
Rapid Replanning of Energy-Efficient Paths for

Navigation on Uneven Terrains

Nuwan Ganganath†, Chi-Tsun Cheng, and Chi K. Tse

Department of Electronic and Information Engineering

The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong

†Email: nuwan.marasinghearachchige@connect.polyu.hk

Abstract—Mobile robots are often utilized in remote and
hostile outdoor environments with uncertainties and unknown
dangerous. The energy-efficient paths generated based on prior
information can be impracticable due to the changes in the
environment. Recently proposed Z* search algorithm is capable
of finding physically feasible energy-efficient paths on uneven
terrains. It can achieve the same accuracy as any brute force
algorithm, but with a low computational complexity. However,
neither Z* nor any other energy-efficient path planners can
effectively handle path replanning triggered by environment
changes such as emergence of obstacles. In order to fill this void,
we propose a novel algorithm which can recompute optimal paths
efficiently. Simulation results show that the proposed algorithm
can find equally energy-efficient paths as Z* does, but at a
considerably lower computational cost. Therefore, the proposed
algorithm can be very useful in mobile robot navigation on
uneven terrains with unknown obstacles.

Index Terms—Mobile robot, path planning, replanning,
energy-efficient, uneven terrain.

I. INTRODUCTION

Path planning algorithms have been highly popular in indoor

mobile robot applications [1]. In such applications, terrains

are assumed to be flat. Recently, mobile robots have been

widely used in outdoor applications where they have to often

deal with uneven terrains [2]–[4]. In contrast to indoor mobile

robot applications, shortest paths on uneven terrains can be

physically impracticable due to motion power constraints of

the robots and their instability on steep terrains. Moreover,

shortest paths can be highly energy inefficient on such terrains.

Mobile robots are usually battery powered and utilized in

remote and hostile environments. Therefore, energy-efficient

path planning is crucial in prolonging their operation durations.

A. Related Work

There were few researches on energy-efficient path planning

on uneven terrains in the previous decades. One of the initial

attempts on studying characteristics of optimal paths was

performed by Rowe and Ross [5]. They proposed an energy-

cost model for mobile robots navigating on uneven terrains.

The energy-cost of a path between two points on a terrain

surface is defined to be the energy loss due to friction and

gravity. They added anisotropism to this model by considering

impermissible traversal headings due to power limitations and

overturn danger. The cost-optimal paths are constructed by

appropriately picking path segments from path subspaces.

Later, Rowe and Kanayama [6] applied the same energy-

cost model to determine near-optimal paths on a surface of a

vertical-axis ideal cone. Lanthier et al. [7] assumed a terrain to

be composed of triangular faces. The cost of traveling on each

face is captured via face weights. Based on the terrain face

weight concept, Sun and Reif [8] proposed an approximation

algorithm to find energy-efficient paths on terrains. They also

computed some upper and lower bounds on the combinatorial

size of optimal paths.

Even though the terrain face weight concept helps to reduce

the computational complexity of path planning methods, it

does not consider the change of potential energy as elevation

changes. In order to avoid such drawbacks, Choi et al. [9]

proposed an A*-like heuristic search algorithm to find energy-

efficient paths on uneven terrains using grid-based elevation

maps. However, their path planner fails to find feasible paths

on steep terrains due to a deficient heuristic function used.

Recently, Ganganath et al. [10] proposed a novel heuristic

energy-cost function based on zigzag-like motion patterns on

steep terrains. Using this heuristic function, they proposed

a heuristic search algorithm (Basic Z*) to find physically

feasible energy-efficient paths on uneven terrains. Based on

the admissible and consistent nature of the heuristic function,

an improved heuristic search algorithm (Z*) was also proposed

[11], which can compute equally energy-efficient paths as

Basic Z* does while being computationally more efficient.

B. Motivation and Contributions of the Paper

All the algorithms explained above assume complete knowl-

edge of robots’ environment in order to find energy-efficient

paths. These algorithms generate energy-efficient paths to a

given goal location from the current location of the robot based

on prior information of the terrain surface and obstacles. Even

though high resolution maps are commonly available for many

geographical locations, most of the environments are highly

dynamic in nature. Therefore, optimal paths generated by

traditional path planning algorithms might not be practically

realizable with mobile robots. In case of a sudden appearance

of obstacles, mobile robots have to recompute their paths from

their current location to the goal location. Such replanning can

be highly computationally expensive, resulting unacceptable

delays in navigation. Despite the vast range of applications in

both commercial and military robotics, attempts on replanning

This is the Pre-Published Version.

of energy-efficient paths for navigation on uneven terrains have

not been reported in literature. Therefore, we believe that it

needs to be investigated promptly.

