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In this paper, analytical analysis of the permanent magnet vernier (PMV) is presented. The key is

to analytically solve the governing Laplacian/quasi-Poissonian field equations in the motor regions.

By using the time-stepping finite element method, the analytical method is verified. Hence, the

performances of the PMV machine are quantitatively compared with that of the analytical results.

The analytical results agree well with the finite element method results. Finally, the experimental

results are given to further show the validity of the analysis. VC 2012 American Institute of Physics.

[doi:10.1063/1.3677878]

The permanent magnet vernier (PMV) machines are

becoming promising candidate for low-speed applications,

such as direct-drive wind power generation. However, the

theory analysis of PMV machine is mainly based on mag-

netic circuit method in which only the fundamental compo-

nent is considered.1,2 The intrinsic principle of PMV

machine need to be further studied to provide physical

insight for the designer. Although some viable analytical

methods have been proposed for magnetic gears3 and slotless

PM machines,4 they generally do not contain the stator slot

structure, which makes the problem much more difficult.

The introductions of the flux-modulation-poles (FMPs) and

stator slots in PMV machine make the problem complicated

and difficult to solve. Although more accurate analytical

methods have been developed for the PM machines,5,6 the

PMV machine has not been proposed.

In this paper, the performances of the PMV motor are

analyzed by analytical method while both of the stator slots

and FMPs have been taken into consideration. The deriva-

tions of the induced voltage and torque have been presented

and the results are verified by finite element methods. The

analytical results agree well with the FEM results, which

prove the viability of the method.

The configuration of a newly developed PMV machine

is shown in Fig. 1. There are 6 slots in the inner stator, which

are occupied by 3-phase armature windings. Each stator

tooth of the PMV machine is split into 4 FMPs, which func-

tions to modulate the high-frequency rotating PM filed of the

outer rotor. Thus, it can offer low-speed operation for direct-

drive applications. The corresponding relationship is gov-

erned by pr¼Ns� ps, where Ns is the number of FMPs in the

stator, pr is the number of PM pole-pairs in the rotor and ps

is the number of armature winding pole-pairs in the stator.

The output torque relies on the interaction between the

magnetic fields generated by the PMs and the armature windings.

The magnetic flux density generated by the PMs is given by

BPMðh1Þ � ð�1Þj 1

2
FPM1P1 cos ðNs � prÞh1 þ prhm½ �

þ FPM1P0 cos prðh1 � hmÞ½ �; (1)

where BPM is the airgap flux density generated by the PMs;

FPM1 is the amplitude of the fundamental component of PM

magnetomotive force; P is the permeance of the magnetic

path; h1, h2, hm are the initial mechanical angle on the stator,

on the rotor and the rotor position, respectively.

Considering only the components of the magnetomotive

force Fc generated by the armature windings that have the

same orders as the terms in BPM; otherwise, they do not

affect the net torque, it yields:

Fc �
3

2
kd1kp1Fc1

n
cos psh1 � ðxt� aÞ½ �:

þ ð�1Þjp cos Ns � psð Þh1 þ xt� að Þ½ �=ðNs � psÞ

þ ð�1Þj�1p cos Ns þ psð Þh1 � xt� að Þ½ �=ðNs þ psÞ
o
;

(2)

where Ns= ps; and kd1, kp1 are the distribution factor and the

pitch factor of the fundamental component, respectively.

From Eqs. (1) and (2), it can be found that the first and second

term of Eq. (1) are the same if pr is Nsþ ps, while they become

opposite when pr¼Ns� ps. To maximize the output torque,

the PMV motor needs to adopt the relationship pr¼Ns� ps.

In order to perform the analytical formulation for har-

monic analysis, there are some basic assumptions: the perme-

ability of both stator and rotor cores are infinite; the relative

recoil permeability of PM equals to 1, and the end-effects are

neglected. Firstly, the machine model without considering the

FMPs is analyzed. Secondly, the model with FMPs is
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analyzed. Meanwhile, the magnetic scalar potential is adopted

to analyze the magnetic field of the machine.

