a simple explanation for the observed assortativity and transitivity in many real
world networks—such biases can be explained by the connectivities among the richest nodes.
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After ten years of explosive growth, fruitful measures
based on statistical physics have been proposed for analyzing
all kinds of complex networks �1�. Measures such as degree
distribution, average degree, clustering coefficient, assorta-
tivity coefficient, and average shortest-path length are now
widely used in almost all complex networks to estimate their
topological properties. For example, clustering coefficient
�2� is used to measure the transitivity property of a network.
If a social network has a high clustering coefficient, it means
that the friends of someone are also likely to be friends them-
selves �3�.

A second popular measure is the assortativity coefficient
which defines the mixing pattern among the nodes. A posi-
tive coefficient indicates that nodes with similar degrees tend
to be connected to each other �assortative mixing�, while a
negative coefficient captures the opposite case in which very
different degree nodes are connected �disassortative mixing�
�3,4�. Although the above calculations on assortativity and
transitivity may be useful in many situations, the actual va-
lidity of these measures to capture the true assortativity and
transitivity of the network has not been verified. In particular,
the effectiveness of assortativity coefficient in some specific
networks has been critically examined recently �5,6�.

Many real networks display a skewed degree distribution
�7�, so a small number of nodes possess much higher degrees
than the overwhelming majority. Nonetheless, it is necessary
to be cautious in applying such statistical measures as the
actual value of most statistics �e.g., assortativity and cluster-
ing coefficients� is the statistical average of a whole network,
and this averaging process may conceal the prominent effect
of the richest elements �8�. Furthermore, it is already clear
that the small number of rich nodes play a central role in
static and dynamic processes on complex networks, such as
targeted attack �9�, cascade failure �10�, and disease spread-
ing �11�. Therefore, more attention should be paid to rich

nodes when analyzing finite-size network data �5�. In par-
ticular, it is interesting to analyze the organization pattern of
rich nodes �12�, such as whether rich nodes trend to connect
to one another, or with the rest of nodes �13�.

Compared with a corresponding randomized network, if
rich nodes are interconnected to one another more intensely
than to low-degree nodes, the network is said to have a rich-
club property �14–18�. Note that, rich-club only describes
the property of rich nodes, and it is not a statistical average
over the entire network. Rich-club is therefore different from
the statistics that are based on the averaged results over all
nodes �like clustering and assortativity coefficients�. In this
study, we demonstrate that the connections among a very
small portion �no more than 0.5%� of rich nodes control the
statistical properties of the entire complex networks, espe-
cially assortativity and transitivity properties. We find that
adding a small number of extra links among rich nodes can
significantly increase an assortativity coefficient to be posi-
tive, and raise a low clustering coefficient to a high value.
These results show that it is possible to engineer the transi-
tive or assortative features of a large complex network just
by altering the wiring structure within a very small rich-club.
Finally, this work allows us to explain the observed
assortativity/transitivity of various real world networks �e.g.,
the Internet� by studying the connectivity between the richest
nodes. That is, the structure of a complex system is mostly
determined by the associations between the most influential
individuals.

We select the top 0.5% of the highest degree nodes as rich
nodes in a network and manipulate the connections among
them. First we make rich nodes fully connected to one an-
other, so they form a completely connected rich-club. Sec-
ond, we completely eradicate the edges among these rich
nodes, so that the network has no rich-club. The topological
structure is the same for the above two networks except for
the connection pattern among rich nodes. Then we calculate
the frequently used statistics for the above two networks re-
spectively to compare how the absence and presence of a*xuxk@eie.polyu.edu.hk
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rich-club affects the statistical properties of the whole net-
work.

Table I lists the results of nine undirected networks �in-
cluding five real networks and four model networks� ar-
ranged with kmax /ks increasing. The value of the structural
cutoff degree ks can be regarded as the first approximation in
a scale-free network �19�. Here kmax /ks is a convenient index
that can be used in complex networks with any degree dis-
tribution to show the proportion of links �or degrees� the rich
nodes possess in comparison with the rest nodes in a net-
work. Lower kmax /ks means that the degrees of rich nodes are
close to the majority of nodes, while a high kmax /ks indicates
that the degrees of rich nodes are far larger than the rest.

