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Abstract—A wireless sensor network (WSN) consists of a large
number of wireless sensor nodes that collect information from
their sensing terrain. Wireless sensor nodes are, in general,
battery-powered devices with limited processing and transmission
power. Therefore, the lifetime of WSNs heavily depends on
their energy efficiency. Multiple-cluster 2-hop (MC2H) network
structure is commonly used in WSNs to reduce energy con-
sumption due to long-range communications. However, networks
with the MC2H network structure are commonly associated with
long data collection processes. The delay-aware data collection
network structure (DADCNS) is proposed to shorten the duration
of data collection processes without sacrificing network lifetime.
In this paper, a k-means-based formation algorithm for the DAD-
CNS, namely DADCNS-RK, is proposed. The proposed algorithm
can organize a network into the DADCNS, while minimizing
the total communication distance among connected sensor nodes
by performing k-means clustering recursively. Simulation results
show that, when comparing with other DADCNSs formed by
different algorithms, the proposed algorithm can reduce the total
communication distances of networks significantly.

Index Terms—wireless sensor networks, delay-aware, data
collection process, resources management, k-means algorithms

I. INTRODUCTION

A typical wireless sensor network (WSN) consists of wire-
less sensor nodes and a remote base station (BS). The BS can
be a fixed node or a mobile node, which connects the WSN
to an existing communication infrastructure. For prolonging
network lifetime, a network is usually divided into several
clusters by means of clustering [1]. In each cluster, one of
the sensor nodes is chosen as cluster head (CH) and the
rest in the same cluster are regarded as cluster members
(CM). The CH will receive all the data packets generated
from its CMs directly or in a multi-hop manner. In WSNs,
the amount of energy used in data transmission is directly
related to the communication distance between a sender and
a receiver. Longer the communication distance, more energy
being dissipated by the sensor nodes. Hence, sensor nodes
involved in long distance communications will die out quickly.
This leads to a structure change of the WSN. Means to
avoid having long communication links are illustrated in the
following examples.

Consider a network NN as shown in Fig. 1 , which has
|N| = 7 nodes. Suppose the nodes are organized into the
DADCNS using the bottom-up approach proposed in [2].

In such approach, a node or a sub-cluster will try to pair
up with its nearest party of the same size. Such greedy
behaviors work well for small-scale networks. However, this
approach can easily be trapped in a local optimum and yield
a non-ideal network arrangement. As shown in Fig. 1(a), the
cluster on the left has to reach the base station (BS) via a
long communication link. The top-down approach in [2] first
considers the network as fully connected and tries to construct
the DADCNS by removing as many long links as possible.
This approach can avoid isolating those nodes at the two lower
corners (see Fig. 1(b)). However, some long communication
links may still exist.

By exploiting the location information of the sensor nodes, it
is possible to yield the DADCNS with shorter communication
links. Consider the same network as discussed in Fig. 1, one
can easily divide the network into two parts by means of
clustering. As geographical separations among nodes within a
cluster are relatively shorter, forming DADCNSs inside those
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(a) A network organized into the DADCNS using the
bottom-up approach in [2].
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(b) A network organized into the DADCNS using the top-
down approach in [2] and [3].

Fig. 1. Networks with |[N| = 7 nodes organized using the DADCNS.
Circles with numbers represent wireless sensor nodes while circles with labels
“BS” represent base stations. The numbers inside the circles indicate their
transmission schedules.



Fig. 2. A network with |N| = 7 nodes organized using the DADCNS with
the help of a clustering technique. Circles with numbers represent wireless
sensor nodes while the circle with a “BS” label represents a base station. The
numbers inside the circles indicate their transmission schedules.

clusters separately are less likely to yield long communica-
tion links. Fig. 2 is showing a network organized using the
DADCNS with the help of a clustering technique, where the
network is first vertically divided at the middle into clusters
with sizes 4 and 3. The cluster on the right is further divided
into clusters with sizes 2 and 1.

In this paper, a k-means-based formation algorithm for the
DADCNS is proposed. It utilizes location information of the
sensor nodes, such that the DADCNS can be constructed while
its associated data links can be kept as short as possible.
Simulation results show that the proposed algorithm can
greatly shorten communication links without degrading the
data collection performance of the DADCNS. The rest of the
paper is arranged as follows. Related work is reviewed in
Section II. A network formation algorithm based on a k-means
algorithm is proposed in Section IIl. The proposed algorithm
is analyzed in Section IV. In Section V, performances of the
proposed algorithm are evaluated using computer simulations.
The results are further studied and discussed in Section VI.
Finally, concluding remarks are given in Section VIIL.

