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Self-organization of a neural network with heterogeneous neurons
enhances coherence and stochastic resonance
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Most network models for neural behavior assume a predefined network topology and consist of
almost identical elements exhibiting little heterogeneity. In this paper, we propose a self-organized
network consisting of heterogeneous neurons with different behaviors or degrees of excitability.
The synaptic connections evolve according to the spike-timing dependent plasticity mechanism and
finally a sparse and active-neuron-dominant structure is observed. That is, strong connections are
mainly distributed to the synapses from active neurons to inactive ones. We argue that this self-
emergent topology essentially reflects the competition of different neurons and encodes the hetero-
geneity. This structure is shown to significantly enhance the coherence resonance and stochastic
resonance of the entire network, indicating its high efficiency in information processing. © 2009
American Institute of Physics. �DOI: 10.1063/1.3076394�

The topology presented in a neural network exerts sig-
nificant impacts on its function. Traditionally, a pre-
defined topological structure is adopted in neural net-
work modeling, which may not reflect the true situation
in real-world networks such as the brain network. In this
paper we propose a self-organized network (SON) whose
synaptic connections evolve according to the spike-timing
dependent plasticity (STDP) mechanism. Specifically, we
study how the heterogeneity of neurons will influence the
dynamical evolution and the emergent topology of the
network. We find that our network obtained from STDP
learning can significantly enhance the coherence reso-
nance (CR) and stochastic resonance (SR) of the entire
network. This result may have important implications on
how the brain network is able to achieve a high efficiency
in information processing by encoding the inherent het-
erogeneity in its topology.

I. INTRODUCTION

Complex neural systems from either living biological
entities or biophysical models have attracted great attention
in recent years. Neural networks of various topologies have
been investigated, such as globally coupled networks,1 small-
world networks,2,3 and scale-free networks.4 Specifically, in-
stead of a prior imposition of a specific topology, it is more
reasonable to consider self-organized neural networks, which
have been broadly studied in Refs. 5–10. The self-
organization is usually managed through STDP, which is a
form of long-term synaptic plasticity both experimentally
observed11 and theoretically studied.12,13 We note, however,
that most network models in previous work did not take into
account the heterogeneity of neurons, a feature ubiquitous
for real neural networks. For example, neurons located near
the canard region exhibit complex behaviors in the presence

of noise,14–16 where they are more sensitive to external sig-
nals and thus enhance information transfer in biological sys-
tems. Neurons having different dynamical activities will lead
to the network heterogeneity, which can trigger competitions
between individuals and play an important role in the CR
�Ref. 17� and phase synchronization.18 Moreover, in fact, the
evolution of the synaptic connectivity or the network struc-
ture is closely related to the intrinsic heterogeneous dynam-
ics of neurons.

In this paper the network connection is evolved accord-
ing to the STDP rule over a set of heterogeneous neurons.
The heterogeneity is introduced into the network by choos-
ing the key parameter from a uniform distribution covering a
wide variety of neuronal behavior. We start from a network
with global constant connections among neurons subject to a
common input signal in a noisy background. At this time the
neurons are in different states and fire at various frequencies.
We find that with the STDP rule, the initial global connection
among neurons is self-organized into a particular topology
that eventually gives rise to synchronous spiking behavior,
during which the competitions are mainly caused by the het-
erogeneous dynamics of each neuron rather than the initial
conditions or different external inputs, as studied in Refs.
5–7. After the reorganization, the active cells tend to have
high out-degree synapses and low in-degree synapses, while
the inactive ones are just the opposite. This self-emergent
topology essentially reflects the relationships of influence
and dependence among the heterogeneous neurons and thus
achieves energy consumption. In order to test the efficiency
of this SON in signal processing, we have made comparisons
to three other networks of different topologies in terms of CR
and SR, which have been analyzed in various neural net-
works recently.16,17,19,20 We show that the network obtained
from the STDP learning achieves a higher efficiency in in-
formation transfer.a�Electronic mail: 07901216r@eie.polyu.edu.hk.
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II. NEURON MODEL AND STDP DESCRIPTION

The network used in this paper is composed of N
FitzHugh–Nagumo neuron models21 described by

�V̇i = Vi − Vi
3/3 − Wi + Iex + Ii

syn,

Ẇi = Vi + a − biWi + D�i, �1�

Ii
syn = − �

1�j�i�

N

gijsj�Vi − Vsyn� ,

where i=1,2 , . . . ,N. a, bi, and � are dimensionless param-
eters with � small enough ���1� to make the membrane
potential Vi a fast variable compared to the slow recovery
variable Wi. �i is the independent Gaussian noise with zero
mean and intensity D that represents the noisy background,
and Iex stands for the externally applied current. Ii

syn is the
total synaptic current through neuron i, where the dynamics
of the synaptic variable sj is governed by

ṡ j = ��Vj��1 − sj� − �sj ,

�2�
��Vj� = �0/�1 + e−Vj/Vshp� .

Here the synaptic recovery function ��Vj� can be taken as
the Heaviside function. When the presynaptic cell is in the
silent state Vj �0, sj can be reduced to ṡ j =−�sj; otherwise sj

jumps quickly to 1 and acts on the postsynaptic cells. The
synaptic conductance gij from the jth neuron to the ith neu-
ron will be updated through STDP that will be shown later.
Note that in this paper both the excitatory and inhibitory
synapses are considered. The type of synapse is determined
by the synaptic reversal potential Vsyn, which we set to be 0
and �2 for excitatory and inhibitory synapses, respectively.

