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Orientation distribution of cylindrical particles suspended
in a turbulent pipe flow
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A model of turbulent cylindrical particle suspensions is proposed to predict the orientation
distribution of particles. The fluctuating equation for the orientation distribution function �ODF� of
cylindrical particles is theoretically solved using the method of characteristics. The
orientation-correlated terms in the mean equation for the ODF due to the random motion of
cylindrical particles are related to the correlations of the mean ODF and the fluid velocity gradient.
Thus, the evolution of the mean ODF is described by a modified convection-dispersion equation.
The model and modified equation are used to calculate the ODF in a pipe flow numerically. The
results compare qualitatively with the experimental data and show that the turbulent dispersion
makes cylindrical particles have a broad orientation distribution, while the velocity gradient plays an
opposite role. The increase of the particle aspect ratio leads to a less aligned distribution in the
vicinity of the axis and a narrower orientation distribution at positions far from the axis.
© 2005 American Institute of Physics. �DOI: 10.1063/1.2046713�
I. INTRODUCTION

It has been known that the physical properties of solid
particle suspensions mostly depend on the particle spatial
distribution. For nonspherical particles such as cylindrical
particles, the particle orientation becomes another important
parameter. Understanding the microstructure of cylindrical
particle suspensions during flows is currently of great inter-
est in many areas, including polymer suspensions, fiber com-
posite process, and pulp and papermaking industry. Many
theoretical and experimental works were performed in this
field, focusing on the fundamental study in some simple
flows, such as simple shear flow and irrotational extensional
flow. The present work is to provide a new model for pre-
diction of orientation distribution of cylindrical particles sus-
pended in turbulent shear flows.

The factors affecting the particle orientation include ve-
locity gradient, external forces, or torques, and randomizing
factors such as hydrodynamic interactions among particles,1,2

rotational Brownian motion,3,4 or local turbulent motion. For
dilute suspensions and in the absence of external forces and
Brownian motion, the mean velocity gradient and the ran-
domizing effect of turbulence are the dominant factors.

For laminar flows the orientation of nonspherical par-
ticles depends on the fluid velocity gradient and the param-
eter of particle shapes. Several investigators5–7 have studied
the motion of nonspherical particles and the particle orienta-
tion distribution. On the basis of the Fokker-Planck equation
a theoretical analysis can be carried out. Note that for simple
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shear flows the orientation distribution of cylindrical par-
ticles is independent of the shear rate, and the total time
reaching the steady distribution state increases with the de-
crease of shear rate.

For turbulent flows the randomizing effect of turbulent
fluids becomes an important additional factor. There are two
methods to model turbulent particle suspensions, the La-
grangian approach and the Eulerian approach. For the former
the concentration and orientation distributions of particles
are the statistical results of their trajectories, which are ob-
tained by solving the translation and rotation equations of a
single particle through a known flow field. This approach has
been used to estimate the distribution of cylindrical particles
suspended in turbulent flows.8–10 In the Eulerian approach,
the probability distribution function of particle orientation
and position is calculated using a Fokker-Planck equation or
convection-dispersion equation. This approach has several
advantages for modeling the turbulent particle suspensions,
for example, it is computationally more efficient and has the
potential to account for the particle-particle and the particle-
fluid interactions. On the basis of the Eulerian approach, the
orientation distribution function �ODF� of small fibers in tur-
bulent flow has been theoretically calculated by Krushkal
and Gallily.11 A key parameter in such flows was the rota-
tional Peclet number, which is the ratio of a typical velocity
gradient to the rotational dispersion coefficient. Recently, Ol-
son and Kerekes12 obtained fiber translational and rotational
dispersion coefficients with the assumption that the relative
velocity of particle and fluid can be neglected. They related
the dispersion coefficients to the Lagrangian particle velocity
correlation. This model, however, is limited to homogeneous

isotropic turbulent flows.