II. RELATED WORK

Intensive research [1], [4]-[6] has been conducted on reduc-
ing energy consumption by forming clusters with appropriate
network structures. Heinzelman et al. proposed a clustering
algorithm called LEACH [1]. Since then, network formation
algorithms based on clustering techniques are developed inten-
sively. Nguyen et al. proposed M-LEACH [7] by improving
LEACH. In [8], Jung et al. proposed a network formation algo-
rithm with considerations of both the residual energy of sensor
nodes and the number of neighbors around each node when se-
lecting CHs. In addition, Maraiya et al. developed ECHSSDA
in which efficient CH selection was proposed [9]. Ducrocq et
al. developed BLAC [10], the very first distributed clustering
algorithm providing non-overlapping multi-hop clusters with
energy concerns. In [3], Cheng and Ganganath are the first
who attempted to exploit the geographical locations of sensor
nodes in order to facilitate the formation of DADCNS. In their
first attempt, a network is divided into sub-clusters by a k-
means algorithm. Whenever a sub-cluster is having a cluster
size of 2%, k € Z%, such sub-cluster will not be divided
any further. Instead a top-down approach proposed in [2] will
be executed inside the sub-cluster and it will organize the

sub-cluster into the DADCNS. Nevertheless, the formation of
DADCNS needs to be further investigated to minimize the
communication distance among connected sensor nodes.

III. THE PROPOSED ALGORITHM

The essence of the proposed DADCNS-RK algorithm is
clustering nodes in a network, by using a k-means algorithm
recursively, such that their within-cluster geographical sepa-
rations are minimized. The DADCNS can be maintained by
imposing constraints on cluster sizes. Procedures are listed as
follows.

Step-1 Initialize the algorithm with a network N together
with a centroid Cp of its parent network. If N is
the uppermost network, Cp will be replaced by the
coordinates of the BS. Calculate the centroid of N
and denote it as C'. Divide the network into two sub-
networks using k-means algorithm (i.e. setting k = 2),
such that N = Ny U Ny and N; N Ny = (). Without
lost of generality, assume |Ny| > | Na.

Step-2 Since an ordinary k-means algorithm has no constrain
on cluster sizes, N1 and Ny will go through a network
resizing sub-routine to ensure that

|V, | = 2722031 and |Ny| = |N| — [Ny].

Divide a network N into N, and N, using k-
means algorithm, such that N = Ny U Na.
Without loss of generality, assume | V1| > [No].

In. =12

Network resizing sub-routine,
s.t.

V| = 2Neea(3H1
[Nof = [N| = [N,
N,,i=1,2

Connect the
nodes. Select the
node closer to the
centroid of N as
the pCH,.

pCH, , i=1,2

If |N,|=|N,]|, connect pCH, and pCH,. Return pCH, or pCH, that
is closer to the centroid of the network N and its counterpart, as
the pCH. Otherwise, return pCH=[pCH,, pCH,].

Fig. 3.  The flow chart of the proposed DADCNS-RK for constructing
networks with a multiple-tree structure.



Step-3 For ¢« = 1,2, if |N;] > 2, set N; — N and
C — Cp. Return to Step-1 and further divide the
network recursively. Otherwise, connect the nodes (if
any) in NN;. Return the one closer to the centroid C' as
a potential cluster head pCH, of the sub-cluster.

Step-4 If |N;| = |Na|, both sub-networks N; and N» can
form fully-filled DADCNS (i.e. |N;| = 2%, k € Z1).
Each sub-network should have a single potential clus-
ter head pCH. Connect pCH; with pCH,, and return the
one closer to the centroid C' as the pCH of the merged
network. Otherwise, return all pCHs in N7 and N as
pCH = [pCH,, pCH,].

The procedures of the DADCNS-RK algorithm are sum-
marized in Fig. 3. In Step-2, the aim of the network resizing
sub-routine is to move nodes between N7 and N5 such that
INy| = 2Mo22('3)7 and [Ny| = [N| — | V| Pseudo-codes of
the sub-routine are given in Algorithm 1.

