

High magnetoelectric tuning effect in a polymer-based magnetostrictivepiezoelectric laminate under resonance drive

Yuan-Feng Duan, Chung Ming Leung, Shengyao Zhang, Long Zhang, and Siu Wing Or

Citation: J. Appl. Phys. 111, 07C717 (2012); doi: 10.1063/1.3678321

View online: http://dx.doi.org/10.1063/1.3678321

View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v111/i7

Published by the American Institute of Physics.

Related Articles

Vacancy-driven ferromagnetism in ferroelectric PbTiO3

Appl. Phys. Lett. 100, 162901 (2012)

Ion doping effects in multiferroic MnWO4

J. Appl. Phys. 111, 083906 (2012)

Origin of ferromagnetism and oxygen-vacancy ordering induced cross-controlled magnetoelectric effects at room temperature

J. Appl. Phys. 111, 073904 (2012)

Synthesis and signature of M-E coupling in novel self-assembled CaCu3Ti4O12-NiFe2O4 nanocomposite structure

J. Appl. Phys. 111, 074302 (2012)

Quantum levitation of a thin magnetodielectric plate on a metallic plate using the repulsive Casimir force J. Appl. Phys. 111, 074304 (2012)

Additional information on J. Appl. Phys.

Journal Homepage: http://jap.aip.org/

Journal Information: http://jap.aip.org/about/about_the_journal Top downloads: http://jap.aip.org/features/most_downloaded

Information for Authors: http://jap.aip.org/authors

ADVERTISEMENT

High magnetoelectric tuning effect in a polymer-based magnetostrictive-piezoelectric laminate under resonance drive

Yuan-Feng Duan, ^{1,2} Chung Ming Leung, ² Shengyao Zhang, ² Long Zhang, ² and Siu Wing Or^{2,a)}

¹College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China ²Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

(Presented 3 November 2011; received 24 September 2011; accepted 28 November 2011; published online 9 March 2012)

A polymer-based magnetoelectric (ME) laminate was fabricated by sandwiching one layer of thickness-polarized, length-stretched polyvinylidene fluoride (PVDF) piezoelectric polymer between two layers of length-magnetized, epoxy-bonded $Tb_{0.3}Dy_{0.7}Fe_{1.92}$ (Terfenol-D) pseudo-1–3 magnetostrictive particulate composite in the thickness direction, and its resonance ME effect was investigated, both experimentally and theoretically, as a function of magnetic bias field (H_{Bias}). The laminate showed a high ME voltage coefficient (α_V) of 233 mV/Oe at the fundamental resonance frequency (f_r) of 60.6 kHz under a relatively low H_{Bias} of 0.6 kOe. By controlling H_{Bias} in the range of 0.02–1.5 kOe, nonlinear tunabilities as high as 1382 and 8.6% were achieved for α_V and f_r , respectively, as a result of the reduced eddy-current losses and enhanced non-180° domain-wall motion-induced *negative-\Delta E* effect in the Terfenol-D composite layers as well as the increased compliance contribution from the PVDF polymer layer to allow the motion of non-180° domain walls in the Terfenol-D composite layers. This improved resonance ME tuning effect, together with the durable and tailorable natures, makes the laminate great promise for developing into tunable ME devices. © 2012 American Institute of Physics. [doi:10.1063/1.3678321]

The magnetoelectric (ME) effect in materials has attracted much research attention in recent years. Laminated composites based on Tb_{0.3}Dy_{0.7}Fe_{1.92} (Terfenol-D) magnetostrictive alloy and 0.7Pb(Mg_{1/3}Nb_{2/3})O₃-0.3PbTiO₃ (PMN-PT) piezoelectric crystal have been a main focus because of their generally high extrinsic ME effect arisen from the mechanically mediated magnetostrictive and piezoelectric effects.^{1,2} When operating at resonance, these alloy-crystal-based laminates often yield an enhanced resonance ME effect of ~10 times higher in ME voltage coefficient (α_V) compared to their nonresonance α_V counterparts.² Recently, ME tuning has become a physically interesting and technologically important topic for realizing tunable ME devices. 1-4 From the aspect of magnetically ME tuning, the highest tunable α_V of ~ 10 times (i.e., α_V tunability of $\sim 1000\%$) and tunable resonance frequency (f_r) of $\sim 2 \,\mathrm{kHz}$ range (i.e., f_r tunability of $\sim 3\%$) in a magnetic bias field $(H_{\rm Bias})$ range of 0.02–0.8 kOe have been observed in the Terfenol-D/PMN-PT laminates.²