© 2005 American Institute of Physics5-1
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For suspensions in the shear flows Feng and Leal13 simu-
lated liquid-crystal polymer �LCP� channel flows in order to
examine how contractions and expansions in a channel affect
LCP orientation and to explore the possibility of using the
channel geometry as a means of manipulating LCP order.
Lyon et al.14 studied experimentally the evolution of the par-
ticle microstructure for noncolloidal particles that are sus-
pended in a viscoelastic medium and subjected to steady and
oscillatory shear flows, and they presented new results of the
particle microstructure for a dilute bidisperse system. Sgalari
et al.15 investigated the textural evolution of liquid-crystal
polymer systems under planar shear at high shear rates, and
they identified the mechanisms at play and the relative roles
of the various forces in determining the evolution of texture
at moderate shear rates.

The effect of turbulent dispersion, velocity gradient, and
particle aspect ratio on the orientation distribution of cylin-
drical particles in the turbulent suspension of shear flows
appears to be an unexplored topic. Therefore, the aims of the
present work are to develop a model of turbulent cylindrical
particle suspensions valid for shear flows and theoretically
solve the fluctuating equation for the ODF of cylindrical par-
ticles. Finally, the model is applied to a pipe flow and some
of the numerical results of the orientation distribution are
compared with the measured data given by Bernstein and
Shapiro.16

II. THEORY ON ORIENTATIONAL DISPERSION

In this section, an analysis is carried out on the govern-
ing equation for the ODF in the planar shear flow. For lami-
nar flows, the analytic results of the orientation distribution
of cylindrical particles in a wide range of aspect ratios are
obtained. For turbulent flows, the fluctuating equation for the
ODF is solved and the orientation-correlated terms are re-
lated to the gradients of the mean ODF. Finally, an expres-
sion for the turbulent orientational diffusivity, which ac-
counts for the flux opposite to the gradient of the particle
orientation distribution, is derived.

A. Definition

Theoretical models for predicting the rheological behav-
ior of nonspherical particle suspensions explicitly account
for the particle orientation distribution. Using the slender-
body theory, Batchelor17 gave the constructive equation for
the stress in the suspensions of slender particles:

� = 2�s + �p��pppp� −
1

3
I�pp��:s , �1�

where � the stress tensor, p is a unit vector parallel to the
particle axis, I is the unit tensor, s= ��u+�uT� /2 is the rate
of the strain tensor, � is the viscosity of the suspending fluid,
�p is the additional viscosity due to the presence of particles,
and the angle brackets denote an average over the orientation
distribution:

�pp� = pp��p�dp , �2�
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�pppp� = 	 pppp��p�dp . �3�

Here � is the ODF, which characterizes the probability den-
sity of realization of each specific orientation. This function
satisfies the normalization condition:

	 ��p�dp = 1. �4�

A suspension of n rigid, cylindrical particles per unit
volume is considered; each particle has length L and diam-
eter D, and a=L /D is the particle aspect ratio. It is assumed
that there are no concentration gradients so that n is a con-
stant. Particle concentration limits in the range of nL3�1,
which means that the suspension is dilute.

The function of particle inertia has been discussed by
Bernstein and Shapiro.16 In their work, the particle inertia is
neglected, so the center of mass translates affinely with the
bulk flow. A torque balance about the center of mass leads to
the equation of motion for the orientation vector p:18

ṗ = k · p − k:ppp, �5�

where ṗ is the time derivative of p, i.e., Dp /Dt, the unit
vector p has the following form in the spherical coordinate
system �see Fig. 1�:

p1 = cos � ,

p2 = sin � cos � , �6�

p3 = sin � sin � ,

and k=�uT is the fluid velocity gradient tensor. The above
equation of motion shows that the orientation vector p
changes as though it was an element of the fluid, �k ·p�,
except that it cannot stretch, so the stretching part of the
motion, �k :ppp�, is subtracted off.