In this paper, we consider the problem of replanning energy-

efficient paths for mobile robot navigation on uneven terrains.

Uneven terrains are represented by using gird-based elevation

maps. Inspired by the Z* search algorithm, we propose a

novel algorithm, namely Dynamic Z*, which can perform fast

planning and replanning of physically feasible energy-efficient

paths for navigation on uneven terrains. Similar to Z* search

algorithm, it uses prior information for the initial planning

of routes. Z* algorithm has to recompute paths from scratch

if obstacles suddenly appear on the initially planned paths.

In contrast, Dynamic Z* efficiently recompute optimal paths

from the current robot location to its goal location by using

its previous search results and updating them locally.

The rest of the paper is organized as follows. Section II

explains the problem formulations of path planning and

replanning on weighted graphs transformed from elevation

maps of uneven terrains. It also briefly discusses the energy-

cost model used in this paper. The proposed Dynamic Z*

algorithm is explained in details in Section III, including a

brief review on heuristic search algorithms for energy-efficient

path planning. Results of Dynamic Z* algorithm are presented

and performances of the proposed path planner are analyzed

in Section IV. Concluding remarks are given in Section V.

II. PROBLEM FORMULATION

Here, the robot is represented as a point on the terrain

surface and assumed to be rigid and holonomic. In order to

facilitate the path planning and replanning tasks, we transform

a grid-based elevation map of a terrain surface into a weighted

king’s graph G which consists of 8-connected neighborhoods.

Let n be a node in G. Terrain surface coordinates correspond-

ing to n can be represented as (n.x, n.y, n.z). Let ns and nr be

the nodes corresponding to the initial location and the current

location of the robot, respectively. Note that ns ≡ nr initially.

Here, the path planning task is to find physically feasible

energy-efficient paths from ns to a given goal location ng and

the path replanning task is to recompute such paths from nr

to ng. Hence, we need to define the edge costs of G in terms

of energy-costs.

A. Energy-Cost Model

In order to calculate the edge-costs of G, the energy-

cost model proposed by Rowe and Ross [5] is adopted.

Their model comprises all previously published criteria for

traversing across uneven terrain with anisotropic friction and

gravity effects. Due to its versatility, Rowe and Ross energy-

cost model has been adopted by many others for path planning

on terrains [6]–[8]. This energy-cost model assumes that a

robot travels at a constant velocity v and consumes negligible

energy for making turns.

Let nc be the current node of search in G and nn be a neigh-

boring node. The energy-cost of traversing ncnn is defined

as the energy loss due to work against external forces along

ncnn. According to Rowe and Ross’s model [5], the resultant

of two major external forces applying on the robot, gravity and

friction, can be given as mg(µ cosφ(nc, nn) + sinφ(nc, nn)).
Here, m is the mass of the robot, µ is the friction coefficient,

g is the gravitational field strength, and φ(nc, nn) is the

inclination angle between nc and nn.

Due to the motion power limitations in uphilling on steep

terrains, the maximum slope that the robot can overcome is

defined as φf = sin−1(Pmax

mgv
√

µ2+1
) − tan−1(µ), where Pmax

is the maximum motion power of the robot. Also, anisotropic

traction-loss phenomena will occur if the slope is greater

than φs = tan−1(µs − µ), where µs is the static friction

coefficient. Thus, the critical impermissible angle for uphilling

is defined as the minimum of φf and φs. For downhilling, the

robot has to spend negligible energy to travel at a constant

speed if the slope angle is less than critical breaking angle

φb = − tan−1(µ). Thus, the energy-cost for traversing ncnn

can be summarized as

k(nc, nn) =



















∞, if φ(nc, nn) > φm

mgs(nc, nn)(µ cosφ (nc, nn) + sinφ(nc, nn)),

if φm ≥ φ(nc, nn) > φb

0, otherwise.