The results in Table I show whether a very small propor-
tion of rich nodes forms a club can partly control the two
important statistics: assortativity coefficient r and clustering
coefficient c. Based on the different values of kmax /ks, com-
plex networks fall into two distinct groups. In the networks
with low kmax /ks like SW, ER, PG, COND, BA and PG, the
values of r are largely determined by the rich-club. But for
the networks with high kmax /ks such as PFP, AS, and BOOK,
the values of c are largely determined by the rich-club.

Now we analyze how the rich-club connectivity domi-
nates r. Recently, the effectiveness of r in some specific net-
works has been queried. In our previous work �5�, we found
that superrich nodes �degree much larger than the natural
cutoff value �19�� can strongly influence r. Meanwhile, an-
other work showed that the highly heterogeneous �scale-free�
network with “natural” degree mixing has a disassortative
coefficient �6�. These studies indicate that r is always
strongly negative for some specific networks �16�. In Table I,
we also find that r is strongly negative for the networks with

a high kmax /ks �i.e., with superrich nodes �5��, such as PFP,
AS, and BOOK.

While the above studies focus on the effect of rich nodes,
in this work we pay more attention to how the organization
of rich nodes �to form a rich-club or not� affects r. For net-
works with low kmax /ks and the absence of a rich-club such
as SW, ER, and PG, the values of r are near zero, which
indicates that these networks are neutral mixing. But the
counterparts with the presence of a rich-club show a surpris-
ingly positive r, which implies that these networks have as-
sortative mixing properties. It is obvious that the mixing pat-
terns of more than 99.5% nodes remain unchanged, so this
metamorphosis is induced by the absence and presence of the
rich-club. For the networks COND, BA, and EPA, our results
again imply that the connections among no more than 0.5%
rich nodes can make r become much more positive.

For networks with a high kmax /ks, such as PFP, AS, and
BOOK, the presence of a rich-club does slightly affect r,
while it strongly affects c. Traditionally, high c indicates that
the friends of someone are also likely to be friends them-
selves. A highly assortative network often implies a high c as
nodes with similar degrees will connect to each other �26�
and form multiscale communities �3�. But in a highly disas-
sortative network, a high-degree node trends to connect to a
low-degree node, which in turn connects to another high-
degree node, and this high-low-high-low connection circle
will lead to a low c. It is therefore not obvious why a high c
emerges in disassortative networks like PFP, AS, and BOOK.

Although the high values of c in the high disassortative
networks with rich-club are contrary to our intuition, this
phenomenon can be partly explained by considering the ef-
fect of the rich-club in more detail. As has been shown in

TABLE I. Statistics of nine undirected networks: number of nodes n, average degree �k�, the exponent of degree distribution if the
distribution follows a power law: � �or “−” if not�, structural cutoff degree ks=��k�n �19�, maximal degree kmax, assortativity coefficient r
�4�, clustering coefficient c �2�, and average shortest-path length l. SW is the network generated by the small-world model �2�, ER is the
network generated by Erdős-Rényi model �20�, PG is the network of U.S. power grid �7�, COND is the network of scientists who work on
condensed matter �21�, BA is the network generated by the scale-free model �7�, EPA is the network from the pages linking to www.epa.gov
�22�, PFP is the network generated by the model for the Internet topology �23�, AS is the network of the Internet topology at the level of
autonomous systems �24� and BOOK is the word adjacency network of text from Darwin’s “The Origin of Species” �25�. The proportion of
rich nodes in all the networks is 0.5% except the network of COND. We select less proportion �0.2%� nodes as rich nodes in COND because
it has larger scale �more nodes� than other networks. For r, c and l, the first row is the value when rich nodes do not connect to other rich
nodes �without rich-club�, and the second row is the value when rich nodes completely connect to each other �with rich-club�.