Equation �5� is only valid for the particles with infinite
aspect ratio. Jeffery5 first determined the motion of a single
slender particle in an unbounded linear flow field for a New-
tonian medium. He showed that a particle rotates in one of a
family of closed orbits around the vorticity axis. The particle
spends a relatively long time orientating within an angle
O�1/a� near the flow-vorticity plane, then flips rapidly until
it becomes nearly aligned again. Jeffery’s results had been

7,11,19

FIG. 1. A cylindrical particle in the spherical coordinate system.
used by several authors to study the orientation distri-
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bution of cylindrical particles with finite aspect ratios, and
the time derivative of the vector p is given by

ṗ = − w · p + �s · p − �s:ppp, �7a�

where ṗ refers to Dp /Dt , � is a parameter of particle aspect
ratio and equals to �a2−1� / �a2+1�, and w= ��u−�uT� /2 is
the vorticity tensor. Considering w :pp=0, Eq. �7a� can be
changed to the form similar to Eq. �5�:

ṗ = ��s − w� · p − ��s − w�:ppp. �7b�

For the particle with infinite aspect ratio ��=1�, Eq. �7b� is
same as Eq. �5�.

The governing equation for the ODF depends on the
conservation of cylindrical particles in the orientation space.
The transient equation for the ODF is given by

��

�t
+

���ṗ�
�p

= 0. �8�

It shows that the rotation of particle makes the orientation
distribution change and the ODF of particles is determined
by the fluid velocity gradient tensor.

B. Analytic solution in laminar shear flow

In the spherical coordinate system �R ,� ,�� as shown in
Fig. 1, the unit vectors in the three directions are

�R = c�e1 + s�c�e2 + s�s�e3, �9�

�� = − s�e1 + c�c�e2 + c�s�e3, �10�

�� = − s�e2 + c�e3, �11�

where s�=sin �, c�=cos �, s�=sin �, and c�=cos �. In this
system, the steady-state equation for the ODF has the follow-
ing form:

1

s�

��s��̇��
��

+
���̇��

��
= 0 �12�

or

�̇
��

��
+ �̇

��

��
+ �� = 0, �13�

where �̇ and �̇ are the time derivatives of � and �, respec-
tively, i.e., the angular velocities, and � characterizes the
compressibility in the orientation space:

�̇ = ��s − w�:�R��, �14�

�̇ =
1

s�

· ��s − w�:�R��, �15�

� = ��s − w�:�R�R. �16�

For simple shear flows, the velocity gradient tensor has
only one nonzero component, k12, so we let k12= �̇. Then the
above equations can be given by:

�̇ =
1

��c2� − 1�c��̇ , �17�

2
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�̇ =
1 − �

2

c�

s�

s��̇ , �18�

� = − 3�s�c�c��̇ . �19�

For the particles with large aspect ratio ��→1� , �̇ is very
small according to Eq. �18� and can be neglected. Applying
this result, we can now solve Eq. �13� with the boundary
condition:

��� = �/2� = f0�const� . �20�

The solution of Eq. �13� is

� = f1�1 − �c2��−3/2, �21�

where f1 is a constant determined by the normalization con-
dition �4�. Note that the orientation angle � is dependent on
the initial conditions. Here, � has a uniform distribution ini-
tially.

For the particles with infinite aspect ratio ��=1�, we
have �
1/sin3 � from Eq. �21�, i.e., 	→
 at �=0, which
indicates that all particles are aligned with the flow direction.
A similar expression, �
 f1��� / sin3 �, has been used by
Rahnama et al.2 to estimate the hydrodynamic interactions
between particles. While for the particles with finite aspect
ratios, � has a finite value at �=0, which means that the
majority of the particles are nearly aligned with the flow
direction, and only a small O�1/a� fraction of particles is
flipping at any given time.

C. Orientational dispersion in turbulent shear flow

1. Mean and fluctuating equations

For turbulent suspensions, the particles undergo mean
motion due to the mean fluid velocity and random motion
due to the fluctuating component of the fluid velocity. To
estimate the randomizing effect of turbulence on the behav-
ior of the cylindrical particles, the ODF is divided into two
parts:

� = �̄ + ��, �22�

where �̄ is the ensemble average of �, and �� is the fluctu-
ating part of �. Averaging Eq. �12�, we obtain the equation
for the mean ODF:

1

s�

��s��̇
¯

�̄�
��

+
���̇¯ �̄�

��
= P̄ , �23�

then subtracting the above equation from Eq. �12� we get the
equation for ��:

1

s�

��s��̇
¯

���
��

+
���̇¯ ���

��
= Q , �24�

where �̇
¯

and �̇
¯ are the components of mean angular veloci-

ties, P̄ and Q have the following forms:

P̄ = −
1 ��s��̇����

−
���̇����

, �25�

s� �� ��

ense or copyright; see http://pof.aip.org/about/rights_and_permissions
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Q = −
1

s�

��s��̇��̄�
��

−
���̇��̄�

��
, �26�

and �̇� and �̇� are the fluctuating angular velocities and are
given by

�̇� = ��s� − w��:�R��, �27�

�̇� =
1

s�

· ��s� − w��:�R��. �28�

The term P̄ on the right side of Eq. �23� accounts for the
effect of turbulence on the ODF of cylindrical particles.
Equation �23� is the key equation to describe the mean mo-
tion of the cylindrical particles suspended in turbulent flows.
However, the evolution of the mean ODF depends on the
coupling between the mean motion and the fluctuating mo-
tion. The angular velocity-ODF correlated terms in expres-
sion �25� are related to 	�.

2. Solution of ��

Using the method of characteristics, Eq. �24� for �� can
be changed to three differential equations:

d�

d�
= �̇
¯

, �29�

d�

d�
= �̄̇ , �30�

d��

d�
+ �̄�� = Q , �31�

where �̇
¯

, �̄̇, and �̄ have the same forms as Eqs. �17�–�19� if

we let k̄12= �̇�0 for turbulent shear flows.
For laminar shear flows, the steady-state ODF is very

small at �=� /2 �plane 2-3 as shown in Fig. 1�. Bernstein and
Shapiro16 also showed that, by measuring the � frequency
distributions of glass fibers in a turbulent pipe flow, the fibers
aligned in the plane 2-3 were few. Thus we can take simpli-

fied steady-state conditions, ���=� /2��0 and �̄��=� /2�
�0, and the boundary condition for 	� is given by

���� = �/2,� = �,� = 0� = 0. �32�

Solving Eqs. �29�–�31� with the condition �32�, we get

�� = �1 − �c2��−3/2�
0

�

h��0,��d�0, �33�

where

h��,�� = �1 − �c2��3/2 · Q . �34�

Knowing �̇ is very small and can be neglected for the par-
ticles with large aspect ratio as shown in Eq. �18�, we can
write Eq. �33� as

�� = �1 − �c2��−3/2�
�/2

�

�1 − �c2�0
�3/2Q��0�

˙̄
d�0. �35�
���0�

Downloaded 27 Feb 2012 to 158.132.161.52. Redistribution subject to AIP lic
The result of �� allows us to get the relationship be-

tween �̇��� , �̇��� in Eq. �25� and ��̄ /�� , � �̄ /��. How-

ever, it is difficult to integrate Eq. �35� because �̄ included in
Q is unknown and what we want to get. Therefore, we adopt

a successive iteration method as follows. First, the ODF �̄*

in laminar shear flow is taken as the first-order approxima-

tion of �̄ and is substituted into Eq. �26� to get Q. Then �̇���
and �̇��� are calculated after �� is obtained by integrating
Eq. �35�. The dispersion coefficients can be calculated based

on �̇���, �̇��� and ��̄ /�� , � �̄ /��. Finally, the equation of

�̄ with these dispersion coefficients is solved to obtain �̄.

The reason for taking �̄* as the first-order approximation of

�̄ is that Krushkal and Gallily11 concluded that for flow with
mean velocity gradients, the orientation distribution function
is anisotropic if the turbulent intensity is not large enough to
randomize the particles, and Bernstein and Shapiro16 found
that at laminar flow, the particles are randomly distributed,
while at turbulent flow, the randomizing effect of the turbu-
lence also leads to nearly isotropic orientation.