(1)

Here, s(nc, nn) is the Euclidean distance between nc and nn

in a 3D space. Please refer to [5], [10] for further details on

the energy-cost model.

III. THE PROPOSED ALGORITHM

In this section, procedures of Basic Z* and Z* heuristic

search algorithms are revisited. Afterward, Dynamic Z* search

algorithm will be introduced for rapid replanning of energy-

efficient paths on uneven terrains.

A. Background

One of the most popular solutions for path planning on
weight graphs was proposed by Hart et al. [12]. They showed
that A*-like heuristic search algorithms can find exactly the
same solution as brute force algorithms at a considerably lower
computational cost if the heuristics are selected appropriately.
Inspired by the A* search algorithm, Basic Z* [10] optimizes
the expected energy-cost of traversing to ng through nc, which
can be defined as f(nc) = g(ns, nc) + h(nc, ng). The energy-
cost of traversing from ns to nc is defined as g(ns, nc). It can
be calculated by using (1) for each intermediate step between
ns and nc. The heuristic energy-cost estimate of ncng traversal
is defined as [10]

h(nc, ng) =



























mg∆(nc,ng)
sinφm

(µ cosφm+sinφm),

if φ(nc, ng) > φm

mgs(nc, ng)(µ cosφ(nc, ng) + sinφ(nc, ng)),

if φm ≥ φ(nc, ng) > φb

0, otherwise.

(2)

Here, ∆(nc, ng) is the elevation of ng in reference to the

elevation of nc.

Basic Z* uses best-first search to find the energy-efficient

paths. It starts by calculating the energy-cost of ns using (2),

where f(ns) = h(ns). A node is added to an OPEN set once

it is visited. In each iteration, a node with minimum expected

energy-cost nc, is taken out from the OPEN set and all its

neighbors are visited. Then, all those visited neighbors are

added to OPEN set. Yet any visited nodes can be revisited

and their cost may be improved. If the revisiting nodes have

already been removed from the OPEN set, they will be added

again to the OPEN set and their energy-cost and parents will be

updated. If they are still in the OPEN set, just their energy-cost

and parents will be updated. When nc = ng, the algorithm has

reached the goal and the iterative procedure will be terminated.

The energy-efficient path can be obtained by traversing back

from ng to ns by tracing their parent connections.

Even though Basic Z* search algorithm is capable of find-

ing an optimal solution, its computational efficiency may be

degraded due to node revisits. Therefore, Z* heuristic search

algorithm [11] is proposed to improve the computational

efficiency of Basic Z*. It uses another set called CLOSED

set in addition to the OPEN set used in Basic Z* algorithm.

Similar to Basic Z* algorithm, in each iteration, a node with

the minimum energy-cost, nc is taken out from the OPEN set

and all neighbors are added to OPEN set. Here, nc is added

to the CLOSED set. The nodes in the CLOSED set will not be

revisited.

B. Dynamic Z* Search Algorithm

While navigating on terrains, the robot is capable of observ-

ing the traversability of neighboring nodes. Initially, it plans

its route from the start node to the goal node assuming that

nodes with unknown traversability status are traversable. Once

the energy-efficient path is obtained, the robot follows the path

until the goal is reached. However, if the path is obstructed by

a previously unknown obstacle, it has to recompute its path

from its current location to the goal. Since Z* algorithm (or

any other energy-efficient path planner) does not have effective

mechanisms to recompute its paths in such a scenario, it has

to perform a search from scratch. Therefore, we introduce

Dynamic Z* algorithm which is capable of planning and rapid

replanning of energy-efficient routes. The complete routine

of the proposed Dynamic Z* search algorithm is given in

Algorithm 1.

Similar to Basic Z* and Z* algorithms, Dynamic Z* is

also based on the best-first search. Nevertheless, the search

direction of Dynamic Z* is the reverse of its counterparts,

i.e. Dynamic Z* always plans its paths from goal node ng to

current robot location nr. In contrast to path distance which

remains the same despite of the travel direction, the energy-

cost of the robot is obviously depends on its travel direction.

Therefore, the energy-cost should be calculated in the same

direction as Z* does, despite the search is performed in reverse

direction. The same condition applies to the heuristic cost

estimation since the heuristics used here are not backward

consistent [13].