The corresponding vector potential distribution in the

PM subdomain I is governed by the Poisson’s equation,

while that in the airgap subdomain II is by the Laplace’s

equation. By applying the boundary conditions and the radial

magnetization function, the airgap flux density can be

deduced.5,6

The modulation effect of the FMPs can be described by

using the concept of complex relative airgap permeance. The

permeance parameters are calculated by using the Schwarz–

Christoffel transformation in such a way that the slotted

structure can be transformed from the original plane to a

new plane in which the structure becomes smooth. So, the

analytical expression of magnetic flux density in the airgap

is given by

BM ¼ Bok
�; (3)

where BM and Bo are the airgap flux densities with and with-

out the FMPs, respectively, and k� is the complex relative air-

gap permeance. In polar coordinates, they can be written as

BM ¼ BrIIFMPs~er þ BrhFMPs~eh; B0 ¼ BrII~er þ Brh~eh; (4)

k� ¼ ka~er � kb~eh; (5)

ka ¼ k0 þ
X1
k¼1

kak cosðkNshÞ; kb ¼
X1
k¼1

kbk sinðkNshÞ; (6)

where k0, kak, kbk are the Fourier coefficients.

The electromagnetic torque Te is generated by the inter-

action of the magnetic field generated by the PMs and the

armature currents. It can readily be deduced by using the

Maxwell stress tensor and then the analytical expression of

the electromagnetic torque becomes

Te ¼
pLR2

e

l0

X1
n¼1

WnXn þ YnZnð Þ; (7)

where Wn, Xn, Yn, and Zn, are the Fourier expansions that can

readily be determined using the boundary conditions

Wn ¼ �AII
n

R2

Re

PnðRe;R3Þ
EnðR2;R3Þ

� BII
n

R3

Re

PnðRe;R2Þ
EnðR3;R2Þ

;

Xn ¼ �CII
n

R2

Re

EnðRe;R3Þ
EnðR2;R3Þ

� DII
n

R3

Re

PnðRe;R2Þ
EnðR3;R2Þ

;

Yn ¼ CII
n

R2

Re

PnðRe;R3Þ
EnðR2;R3Þ

þ DII
n

R3

Re

PnðRe;R2Þ
EnðR3;R2Þ

;

Zn ¼ �AII
n

R2

Re

PnðRe;R3Þ
EnðR2;R3Þ

� BII
n

R3

Re

EnðRe;R2Þ
EnðR3;R2Þ

;

(8)

where AII
n , BII

n , CII
n , and DII

n can readily be determined by

AII
n ¼

2

2p

ð2p

0

@AI

@r

����
R2

� cosðnhÞ � dh;

BII
n ¼

2

2p

ð2p

0

f hð Þ � cosðnhÞ � dh;

CII
n ¼

2

2p

ð2p

0

@AI

@r

����
R2

� sinðnhÞ � dh;

DII
n ¼

2

2p

ð2p

0

f hð Þ � sinðnhÞ � dh;

(9)

f hð Þ ¼
@Ai

@r

����
r¼R3

; 8h 2 slot opening;

0; else;

8<
: (10)

where Ai is the vector potential in ith slot opening, Pn and En

is defined by

FIG. 1. Configuration of PMV machine.

FIG. 2. Magnetic field distributions. (a) PMV machine at 0�. (b) PMV

machine at 90�.

FIG. 3. (Color online) PMV machine characteristics. (a) No-load EMF. (b)

Electromagnetic torque.
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Pnða; bÞ ¼
a

b

� �n
þ b

a

� �n

;

Enða; bÞ ¼
a

b

� �n
� b

a

� �n

:

(11)

In order to compute the no-load EMF of a three-phase

machine, the first step is to calculate the magnetic scalar

potential of each slot j at a given rotor position. Considering

that the current density is uniformly distributed over the slot

area, the magnetic scalar potential can be averaged over the

slot area to represent the coil as

uj ¼
L

Sslot

ðð
Sslot

Ajðr; hÞr � dr � dh: (12)