According to the above description, Q is given by �̄*

instead of �̄ based on Eq. �26�:

Q = − f1�1 − �c2��−3/2 · �, �36�

where

� =
6�s�c�

��c2� − 1�
�̇� + �� �37�

and

�� = ��s� − w��:�R�R. �38�

Equation �35� can be changed to

�� = − f1�1 − �c2��−3/2��, �39�

where

�� = �
�/2

� ���0�

�̇
¯��0�

d�0. �40�

3. Dispersion coefficient

From the physical view, �̇��� and �̇��� can be related to

the gradient of the mean ODF �̄ by a dispersion coefficient,
i.e.,

J� = − �̇��� = D�

��̄

��
, �41�

J� = − �̇��� = D�

��̄

��
, �42�

where �̄ is also replaced by �̄* as a first-order approximation

with the same reason. However, D� is infinite if �̄* is uni-
form in the � direction. Bernstein and Shapiro’s experimen-
tal results16 for � distributions confirm that the ODF is ran-
dom along the � in the turbulent regime. So we give away

the meaningless D� and turn to the available quantity, J�.

ense or copyright; see http://pof.aip.org/about/rights_and_permissions
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The coefficients are determined from Eq. �39� for �� and

Eq. �21� for �̄*,

D� =
− �̇���

��̄*/��

=
f1�1 − �c2��−3/2�̇���

− �3/2�f1�1 − �c2��−5/2 · 2�s2�

= −
�1 − �c2��

3�s2�

· �̇���,

�43�

J� = − �̇��� = f1�1 − �c2��−3/2 · �̇���, �44�

where �� is given by Eq. �40�.
The quantities �̇��� and �̇���, included in Eqs. �43� and

�44�, can be written in detail. First, we let

�1� = k11� , �2� = k12� , �3� = k13� ,

�4� = k21� , �5� = k22� , �6� = k23� , �45�

�7� = k31� , �8� = k32� , �9� = k33� .

From Eq. �40� we obtain

�� = 
i=1

9

di�i�, �46�

where

d1 = 3��1 − �� · t1��,��, d2 = d3 = 0,

d4 = 6�c� · t2��,��, d5 = 6��� + 1�c�
2 · t3��,��,

�47�
d6 = 6��� + 1�s�c� · t3,

d7 = 6�s� · t2, d8 = d6, d9 = 6��� + 1�s�
2 · t3,

where

t1 =
2

c��̇
�

�/2

� c�0

2

��c2�0
− 1�2d�0, �48�

t2 =
2

c��̇
�

�/2

� s�0
c�0

��c2�0
− 1�2d�0, �49�

t3 =
2

c��̇
�

�/2

� s�0

2

��c2�0
− 1�2d�0. �50�

At the same time, the fluctuating angular velocities char-
acterized by Eqs. �27� and �28� can be given by

�̇� = 
i=1

9

ai�i�, �51�
where
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a1 = − �s�c�, a2 = − 1
2 �1 − �c2��c�,

a3 = − 1
2 �1 − �c2��s�,

�52�
a4 = 1

2 ��c2� + 1�c�, a5 = �s�c�c�
2 , a6 = �s�c�s�c�,

a7 = 1
2 ��c2� + 1�s�, a8 = a6, a9 = �s�c�s�

2 ,

and

�̇� = 
i=1

9

bi�i�, �53�

where

b1 = 0, b2 =
�1 − ��c�s�

2s�

, b3 = −
�1 − ��c�c�

2s�

,

b4 = −
�� + 1�c�s�

2s�

, b5 = − �s�c�, b6 = − 1
2 �1 − �c2�� ,

�54�

b7 =
�� + 1�c�c�

2s�

, b8 = 1
2 ��c2� + 1�, b9 = �s�c�.

We can now give the self-governed equation for the mean
ODF:

1

s�

��s��̇
¯

�̄�
��

+
���̇¯ �̄�

��
=

1

s�

�

��
�s�D�

��̄

��
� +

��J��
��

, �55�

where

D� = −
�1 − �c2��

3�s2�

· 
i=1

9


j=1

9

�aidj · �i�� j�� , �56�

J� = f1�1 − �c2��−3/2 · 
i=1

9


j=1

9

�bidj · �i�� j�� . �57�

The left side of Eq. �55� is the convection terms due to
the mean motion of cylindrical particles, while the right is
the dispersion terms due to the random motion. The first
dispersion term, described by two-order derivatives, intro-
duces a flux opposite to the gradient of the mean ODF. The
dispersion along � is characterized by a flux through �
angle. Equation �55� together with Eqs. �56� and �57� pro-
vides a bridge to understand the influence of turbulent fluids
on the ODF of cylindrical particles suspended in turbulent
shear flows.