In this paper, we report a high $H_{\rm Bias}$ -controllable nonlinear resonance ME tuning effect in a polymer-based ME laminate formed by a polyvinylidene fluoride (PVDF) piezoelectric polymer film and two epoxy-bonded Terfenol-D pseudo-1–3 magnetostrictive particulate composite plates. The use of Terfenol-D composite, instead of Terfenol-D alloy, is to alleviate its intrinsic weaknesses of high eddy-current losses at elevated frequencies, negligibly small $negative-\Delta E$ effect (or magnetomechanical tuning effect) caused by limited non-180° domain-wall motion under zero stress bias, and

mechanical brittleness. The adoption of the relatively compliant PVDF polymer, in place of PMN–PT crystals or Pb(Zr, Ti)O₃ (PZT) ceramics, not only relieves the elastic clamping effect on the Terfenol-D composite for best possibly exhibiting the built-in non-180° domain-wall motion, the large *negative*- ΔE effect, and hence the high ME tuning effect, but also improves the durability of the whole laminate.

Figure 1(a) shows the schematic diagram of the proposed polymer-based ME laminate in the Cartesian coordinate system. Two Terfenol-D composite plates were bonded on a PVDF polymer film in the thickness direction using a silver-loaded epoxy adhesive. The Terfenol-D composite plates, which were prepared in house using Terfenol-D particles with randomly distributed sizes of 10–300 μ m and Spurr epoxy as the active and passive phases, respectively, had a cross-sectional area of 12×6 mm², a thickness of 1 mm, a particulate volume fraction of 0.51, and a magnetization (M) along the length direction. The PVDF polymer film was commercially acquired to have the same cross-sectional area as the Terfenol-D composite plates, a different thickness of 0.1 mm, full-fired silver electrodes on the two major surfaces, a polarization (P) along the thickness direction, and a mechanical stretch in the length direction.

The working principle of the polymer-based ME laminate in Fig. 1(a) is as follows. An ac magnetic field (H_3) applied along the length direction of the laminate causes the two length-magnetized Terfenol-D composite plates to produce magnetostrictive strains in their length direction due to the magnetostrictive effect. Since the PVDF polymer film is mechanically bonded and sandwiched between the two Terfenol-D composite plates, these magnetostrictive strains subsequently stress the PVDF polymer film to generate

a) Author to whom correspondence should be addressed. Electronic mail: eeswor@polyu.edu.hk.

piezoelectric voltages (V_3) across its thickness owing to the piezoelectric effect. Using the equation of motion to couple the magnetostrictive and piezoelectric constitutive relations, ^{7,8} applying Newton's second law of motion to the laminate, ⁷ taking free-free mechanical boundary conditions, considering mechanical losses, ¹⁰ and finding analogous electrical equivalent parameters, ⁹ a dynamic magneto-elastoelectric equivalent circuit of the proposed laminate in Fig. 1(a) was obtained and is shown in Fig. 1(b). The ME voltage coefficient (α_V) of the laminate can be expressed as

$$\alpha_{V} = \left| \frac{dV_{3}}{dH_{3}} \right| = \left| \frac{\varphi_{\rm m} \varphi_{\rm p}}{\varphi_{\rm p}^{2} + j\omega C_{0} R + j\omega C_{0} Z} \right|, \tag{1}$$

$$\varphi_{\rm m} = \frac{Ad_{33,m}}{s_{33}^{H}}, \varphi_{\rm p} = \frac{wd_{31,p}}{s_{11}^{E}}, C_{0} = \frac{lw\varepsilon_{33}^{S}}{t_{\rm p}},$$

$$R = \frac{\pi \sqrt{ns_{11}^{E} + (1 - n)s_{33}^{H}\rho A}}{8Q_{mech}\sqrt{s_{11}^{E}s_{33}^{H}}},$$

$$Z = -\frac{1}{2}j\sqrt{\frac{n\rho}{s_{33}^{H}} + \frac{(1 - n)\rho}{s_{11}^{E}}A\cot\left(\frac{kl}{2}\right)},$$

where $\varphi_{\rm m}$ and $\varphi_{\rm p}$ are the magnetoelastic and elastoelectric coupling coefficients, respectively; C_0 is the clamped capacitance of the PVDF polymer film; R is the mechanical damping resistance of the laminate caused by internal frictions between material phases; and Z is the total mechanical impedance of the laminate. Other symbols have their usual meanings. The resonance frequency $(f_{\rm T})$ can be written as

$$f_{\rm r} = \sqrt{\frac{n}{S_{33}^H} + \frac{1 - n}{S_{11}^E}}. (2)$$

Figures 2(a) and 2(b) plot the measured and calculated α_V of the polymer-based ME laminate driven by an H_3 of 1 Oe peak in the f range of 1–100 kHz under various $H_{\rm Bias}$ of 0.02–1.5 kOe, respectively. The α_V –f curves in Fig. 2(b) were calculated based on Eq. (1), with the material properties given in Fig. 3(b) and Refs. 5 and 6 and the geometric parameters described in Fig. 1. It is clear that the measured and calculated α_V agree reasonably well with each other for all $H_{\rm Bias}$ levels