Algorithm 1: Pseudocode of Dynamic Z* search algorithm

1: function INITIALIZE()
2: CLOSED ← ∅
3: OPEN ← {ng}
4: g[ng]← 0
5: f [ng]← h(nr, ng)
6: previous[ng]← ng

7: end function

8: function COMPUTE PATH()
9: while OPEN 6= ∅ do

10: nc ← argmin
n∈OPEN

f [n]

11: if f [nc] ==∞ then
12: return failure
13: else if nc == nr then
14: break
15: end if
16: OPEN ← OPEN \ {nc}
17: CLOSED ← CLOSED ∪ {nc}
18: for ∀nn ∈ {neighbor[nc]} \ CLOSED do
19: gtemp ← g[nc] + k(nn, nc)
20: ftemp ← gtemp + h(nr, nn)
21: if nn 6∈ OPEN or ftemp < f [nn] then
22: previous[nn]← nc

23: g[nn]← gtemp

24: f [nn]← ftemp

25: if nn 6∈ OPEN then
26: OPEN ← OPEN ∪ {nn}
27: end if
28: end if
29: end for
30: end while
31: end function

32: function REFRESH SETS()
33: for ∀n ∈ CLOSED do
34: if f [n] ≥ f [previous[nr]] then
35: CLOSED ← CLOSED \ {n}
36: end if
37: end for
38: TEMP ← ∅
39: for ∀n ∈ CLOSED do
40: if {neighbor[n]} ∩ CLOSED 6= {neighbor[n]} then
41: TEMP ← TEMP ∪ {n}
42: end if
43: end for
44: CLOSED ← CLOSED \ TEMP

45: if TEMP 6= ∅ then
46: OPEN ← TEMP

47: else
48: OPEN ← {ng}
49: end if
50: for ∀n ∈ OPEN do
51: f [n]← g[n] + h(nr, n)
52: end for
53: end function

54: function MAIN()
55: INITIALIZE()
56: COMPUTE PATH()
57: while nr 6= ng do
58: observe neighboring nodes and update map
59: if previous[nr] is unoccupied then
60: nr ← previous[nr]
61: move robot to nr

62: else
63: REFRESH SETS()
64: COMPUTE PATH()
65: end if
66: end while
67: end function

Dynamic Z* algorithm starts from the function MAIN() in

Algorithm 1 {54}. (Numbers in curly braces refer to line

numbers in the pseudocode.) It first initializes the search

problem {55}. In the function INITIALIZE(), the CLOSED set

is initialized to an empty set {2}. The OPEN set is initialized to

the goal node where Dynamic Z* begins its search {3}. Since

k(ng, ng) = 0, thus g(ng, ng) = 0 and f(ng) = h(nr, ng).
Those values are stored as properties of ng {4-5}. Also, since

ng is the first node in the search, it does not have a parent other

than itself {6}. After initialization, Dynamic Z* can compute

the initial path based on the available information {56}.
The purpose of the function COMPUTE PATH() is to calcu-

late an energy-efficient path from ng to nr. Even though the

search starts from ng and continues until it reaches nr {13-15}
or the OPEN set is empty {9}, one should note that the energy-

cost of the path is calculated in the opposite direction, i.e.

always directing towards ng in the tree structure. The function

COMPUTE PATH() starts by selecting a minimum cost node

nc from the OPEN set {10}. If f(nc) =∞, it indicates that no

feasible paths exists, thus, the algorithm terminates {11-12}.
Otherwise, it removes nc from OPEN set {16} and adds it to

CLOSED set {17}. Then, all the neighbors of nc which are not

already in CLOSED set, are considered for cost update {18-

24}. The neighboring nodes which are not in the OPEN set

are added to the OPEN set {25-27}. Once the search process

reaches nr, it returns back to the function MAIN().