The above procedures are concerned with the simple
shear flows. Actually the present analytic approach can be
extended to a more general class of flows. However, for a
general flow with nonzero velocity gradient, the principal
problem is how to obtain �� by integrating Eq. �35�.

III. ORIENTATION DISTRIBUTION IN PIPE FLOW

In this section, the ODF of cylindrical particles of vari-

ous aspect ratios suspended in laminar and turbulent pipe
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flows, as shown in Fig. 2, is calculated. For turbulent flows,
the fluctuating velocity field of fluids is calculated numeri-
cally using a kinetic simulation sweeping model �KSSM�.
The numerical results of the orientation distribution for as-
pect ratio of 10 are compared with the measured data given
by Bernstein and Shapiro16 in a pipe with diameter of 38
mm.

A. Orientation distribution in laminar regime

The analytic solution of � in laminar shear flow has
been given by Eq. �21�, where the coefficient f1 can be cal-
culated by the normalization condition �Eq. �4��. For ex-
ample, f1 is equal to 0.0883 for the particles with aspect ratio
of 10. The results of � in Fig. 3 show that the majority of the
cylindrical particles are nearly aligned with the flow direc-
tion, and the increase of the particle aspect ratio leads to a
more preferred alignment around the flow direction.

In order to compare with the measured results given by
Bernstein and Shapiro,16 an important quantity characteriz-
ing the distribution of the frequency of the particle Euler
angles is defined:

F��i� = �
�i−

��
2

�i+
��
2 �

0

�

� sin �d�d� , �58�

where �i�i=1,2 ,… ,n� are the various characteristics of �,
and �� is an angle range around �i. Thus, the � frequency
distribution satisfies the following equation:

FIG. 2. Pipe and cylindrical particle.
FIG. 3. ODF in terms of angle � for different aspect ratios.
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i=1

n

F��i� = 1. �59�

The results of analytic solution and the measured data
for aspect ratio of 10 are compared in Fig. 4, where the
experimental data are measured at Reynolds number of 1600.
According to Jeffery’s results, the period of the rotation of
nonspherical particle is

T =
2�

�̇
�a +

1

a
� . �60�

So the time reaching the steady ODF increases with the de-
crease of the shear rate �̇. It is the reason why Bernstein and
Shapiro’s data16 of frequency distribution measured in the
vicinity of pipe’s center are relatively broad at lower Rey-
nolds numbers.

B. Orientation distribution in turbulent regime

1. A model for turbulent flow field

In order to simulate the motion of particles, the flow
field should be known prior. Because of the heavy workload
of the computation on turbulence and the fact that the ran-
dom drive of flow on particles is what we only want to get, a
KSSM �Refs. 20 and 21� is employed here. The fluctuating
velocity field of fluid can be represented with a Fourier series
as follows:

u�x,t�
urms�x�

= 
i=1

N

��bi � ki�cos�ki · x − �it�

+ �ci � ki�sin�ki · x − �it�� , �61�

where N is a large constant �N=100 in this paper�, bi and ci

are vectors composed of Gaussian random numbers, fre-
quency �i is also Gaussian random number whose standard
deviation is the root-mean square �rms� of fluctuating veloc-
ity urms, and wave number ki is an isotropic random vector
on the surface of unit sphere. Therefore, the dot product of
the coefficient of primary function and the wave-number
vector is zero ��bi�ki� ·ki=0�, which ensures the flow field

FIG. 4. Analytic and experimental results of frequency distribution for as-
pect ratio of 10.
incompressible.
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According to the definition �45�, �i�� j� are the correla-
tions of fluid velocity gradient and can be calculated by us-
ing the KSSM model. For a pipe flow, the position coordi-
nate system is defined as