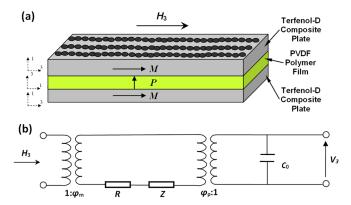


FIG. 1. (Color online) (a) Schematic diagram of the proposed polymer-based ME laminate in the Cartesian coordinate system. (b) Dynamic magneto-elasto-electric equivalent circuit of the laminate.

with no remarkable frequency dispersion, except for the variations associated with the resonance frequency range of 50-70 kHz. The observation indicates that the eddy-current losses are insignificant in the laminate for f up to 100 kHz. Moreover, the largest resonance α_V is found at a relatively low H_{Bias} level of 0.6 kOe for both measurement and calculation. In particular, the largest resonance α_V is detected to be 233 mV/Oe at $f_r = 60.6 \,\mathrm{kHz}$ by measurement and 228 mV/Oe $f_{\rm r} = 60.9 \, \rm kHz$ by calculation. These resonance α_V are ~ 20 times larger than their nonresonance α_V of $\sim 12 \,\text{mV/Oe}$. This resonance amplification of α_V is even more significant compared to the best known alloy-crystal-based Terfenol-D/ PMN-PT laminates of \sim 10 times as a result of improved coupling between the Terfenol-D composite plates and the PVDF polymer film in our laminate. When H_{Bias} is reduced to 0.02 kOe, the measured and calculated resonance α_V undergo a large reduction of \sim 15 times to 16 and 17 mV/Oe, respectively, while their corresponding f_r exhibit an up-shift of \sim 2 kHz to 62.5 and 62.2 kHz, respectively. At an elevated $H_{\rm Bias}$ level of 1.5 kOe, the measured and calculated resonance α_V have ~ 1.2 times reduction to 193 and 204 mV/Oe, respectively, but their corresponding f_r exhibit a large up-shift of \sim 4 kHz to 65.7 kHz, respectively. The observations indicate that besides the presence of a high resonance ME effect in our laminate, there also exist an interestingly high H_{Bias} -controllable nonlinear resonance ME tuning effect in the laminate.

Figure 3(a) shows the comparison between the measured and calculated resonance α_V and f_r as a function of $H_{\rm Bias}$. To enable a quantitative description of the $H_{\rm Bias}$ -controllable nonlinear resonance ME tuning effect in Fig. 2, the tunability

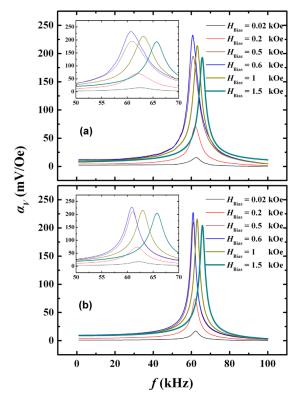


FIG. 2. (Color online) (a) Measured and (b) calculated α_V of the polymer-based ME laminate driven by an H_3 of 1 Oe peak in the f range of 1–100 kHz under various $H_{\rm Bias}$ of 0.02–1.5 kOe.

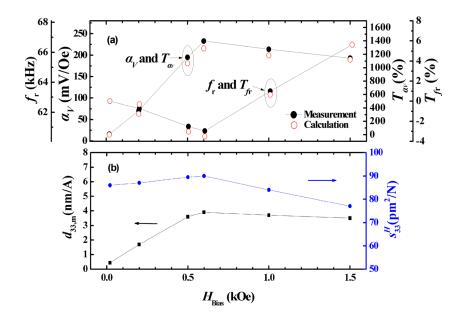


FIG. 3. (Color online) (a) Comparison between the measured and calculated resonance α_V and f_r as well as T_{α_V} and T_{f_r} as a function of $H_{\rm Bias}$. (b) Variations of $d_{33,\rm m}$ and s_{33}^H with $H_{\rm Bias}$ in the Terfenol-D composite plates.

of $\alpha_V(T_{\alpha_V})$ and tunability of $f_r(T_{fr})$ expressed, respectively, as follows are also included.

$$T_{\alpha_V} = \left| \frac{\alpha_V - \alpha_{V @ H \text{Bias,min}}}{\alpha_{V @ H \text{Bias,min}}} \right|$$
 (3)

$$T_{fr} = \frac{f_{\rm r} - f_{\rm r@HBias,min}}{f_{\rm r@HBias,min}}.$$
 (4)