Data: N; and N, where |N;| # 2% k =c Z*
Result: [N | = 2M102:(50)1 and | Ny| = |N| — | V4.
while |N;| # 2105201591 do
if V| < 2Mo22(3D1 then
Calculate Cq;

Move a node from Ny to N7 that is closest to Cq;
else
Calculate Cs;
Move a node from N7 to N, that is closest to Cs;

end
end

Algorithm 1: The network resizing sub-routine

In Step-3, when |N;| = 2, i = 1,2, the DADCNS-RK
algorithm will always join the two nodes in NN; together. The
one that is closer to the centroid C will be selected as pCH,.
The main reason is to try selecting a pair of pCH, from N
and Ny that are having a relatively shorter separation. Such
technique can help reducing the total communication distance
of the constructed network. However, if |NV;| = 1, i = 1,2,
the only node in the network will be denoted as the pCH,.

In Step-4, the sizes of the two sub-clusters will only be equal
if their parent network has a network size of N = 2%, k € Z%.
Assuming N; and N, are both organized using DADCNS,
joining pCH; with pCH, will still maintain the DADCNS in
the merged outcome.

The DADCNS-RK algorithm will end with a single pCH if
IN| = 2%, k € Z*. Otherwise, it will deliver a number of
pCHs of sub-clusters with different sizes. All these pCHs will
be connected to the BS directly. If multiple-clusters are not
allowed, Step-4 should be modified as the shaded box shown
in Fig. 4. In the modified version, pCH; should always be
connected with pCH,. Afterward, the pCH that is closer to
the centroid Cp will be selected as the pCH of the merged
outcome.

IV. ANALYSES OF THE DADCNS-RK

The pCH of a network N with the DADCNS requires
log, N time-slots to receive data from its CMs and take
an additional time-slot to return the fused data to its parent
node or the BS. Therefore, the duration of its data collection
process (DCP) is expressed as Ipcp = logy N + 1 [2].
In the proposed algorithm, a network of N is divided into
INy| = 2M82"5)1 and [N,| = |N| — |Vy]. Since both N
and N, are organized as DADCNS, the pCH of network N;
will take TDCP_] = 10g2 N1 +1 = TIpcp — 1 to collect data
from all its CMs. As |[Ny| < |Ny|, pCH of Ny will have
Tocp2 < Tpep — 1.

If multiple-cluster is not allowed or if |N7| = |Ns|, the
two pCHs will be connected and one of them will become the
chief pCH of the merged cluster. Suppose Tpcp 1 = Tbcp 2,
both pCHs will finish their DCP using the same number of
time-slots. One of the pCHs will take one time-slot to collect
the fused data from the other pCH and therefore, Tpcp of the
merged network = logy N + 1. If Tpcp 1 > Tpep 2, pCH of
N can only return data to pCH of N; after Tpcp_; time-slots.
Therefore, Tpcp of the merged network remains unchanged.

If multiple-cluster is allowed and |N7| # |N2|, the merged
network is not a fully-filled DADCNS. Therefore, the two
pCHs should not be connected even though N; and N»

|
!
Divide a network N into N, and N, using k-

means algorithm, such that N = N1 U Ny,
Without loss of generality, assume | V1| > [No].

11\/,,1‘:1,2

Network resizing sub-routine,
s.t. INy| = oflogy(131)]
|Vl = [N] - M|

I, =12
N[22

lNo

Connect the
= nodes. Select the
= node closer to the
centroid of N as
the pCH,.

|
1 pCH, , i=1,2

Connect pCH, and pCH,. Return pCH, or pCH, that is closer to
the centroid of the network N and its counterpart, as the pCH.

l pCH

Fig. 4. The flow chart of the proposed DADCNS-RK for constructing
networks with a single-tree structure.



are with the DADCNS. Having under-filled clusters leads
to unnecessary idling in a data collection process, which
should be avoided. If both N; and N, are filly-filled and
|N1| > | N3], the two clusters will have different Thcp values.
Their pCHs can, therefore, be connected to the BS without
introducing any conflict in the transmission schedule. If N,
is not fully-filled, according to the DADCNS-RK algorithm,
the cluster will be further broken down into sub-clusters
recursively until all its sub-clusters are fully-filled clusters of
different sizes. All the pCHs of these clusters will return data
to the BS using different time-slots. The Tpcp of the whole
network is therefore governed by that of its largest cluster, i.e.
Tpcp = [log, ‘—];/I] +1 =log, N, which concurs with findings
in [2], [3].