After the initial route is planned, robot starts following

the path until the goal is reached {57}. Every time that the

robot moves to a new node, it observes its neighboring nodes

and update the map accordingly {58}. If its parent node is

unoccupied, it moves to the parent node and update its location

information {59-61}. Otherwise, it needs to recompute another

path {62-64}. Since the nodes in the CLOSED set create a

search tree spanning from ng, we can reuse this tree structure

even if one of its branches fails. The challenge is to identify

a cut-off level for the tree so that rest of the tree can be

linked again with nr. That is the purpose of the function

REFRESH SETS(). It first removes all the nodes from the

CLOSED set, whose cost is not less than the previous cost

of reaching the occupied node {34-36}. Then, it checks the

remaining nodes in the CLOSED set to identify the new leaf

nodes on the search tree {38-43}. These leaf nodes are then

removed from the CLOSED set {44} and defined as a new

OPEN set {46}. If such leaf nodes are not available, the

function defines a new OPEN set with the sole node ng {48}.
Once the OPEN set is properly redefined, Dynamic Z* updates

the heuristic energy-cost of all the nodes in the OPEN set {50-

52}. Since heuristics change as the robot moves, they need to

be calculated with respect to the current location of the robot.

The main advantage of this procedure is that it can resume

its search process from the most appropriate place. Therefore,

it is not necessary to go through the whole set of nodes

repeatedly to find an optimal path. Furthermore, it only needs

to update the heuristics of the nodes that are in the OPEN set.

Since the nodes in the CLOSED set are locally consistent, their

parent connections do not change.

IV. SIMULATIONS

In this section, we evaluate the proposed Dynamic Z* algo-

rithm against Z* algorithm for energy-efficient path planning

and replanning on uneven terrains. Z* algorithm is selected

because it guarantees to provide a physically feasible energy-

optimal path between two given points by visiting a minimum

possible number of nodes, if such a path exists. Simulations

were conducted in MATLAB using two terrain models.

A. Terrain Models

The terrain models used in this paper are 3D landscapes

imitating uneven terrains which can be expressed using the

following formulas:

Model 1: z(x, y) =4.81

[

1.5 cos
(x

4π

)

+ 0.5 sin
(y

4π

)

− 0.5 sin

(

2.5

√

(x

4π

)2

+
(y

4π

)2
)]2

, (3)

Model 2: z(x, y) =3.79

[

sin
(y

3π
+ 0.5

)

− 2 sin
(y

3π

)

+1.3 cos
(x

3π

)

−0.3 sin
(

3

√

(x

2π

)2

+
(y

2π

)2
)]2

. (4)

The elevation of a grid centered at (x, y) is given by z(x, y),
i.e. n.z = z(n.x, n.y). Illustrations of Model 1 and Model 2

are shown in Figs. 2 (a) and (b), respectively. Similar terrain

representations have been used previously in [10], [14], [15].

B. Simulation Setup

We conducted 3 sets of simulations (I-III) using Z* and

Dynamic Z* algorithms. In all the simulations, the following

parameters remained unchanged: m = 22 kg, v = 0.35 ms−1,

Pmax = 72 W, µ = 0.01, µs = 1.0, and 9.81 ms−2.

Simulation I was conducted on a part of Model 1 with user

defined obstacles. Starting point and goal location of the robot

were set to ns ≡ (52, 18) m and ng ≡ (27, 85) m, respectively.

Three different simulation setups were arranged to evaluate

the performances of the algorithms under test, (a) with no

obstacles, (b) with known obstacles, and (c) with unknown

obstacles on the terrain surface. Simulation parameters and

results are given in Table I and paths generated are shown in

Fig. 1. Since the robot had complete information about all the

obstacles in setup (b), all the obstacles are illustrated in Fig.

2 (b). Fig. 2 (c) illustrates only the obstacles detected by the

robot during navigation.

Simulations II and III were carried out on Models 1 and 2

with randomly generated obstacles with a uniform distribution.

The bases of the terrain models considered were 100 × 100
m2 squares and the spacial density of obstacles was set to 0.1

for both the simulations. Simulation parameters and results

are given in Table II and paths generated are shown in Fig.

2. In these simulations, all the obstacles were unknown at the

beginning of the simulations and some of them were detected

by the robot during the navigation. Nevertheless, in Fig. 2 both

detected and undetected obstacles are illustrated to give a clear

idea about the distribution of the obstacles on the terrains.

TABLE I: PARAMETERS AND RESULTS OF SIMULATION I.