Hence, the three-phase flux vector can be expressed as

wa wb wcð Þ0¼ nturn � ½C� � u1u2 � � �u2Q�1u2Q

� �0
; (13)

where nturn is the number of turns in series per phase and [C]

is a connecting matrix that represents the stator winding dis-

tribution in the slots. Consequently, at a given position D,

the three-phase no-load EMF vector is represented by

Ea Eb Ecð Þ0¼ X � d

dD
� wa wb wcð Þ0: (14)

Firstly, the FEM is applied to analyze the magnetic field

distributions of the PMV machine under no-load at two

extreme rotor positions, namely at 0� and 90� electrical

degree, as shown in Fig. 2. It can be observed that the mag-

netic field rotates 90� electrical degree while the rotor rotates

only 3.75� mechanical degree. This indicates that this

machine can provide low-speed high-torque operation. It

also can be observed that the flux lines per stator tooth of the

PMV machine can pass through the FMPs separately, hence

verifying the desired flux modulation in both machines.

Secondly, the radial airgap flux density waveform and

its harmonic spectra are simulated by using both the pro-

posed analytical calculation and the FEM. The radial airgap

flux density has been analyzed and the 3 rd, 24th, 48th, 72nd,

and 120th harmonics have prominent values due to the slot-

ting effect. Quantitatively, the averaged values of the radial

component are 0.67 T.

Thirdly, Fig. 3(a) shows the no-load EMF waveforms

of the PMV machine, obtained by both the analytical cal-

culation and the FEM. As expected, the analytical results agree

well with the FEM results. It can be found that the RMS values

of the analytical results and simulation results are 65.9 and

69.8 V, respectively. Namely, the analytical result is 5.9%

lower than the simulation result, which is acceptable.

Fourth, Fig. 3(b) shows the electromagnetic torque

waveforms of PMV machine obtained by both the analytical

calculation and the FEM. Again, as expected, the analytical

results agree well with the FEM results. It can be found that

the peak torques of the analytical result and the simulation

result are 52.7 and 51.1 Nm, respectively. Namely, the ana-

lytical result of the PMV machine is 3.0% higher than FEM

simulation result.

Finally, Fig. 4 shows the measured no-load EMF of the

PMV machine. It can be found that the analytical and FEM

results agree well with the experimental results. Thus, the pro-

posed analytical method and FEM simulation for the design

of PMV machine are verified, hence the validity for the PMV

machine. The final system of the PMV machine is prototyped

and tested under the same conditions as the analysis, shown in

Fig. 5. Table I is the key design data of the final system.

In this paper, an analytical analysis of the PMV machine

has been proposed and implemented. The key is to analyti-

cally solve the governing Laplacian/quasi-Poissonian field

equations in the airgap regions. The analytical analysis

results are quantitatively compared with that of the simula-

tion results, showing that the analytical result of no-load

EMF is 5.9% lower and torque is 3.0% higher than the simu-

lation results which are acceptable. Finally, the experimental

results verify the validity of the analytical analysis.
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FIG. 5. (Color online) Prototype of the proposed PMV motor. (a) Scheme.

(b) Photo.

TABLE I. Key design data.

Rated power 2 kW

Rated speed 200 rpm

No. of phases 3

No. of stator pole-pairs 3

No. of stator slots 27

No. of rotor pole-pairs 48

Overall outside diameter 240 mm

Shaft diameter 40 mm

Axial length 60 mm

Airgap length 0.6 mm

FIG. 4. Measured no-load EMF waveforms of PMV machine (50 V/div,

2 ms/div).

07E727-3 Li et al. J. Appl. Phys. 111, 07E727 (2012)

Downloaded 18 Apr 2012 to 158.132.161.52. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1109/TMAG.2010.2044636
http://dx.doi.org/10.1109/28.887204
http://dx.doi.org/10.1063/1.2158966
http://dx.doi.org/10.1109/TMAG.2004.828933
http://dx.doi.org/10.1063/1.3068541
http://dx.doi.org/10.1109/TMAG.2006.874594