It is noted that $\alpha_{V \otimes HBias, min}$ and $f_{r \otimes HBias, min}$ in Eqs. (3) and (4) are taken as the values of α_V and f_r at $H_{\text{Bias}} = 0.02$ kOe in our case. From Fig. 3(a), the measured data agree well with the calculated data with only $\sim 3\%$ discrepancy. Both α_V and T_{α_V} increase initially up to 233 mV/Oe and 1382%, respectively, at $H_{\rm Bias} = 0.6$ kOe and then decrease to 193 mV/Oe and 1130%, respectively, at an elevated $H_{\text{Bias}} = 1.5$ kOe. In the meantime, both f_r and T_{fr} decrease with increasing H_{Bias} , reaching 62.7 kHz and -3%, respectively, at $H_{\rm Bias} = 0.6$ kOe and then increasing to 65.7 kHz and 5.6%, respectively, at $H_{\rm Bias}$ = 1.5 kOe. These suggest the high H_{Bias} -controllable nonlinear tunabilities of 1382 and 8.6% for α_V and f_r , respectively. Since an average axial residual compressive stress of ~ 3 MPa has been developed in our Terfenol-D composite plates through the thermal cure of the Spurr epoxy phase during composite fabrication, this compressive stress essentially exerts on the embedded Terfenol-D particles to create a preferred non-180° domain-wall state in the composite.⁵ Thus, the initial increase in α_V and T_{α_V} as well as the initial decrease in f_r and T_{fr} with increasing $H_{\rm Bias}$ can be explained by the $H_{\rm Bias}$ -induced motion of the available non-180° domain walls in the Terfenol-D composite plates. That is, as $H_{\rm Bias}$ is increased near 0.6 kOe, the compliance associated with the increased deformation contribution from this non-180° domain-wall motion is maximized, resulting in a maximum in strain (and hence α_V and T_{α_V}) and a minimum in stiffness (and hence f_r and T_{fr}). The effect is said to be the maximization of negative- ΔE effect at $H_{\rm Bias} = 0.6$ kOe.⁵ Beyond this optimal $H_{\rm Bias}$, constraining of non-180° domain-wall motion due to interaction with H_{Bias} gives rise to a decrease in strain and an increase in stiffness. Figure 3(b) illustrates the variations of $d_{33,m}$ and s_{33}^H with $H_{\rm Bias}$ in the Terfenol-D composite plates. The maximization of $d_{33,m}$ and s_{33}^H at $H_{\rm Bias} = 0.6$ kOe not only confirms essentially our domain-wall motion discussion, but also supports our design of using PVDF polymer to relieve the elastic clamping effect on the Terfenol-D composite for best possibly exhibiting the built-in non-180° domain-wall motion, the large negative- ΔE effect, and hence the high ME tuning effect.

We have reported experimentally and theoretically a high H_{Bias} -controllable nonlinear resonance ME tuning effect in a polymer-based ME laminate formed by Terfenol-D composite plates and PVDF polymer film. A high resonance α_V of 233 mV/Oe, which is \sim 20 and \sim 2 times larger than its nonresonance α_V and the best known alloy-crystal-based Terfenol-D/ PMN-PT laminates, respectively, has been observed at $f_{\rm r} = 60.6 \, \rm kHz$ under $H_{\rm Bias} = 0.6 \, \rm kOe$ due to the improved magneto-elasto-electric coupling between the Terfenol-D composite plates and the PVDF polymer film. Nonlinear tunabilities as high as 1382 and 8.6% have been achieved for α_V and f_r , respectively, in the $H_{\rm Bias}$ range of 0.02–1.5 kOe because of the reduced eddy-current losses and enhanced non-180° domain-wall motion-induced *negative-\Delta E* effect in the Terfenol-D composite plates as well as the increased compliance contribution from the PVDF polymer film to allow the motion of non-180° domain walls in the Terfenol-D composite plates. The laminate has great promise for use in various tunable ME devices.

This work was supported by the Research Grants Council of the HKSAR Government (PolyU 5266/08 E), The Hong Kong Polytechnic University (1-ZV7P and 4-ZZ7T), and National Natural Science Foundation of China (90915008 and 50908202).

M. Fiebig, J. Phys. D 38, R123 (2005).
 Y. J. Wang et al., J. Appl. Phys. 103, 124511 (2008).
 Y. J. Chen et al., Appl. Phys. Lett. 99, 042505 (2011).

⁴Y. J. Wang *et al.*, Appl. Phys. Lett. **93**, 113503 (2008).

⁵S. W. Or and G. P. Carman, IEEE Trans. Magn. 41, 2790 (2005).

⁶http://www.piezotech.fr. web site of piezotech S.A.S.

⁷G. Engdahl, *Handbook of Giant Magnetostrictive Materials* (Academic, New York, 2000).

⁸T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, Oxford, 1990).

⁹S. Dong and J. Zhai, Chin. Sci. Bill. **53**, 2113 (2008).

¹⁰F. Yang et al., Sens. Actuat. A. **141**, 129 (2008).