Setup
Total energy-cost (J) Number of nodes visited during navigation Total number of nodes visited

Z* Dynamic Z* Z* Dynamic Z* Z* Dynamic Z*

(a) No obstacles 1119.8873 1119.8873 0 0 3706 2001

(b) Known obstacles 1380.0689 1380.0689 0 0 4080 2774

(c) Unknown obstacles 1713.8518 1713.8518 9075 2667 12781 4668

n
s

n
g obstacles Z* Dynamic Z*

20
30

40
50

(a)

20
30

40
50

(b)

20
30

40
50

(c)

Fig. 1: Energy-efficient paths generated by Z* and Dynamic Z* algorithms with (a) no obstacles, (b) known obstacles, and (c)

unknown obstacles, while rest of the parameters remain same.

C. Results and Performance Analysis

According to the results of Simulation I, Dynamic Z* is

capable of finding paths which has equal energy-costs as what

Z* produces, with or without having prior knowledge of the

environment. In case (a), since there are no obstacles present in

the environment, both path planners do not do any replanning.

Hence, they do not visit any additional nodes during navigation

to find optimal paths because the robot can traverse the initially

computed path without encountering any obstruction. Even

though the energy-cost of the paths computed by the two

algorithms are equal, those paths are slightly different from

each other. This is mainly due to the difference in search

direction and availability of multiple routes that associate

with the same energy-cost. Also in case (b), none of the

path planners has visited any nodes to find the optimal paths

during the navigation because the prior information about the

obstacles was available. In this case, both path planners have

generated identical routes as illustrated in Fig. 1 (b).

In case (c), the path planners under test are not aware of

the obstacles in the environment during their initial planning.

Hence, they assume that all the nodes are traversable and their

initial paths generated are equivalent to the paths generated

in case (a). However, as the robot discovers obstacles in the

environment during its navigation, it has to recompute its path

to the goal. Such replanning often results in more energy

consuming paths compared to the paths generated with prior

information about the obstacles. Nevertheless, Dynamic Z*

is capable of providing a equally energy-efficient path as

what is obtained by repeatedly applying Z*. The robot is

only obstructed by the obstacles which are coincide with its

previously planned path. This can be verified by comparing the

obstacles shown in Figs. 1 (b) and (c). Interestingly, Dynamic

Z* has visited 8113 less number of nodes than Z* to achieve

the same results and Dynamic Z* is over 3 times faster than

Z* in replanning.

Simulations II and III were conducted in much obstacle

dense environments compared to previous cases. Since none

of the path planners had prior information about the obstacle

distribution in the environment, they had to plan and replan

several times to drive the robot to the final goal. Dynamic Z*

has found energy-efficient paths considerably faster than Z*

does. In Simulation II, Dynamic Z* has visited 13387 less

number of nodes compared to Z* for overall planning and

Dynamic Z* is over 32 times faster than Z* in replanning. In

Simulation III, Dynamic Z* visited has 1086 less number of

nodes compared to Z* for overall planning and Dynamic Z*

is nearly 5 times faster than Z* in replanning. Similar to the

paths generated by Z* algorithm, Dynamic Z* also generates

energy-efficient paths which are physically feasible under the

motion power constraints of the mobile robot.

TABLE II: SIMULATION PARAMETERS AND RESULTS.

Sim.
Terrain

ns (m) ng (m)
Total energy-cost (J) Number of nodes visited during navigation Total number of nodes visited

model Z* Dynamic Z* Z* Dynamic Z* Z* Dynamic Z*

II Model 1 (20,10) (78,88) 6697.1873 6697.1873 13035 405 19652 6265

III Model 2 (5,43) (92,51) 302.0689 302.0689 7339 1500 8630 7544

n
s

n
g obstacles Z* Dynamic Z*

0
10

20
30

40
50

60
70

80
90

100
0

10

20

30

40

50

60

70

80

90

100

0

20

40

y (m)

x (m)

e
le

v
a
ti
o
n

 (
m

)

(a)

0
10

20
30

40
50

60
70

80
90

100
0

10

20

30

40

50

60

70

80

90

100

0

20

40

y (m)

x (m)

e
le

v
a

ti
o

n
 (

m
)

(b)

Fig. 2: Energy-efficient paths generated by Z* and Dynamic Z* algorithms in (a) Simulation II and (b) Simulation III.