V. SIMULATIONS

The performances of the proposed algorithm are evaluated
using computer simulations. In the simulations, the duration of
a DCP (Tpcp) and the total squared communication distance
(W) are used as performance indicators [3]. Tpcp is expressed
as the total number of time-slots required by a BS to collect
data from all the nodes in the network.

The total squared Euclidean distance [2], [3], [11] is ex-
pressed as

N
cijdy; + > id'y. (1)

i=1 j=i+1 k=1

+

Here, c;; is an indicator showing the existence of a connection
between the i and the j‘h nodes. If a connection exists,
cij = 1, else ¢;; = 0. Variable d;; is representing the
Euclidean distance between the i and the jth nodes. Similarly,
c';. indicates the existence of a connection between the BS
and the k™ node, while d’;, represents the Euclidean distance
between the BS and the k" node. The total squared Euclidean
distance is a good estimation for the total energy consumption

of a WSN [2].

A. Simulation Settings

Simulations were conducted in Matlab. In each simulation,
a network with |N| wireless sensor nodes are distributed
randomly on a square sensing terrain with 50 x 50 m?,
which has its center and one of its corners located at (25,
25) m and (0, 0) m, respectively. The BS is located at the
center of the terrain, which tries to collect data from all the
nodes in the networks. In the simulations, performance of the
original DADCNS will be used as references. The DADCNS
will be constructed as a single cluster and multiple clusters
using the top-down network formation approaches proposed
in [2] and [3], respectively. In order to evaluate the effect of
|N| to the performances of networks with different network
structures, |N| is varied from 3 to 99 with a step-size of 3.
In the simulations, all the network formation algorithms are
implemented in a centralized manner. Results presented in this
paper are the averaged values of 50 simulations.
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Fig. 5. The averaged squared Euclidean distance of networks with the
DADCNS formed by different algorithms.
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Fig. 6. The averaged duration of a data collection process in networks with
the DADCNS formed by difterent algorithms. Note that except networks with
the DADCNS (Single Cluster), results of networks with other structures are
overlapping (the lower curve).

B. Simulation Results

Simulation results are shown in Fig. 5 and Fig. 6. In gen-
eral, ¥ values of networks with different network formation
algorithms increase with |N|. Networks with the proposed
DADCNS-RK algorithm can achieve lower values of U es-
pecially for scenarios with large |N|. Tpcp of networks with
different network formation algorithms increase monotonically
with |N|.

VI. DISCUSSIONS

As expected in section IV, the averaged duration of DCP
in networks with the DADCNS formed by the proposed
DADCNS-RK algorithm is the same as that of DADCNS
formed by other algorithms. The reason is DADCNS-RK could
attain the same network structure as DADCNS for both single-



cluster and multiple-cluster cases. The time slots needed for
the BS to collect all data packets in the network could hence be
unaffected. In terms of minimizing ¥, the DADCNS formed
by the proposed algorithm DADCNS-RK outperforms the
DADCNS formed by other algorithms significantly when the
network size N is larger than 30, which show that the proposed
network formation algorithm is highly suitable for large-scale
networks. For networks with N < 30, performances of all
algorithms under test were close to each other. DADCNS-
RK (Single Cluster) could achieve a better performance of
reducing ¥ than DADCNS-RK (Multiple Clusters) in general.
The main reason is that in a single-cluster structure, there
is only one CH; while in a multiple-cluster structure, there
are more than one CHs. The total communication distance
between the BS and the CHs is expected to be higher in the
later case.

VII. CONCLUSIONS

In this paper, a k-means-based formation algorithm for the
DADCNS, namely DADCNS-RK, is proposed. To cater for
different applications, two variations of DADCNS-RK are pro-
posed such that a network can be constructed in either single-
cluster or multiple-cluster styles. Performances of the proposed
algorithm are evaluated based on the averaged squared Eu-
clidean distance of the network and the averaged duration of
a data collection process in the network. Networks with the
proposed algorithm are compared with networks formed by the
conventional DADCNS formation algorithms with and without
splitting. Simulation results show that networks formed by
the proposed DADCNS-RK algorithm can greatly reduce the
averaged squared Euclidean distance of the network while
keeping the averaged duration of a data collection process in
the network the same as that of other DADCNSs.
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