Network SW ER PG COND BA EPA PFP AS BOOK

n 5000 5000 4941 16726 5000 4772 5000 5375 7724

�k� 6.0 10.0 2.7 5.7 6.0 3.7 6.0 3.9 11.4

� − − − − 3.0 2.0 2.2 2.2 1.9

kmax 15.5�3.5 23.4�1.6 19 107 218.6�43.4 175 1258.8�349.0 1193 2568

ks 173.2 223.6 115.4 308.8 173.2 132.9 173.2 144.8 296.7

kmax /ks 0.09 0.10 0.16 0.35 1.26 1.32 7.26 8.24 8.66

0.00�0.00 0.00�0.00 −0.01 0.17 −0.08�0.01 −0.31 −0.25�0.04 −0.19 −0.24

r 0.69�0.00 0.39�0.00 0.60 0.32 0.04�0.02 −0.15 −0.24�0.04 −0.19 −0.24

0.44�0.00 0.00�0.00 0.08 0.62 0.00�0.00 0.04 0.15�0.01 0.10 0.21

c 0.44�0.00 0.00�0.00 0.08 0.62 0.02�0.00 0.07 0.28�0.02 0.26 0.41

7.85�0.05 3.94�0.01 6.63 6.64 4.11�0.02 4.63 3.17�0.06 3.95 2.87

l 7.33�0.03 3.94�0.01 6.37 6.37 3.94�0.02 3.97 3.04�0.05 3.60 2.77
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Fig. 1�a�, if rich nodes a1 and a2 are connected to each other,
the value of c for this network will only change slightly.
While if rich nodes b1 and b2 are connected to each other as
is shown in Fig. 1�b�, the network will show a high c. More-
over, the scenario in Fig. 1�b� shows that a high c does not
always imply that the friends of someone are also likely to be
connected for some specific networks. For example, even if
b1 connecting to b2 makes the network in Fig. 1�b� show a
high c, the other four low-degree nodes do not connect to
each other either.

For other statistics such as average degree, degree distri-
bution, and average shortest-path length, it is easy to guess
how the presence or absence of a rich-club can influence
them. Because the proportion of rich nodes manipulated here
is no more than 0.5%, the degree distribution and average
degree remain largely unchanged whether a network has a
rich-club or not. Another statistic that is vulnerable to rich-
club phenomena is average shortest-path length l �13�. Rich
nodes often act as a traffic hub and provide a large selection
of shortcuts, hence we can guess that a network without rich-
club may lose the efficiency compared with its rich-club
counterpart. For all the nine networks in Table I, this conjec-
ture is right, for the presence and absence of a rich-club also
strongly affects l, although not as strong as r and c.

It should be noted that a large kmax /ks can reduce l more
significantly than the presence of a rich-club. For networks
with the same average degree, such as SW and PFP in Table
I, the degree of the richest node in SW is far lower than that
in PFP, so the value of l in the former is larger than the latter.
In the network with low kmax /ks �SW�, every rich node only
connects to a small number of nodes and they can only pro-
vide sparse shortcuts for other nodes, so the network has a
longer l �7.33�7.85�. In the network with high kmax /ks
�PFP�, rich nodes have to connect to a huge number of low-
degree nodes, so rich nodes provide a lot of shortcuts to
low-degree nodes and the network has a shorter l �3.04
�3.17�.

Whether a network should be considered as having a rich-
club has been discussed directly in some specific networks.
For example, whether the network of Internet has a rich-club
has been debated �13,14,16�, and there is still not a clear
conclusion. Furthermore, a dilemma of rich-club definition
occurred in �18� and is shown in Fig. 2. In the definition of
Zhou and Mondragón �13�, they only study whether rich
nodes are more likely to interconnect than to low-degree
nodes, so that our toy model is therefore regarded as having
a rich-club. However, Colizza et al. believe that rich-club
should be inferred by a comparison of the original network

with its randomized counterparts �reference network� �27� to
avoid the false inference of rich-club in non-rich-club net-
works. Consequently, for the toy model in Fig. 2, the method
in �14� will run into a dilemma, for the original network and
its randomized version show the same structure.

To harmonize this contradiction, the frequently used sta-
tistics can be used to judge whether a network has a rich-
club. For the network with low kmax /ks, we prefer to use c as
the primary statistic; while for the network with high kmax /ks,
we can use r instead. Our framework is based on whether the
statistics of the original network are strongly affected by the
absence and presence of a rich-club. If the statistics of the
original network are more similar to its fully connected rich-
club counterparts, and are far away to its non-rich-club coun-
terparts, we can conclude that the network has a rich-club.
Conversely, if this is not the case then we would conclude
that the network has no rich-club.