V. CONCLUSION

We present Dynamic Z* algorithm for energy-efficient path

planning and rapid replanning on uneven terrains. Traditional

path planning methods fail to recompute energy-efficient paths

promptly if the robot is unable to traverse originally planned

paths due to environmental changes. Dynamic Z* algorithm

uses its previous search results in replanning, thus, it is

much faster than ordinary energy-efficient path planners. The

simulation results show that Dynamic Z* can generate energy-

efficient paths which associate with the same energy-cost as

the optimal paths obtained by applying Z* repeatedly. There-

fore, Dynamic Z* can generate physically feasible energy-

efficient paths quickly on terrains with unknown obstacles.

ACKNOWLEDGMENT

This work is supported by the Dept. of Electronic and Infor-

mation Eng., the Hong Kong Polytechnic University (Project

G-UB45) and the Hong Kong PhD Fellowship Scheme.

REFERENCES

[1] P. Raja and S. Pugazhenthi, “Optimal path planning of mobile robots:
A review,” International Journal of Physical Sciences, vol. 7, no. 9, pp.
1314–1320, 2012.

[2] C. A. Brooks and K. Iagnemma, “Vibration-based terrain classification
for planetary exploration rovers,” Robotics, IEEE Transactions on,
vol. 21, no. 6, pp. 1185–1191, 2005.

[3] F. Naderi, D. McCleese, and J. Jordan, “Mars exploration,” IEEE

Robotics Automation Magazine, vol. 13, no. 2, pp. 72–82, June 2006.
[4] C. C. Ward and K. Iagnemma, “A dynamic-model-based wheel slip de-

tector for mobile robots on outdoor terrain,” Robotics, IEEE Transactions

on, vol. 24, no. 4, pp. 821–831, 2008.

[5] N. C. Rowe and R. S. Ross, “Optimal grid-free path planning across
arbitrarily contoured terrain with anisotropic friction and gravity effects,”
Robotics and Automation, IEEE Transactions on, vol. 6, no. 5, pp. 540–
553, 1990.

[6] N. C. Rowe and Y. Kanayama, “Near-minimum-energy paths on a
vertical-axis cone with anisotropic friction and gravity effects,” The

International journal of robotics research, vol. 13, no. 5, pp. 408–433,
1994.

[7] M. Lanthier, A. Maheshwari, and J.-R. Sack, “Shortest anisotropic paths
on terrains,” in Automata, Languages and Programming. Springer,
1999, pp. 524–533.

[8] Z. Sun and J. H. Reif, “On finding energy-minimizing paths on terrains,”
Robotics, IEEE Transactions on, vol. 21, no. 1, pp. 102–114, 2005.

[9] S. Choi, J. Park, E. Lim, and W. Yu, “Global path planning on uneven
elevation maps,” in Ubiquitous Robots and Ambient Intelligence (URAI),

2012 International Conference on. IEEE, 2012, pp. 49–54.

[10] N. Ganganath, C.-T. Cheng, and C. K. Tse, “Finding energy-efficient
paths on uneven terrains,” in Mechatronics (MECATRONICS), 2014 10th

France-Japan/8th Europe-Asia Congress on. IEEE, 2014, pp. 383–388.

[11] N. Ganganath, C.-T. Cheng, and C. K. Tse, “A constraint-aware heuristic
path planner for finding energy-efficient paths on uneven terrains,”
Industrial Informatics, IEEE Transactions on, 2015.

[12] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” Systems Science and

Cybernetics, IEEE Transactions on, vol. 4, no. 2, pp. 100–107, 1968.

[13] S. Koenig and M. Likhachev, “Fast replanning for navigation in unknown
terrain,” Robotics, IEEE Transactions on, vol. 21, no. 3, pp. 354–363,
2005.

[14] N. Ganganath and C.-T. Cheng, “A 2-dimensional ACO-based path
planner for off-line robot path planning,” in Cyber-Enabled Distributed

Computing and Knowledge Discovery (CyberC), 2013 International

Conference on. IEEE, 2013, pp. 302–307.

[15] N. Ganganath, C.-T. Cheng, and C. K. Tse, “An ACO-based off-line
path planner for nonholonomic mobile robots,” in Circuits and Systems

(ISCAS), 2014 International Symposium on. IEEE, 2014, pp. 1038–
1041.