1 → z, 2 → r, 3 → � , �62�

FIG. 5. Numerical and experimental results of � frequency distribution in
the vicinity of pipe’s center for aspect ratio of 10 at different Reynolds
numbers.
thus the velocity gradient tensor has the following forms:
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�1� =
�uz�

�z
, �2� =

�uz�

�r
, �3� =

�uz�

r � �
,

�4� =
�ur�

�z
, �5� =

�ur�

�r
, �6� =

�ur�

r � �
−

u��

r
, �63�

�7� =
�u��

�z
, �8� =

�u��

�r
, �9� =

�u��

r � �
+

ur�

r
.

2. � frequency distribution in pipe flow

The fluid velocity field and the mean ODF are numeri-
cally simulated for a pipe flow with the flow Reynolds num-
bers ranging from 2500 to 11 000. For the symmetry of the
pipe flow, the distribution of � is nearly uniform.

Bernstein and Shapiro’s data,16 measured in the vicinity
of pipe’s center, are compared with our calculated results for
the aspect ratio of 10 with the Reynolds number ranging
from 2500 to 11 000 as shown in Fig. 5 which shows the
influence of Reynolds number on the particle orientation dis-
tribution. As the Reynolds number increases the tendency of
less alignment becomes more and more visible. It seems that
� frequency distributions were uniform at large Reynolds
number. Our results compare qualitatively with the experi-
mental data.

The fluid mean shear rate is smaller in the vicinity of
pipe’s center than that at the positions far from the center
axis. The interplay between the mean velocity gradient and
the randomizing effect of turbulence is represented in Fig. 6
for the aspect ratio of 10 at the Reynolds number of 2500. It
can be seen that more particles are aligned with the z axis at
the position far from the center axis �r / radius=10/38� than
that in the vicinity of pipe’s center �r / radius=1/38�. The
wider distribution of � in the vicinity of pipe’s center re-
sulted not only from the smaller fluid mean velocity gradient,
but also from the larger influence of turbulent dispersion.
About the latter we can see the terms �3�, �6�, and �9�, as
shown in Eq. �63�. So we can conclude that the turbulent
dispersion is dominant for affecting the orientation distribu-
tion of particles in the vicinity of the center axis, and the
particle rotation due to the mean velocity gradient is more

FIG. 6. Numerical results of � frequency distribution for aspect ratio of 10
at Reynolds number 2500 at two radial positions.
important at the positions far from the center axis.
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In order to examine the effect of the particle aspect ratio
on their orientation distribution, we also simulated numeri-
cally the � frequency distribution with different aspect ratios.
Figure 7 shows the numerical results of the frequency distri-
butions of particles with different aspect ratios at two radial
positions. At the position around the center axis, the increase
of the aspect ratio leads to a broader distribution of �, which
indicates that the particles with larger aspect ratios enhance
the turbulent dispersion more obviously. While at the posi-
tion far from the center axis, the � frequency distribution
becomes narrower with the increase of the aspect ratio. This
tendency is similar to that in the laminar regime.

IV. CONCLUSIONS

A theoretical model for the ODF of cylindrical particles
suspended in shear flows is proposed. The fluctuating equa-
tion for the ODF of cylindrical particles is theoretically
solved using the method of characteristics. The evolution of
the mean ODF is described by a modified convection-
dispersion equation. The model and modified equation are
used to calculate the ODF in a pipe flow numerically. The
results, comparing qualitatively with the experimental data,
show that the randomizing effect of turbulence leads to a
broader orientation distribution of particles, with a tendency
of uniform distribution at large Reynolds number. More par-
ticles are aligned at the positions far from the center axis
than that in the vicinity of the axis. With the increase in the
particle aspect ratio, the particles become less aligned with

FIG. 7. Numerical results of � frequency distribution at Reynolds number
11000 for different aspect ratios at two radial positions.
Downloaded 27 Feb 2012 to 158.132.161.52. Redistribution subject to AIP lic
the flow direction in the vicinity of the axis, while the orien-
tation distributions of particles become narrow at positions
far from the axis.
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