We now use this method to judge whether the Internet has
a rich-club. We list the statistics r, c, and l for the four
versions of the Internet network in Table II: the network
without rich-club, the original network, the network with
rich-club and the corresponding randomized network. The

(a) (b)

a1 a2 b1 b2

FIG. 1. �Color online� �a� Whether rich nodes a1 and a2 are to
be connected will not significantly affect clustering coefficient c,
while �b� whether rich nodes b1 and b2 form a rich-club strongly
affects c.

c1 c2

c3 c4

FIG. 2. �Color online� A toy model to show the dilemma of
rich-club definition �18�. Rich nodes c1−c4 have larger degrees and
form a subnetwork in which rich nodes are completely connected to
one another, so the network has a rich-club according to the defini-
tion in �13,16�. But there is no rich-club using the definition in �14�,
for c1−c4 are always connected to each other too in its correspond-
ing randomized network.

TABLE II. Statistics on four versions of the Internet network at
the level of autonomous systems �24�: the number of total links
among rich nodes m, clustering coefficient c �2�, assortativity coef-
ficient r �4�, and average shortest-path length l. We choose 27 nodes
�0.5% of the whole nodes� with the highest degrees as rich nodes.
Origin stands for the original network; non-rich-club stands for the
original network deleted the links among rich nodes; rich-club
stands for the original network in which rich nodes are completely
connected to each other; random stands for the randomized version
of the original network generated by the random mixing method
�27�.

Network Non-rich-club Origin Rich-club Random

m 0 148 351 209.4�10.4

c 0.10 0.24 0.26 0.13�0.00

r −0.19 −0.18 −0.19 −0.18�0.00

l 3.95 3.70 3.60 3.54�0.01
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properties of the original network are found to be more close
to the network with rich-club, and are substantially different
to the network without rich-club. This is especially obvious
for the value of c, so it is easy to conclude that the network
has a rich-club.

Our method for measuring rich-club can provide a more
satisfactory and impartial judgement on whether a network
has a rich-club. The method does not depend explicitly on
how many links there are among rich nodes as previous mea-
sures that have been taken �14�. Rather, our approach is to
directly measure the effect that the rich-club has on the prop-
erties of the whole network. Nonetheless, we are not suggest-
ing that the existing tools for detecting rich-clubs should be
abandoned. The controversy over whether particular net-
works have a rich-club is due to the tension between what
are meant with evocative names and description �as are as-
sociated with the term “rich-club”� and what is actually be-
ing measured with various statistics. A more appropriate
question is what effect these measured properties have on the
network structure and dynamics.

In this work, we focus on how the rich-club affects the
basic statistics of complex networks, especially assortativity
and clustering coefficients. Our findings uncover the effect of
the organization of rich nodes, which leads to a better under-
standing of the behavior of a complex system. These results
show that just by altering the wiring structure within a very
small rich-club one can engineer the transitive or assortative
features of a large complex network. The organization of rich
nodes is crucial because it can strongly affect our under-
standing for the whole topological properties of the network.
Our study indicates that in complex systems the social cohe-
sion �that is the assortativity or transitivity� of a large com-

munity is determined by connectivity among the leaders �the
rich-club�. This study also confirms that although some mea-
sures developed in the framework of statistical physics pro-
vide a powerful tool for analyzing the organization of com-
plex network, in specific situations they are very sensitive to
a small local structure �the connectivity among a very small
rich-club�.

Nonetheless, the networks in Table I are not carefully se-
lected on purpose, and our findings do provide a simple ex-
planation for the observed properties of many real world net-
works. When examining such networks, we need not ask
why they exhibit assortativity or transitivity, but rather how
the rich nodes are connected and why they are connected in
this way. For example, in the case of the Internet the rich
nodes form a very strong rich-club �the various routers are
interconnected� and it is this property that determines the
transitivity of the entire network.

Conversely, in some situations �such as to control epi-
demic spread or information flow� it is useful to manipulate
the assortativity and transitivity of a large network. Our re-
sults provide a cheap and easy way to do this: just manipu-
late the connections among the rich-club members. Followed
the work in �8�, an interesting question to be pursued in
future would then be the investigation of how rich-club af-
fects these important dynamic processes in weighted and/or
directed networks.
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