In this model, b is a critical parameter that can signifi-
cantly influence the dynamics of the system. For a single
neuron free from noise, the Andronov–Hopf bifurcation oc-
curs at b0=0.45. For b�b0, the neuron is in the rest state and
is excitable; for b�b0, the system has a stable periodic so-
lution generating periodic spikes. Between these two states,
there exists an intermediate behavior, known as canard
explosion.22 In a small vicinity of b=b0, there are small os-
cillations near the fixed point before the sudden elevation of
the oscillatory amplitude. In our system, bi is uniformly dis-
tributed in �0.45, 0.75�. Hence each neuron when uncoupled
has a different activity when subject to external input and
noisy background, and neurons with b located near the bifur-
cation point are prone to fire in a much higher frequency than
the others �see Fig. 1�d��.

According to the experimental report on STDP,11 there
are no obvious modifications of excitatory synapses onto in-
hibitory postsynaptic cells after their repetitive and relative
activities. Hence, we set inhibitory synaptic conductance and
excitatory-to-inhibitory synaptic conductance to be con-
stants. The remaining excitatory synapses are updated by the
STDP modification function F, which selectively strengthens
the pre- to postsynapse with relatively shorter latencies or
stronger mutual correlations while weakening the remaining
synapses.6 The synaptic conductance is updated by

	gij = gijF�	t� , �3�

F�	t� = �A+ exp�− 	t/
+� if 	t � 0

− A− exp�	t/
−� if 	t � 0,
� �4�

where 	t= ti− tj and F�	t�=0 if 	t=0. 
+ and 
− determine
the temporal window for synaptic modification. A+ and A−

determine the maximum amounts of synaptic modification.
Experimental results suggest that A−
−�A+
+, which ensures
the overall weakening of synapses. Here, we set 
−=
+=2,
A+=0.05, and A− /A+=1.05, as used in Ref. 6. Only the
excitatory-to-excitatory synapses are modified by this learn-
ing rule and are restricted to the range �0, gmax�, where gmax

is the limiting value. Other parameters used in this paper are
a=0.7, �=0.08, �0=2, �=1, Vshp=0.05, and gmax=0.1. The
other parameters are given in each case. Numerical integra-
tion of the system is done by the explicit Euler–Maruyama
algorithm,23 with a time step of 0.005.

III. SELF-ORGANIZATION OF NEURAL NETWORK

We consider a network of N=60, which consists of 50
excitatory and 10 inhibitory neurons. All the neurons are
bidirectionally and globally coupled at the beginning, and we
assign gmax /2 and 3gmax /2 to excitatory and inhibitory syn-
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FIG. 1. �Color online� Evolution of the network structure. �a� Percentage of
synapses at three value levels: gij �0.1gmax �red line�, gij �0.9gmax �blue
line�, and the others �black line�. ��b� and �c�� The average in-degree and
out-degree synapses of three neurons with a different excitability, which is
controlled by b. The red line represents the more excitable one with b
=0.4530, the blue line shows the less excitable one with b=0.7350, and the
black line is the one with medial excitability b=0.6008. �d� The initial firing
rate �F� distribution of individual cells with different b for the first 200 s. �e�
The average firing rate ��F	� of all cells during the learning process. �f�
Influence of noise intensity �D� on the firing rate of single neuron with
different values of b.
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apses, respectively. The whole network is subject to an ex-
ternal current �Iex=0.1� and noisy background �D=0.06� as a
learning environment. The influence of noise intensity �D�
on the firing rate of single neuron with different values of b
is shown in Fig. 1�f�.

We now check how the network structure evolves during
the learning process. As shown in Fig. 1, after competition,
most of the synaptic connections converge to either 0 or the
maximum gmax from the initial value gmax /2 �see Fig. 1�a��.
This structure becomes stable after about 6000 s. From Figs.
1�b� and 1�c� we can see how the average in-degree synapses
Gin and out-degree synapses Gout of different cells evolve in
this competition. For the active cell, such as the one with
bi=0.4530, it fires so frequently that it is more likely to ac-
tivate the others and thus strengthen its out-degree synapses
Gout to gmax while weakening its in-degree synapses Gin to 0.
This exactly reflects that such neurons are highly dominant
and therefore less dependent on the others, while for the
inactive cells �e.g., bi=0.6008 and 0.7350�, they typically
need large Gin to be excited and have small Gout due to their
low influence. This contributes to the sparse connection of
the network and benefits energy consumption. Figure 1�d�
shows the initial firing rate distribution of each neuron with
different b. The firing rate of the whole network plateaus
after about 1500 s when the number of synapses with
gij �0.9gmax equals to that of the synapses with gij

�0.1gmax �Fig. 1�e��. So the following update of the syn-
apses is in fact a refining procedure that further weakens
those unnecessary connections.

Network structures at learning times of 200 and 6000 s
are shown in Fig. 2. The synaptic connection finally becomes
sparse with about 50% being 0 and 20% being gmax �Fig.
2�c��. Figure 2�d� gives a clear picture of the active-neuron-
dominant synaptic connections in this network, where strong
connections are mainly distributed to the synapses from ac-
tive neurons �those with small values of bi� to inactive ones
�those with large values of bi�. The reason for generating
such a special structure is that, under the same learning en-
vironment, active neurons can fire with a high frequency and
thus are more likely to act as the precells whose out-degree
and in-degree synapses are then strengthened and weakened
by STDP, respectively. Such synapse distribution renders the
active cells a powerful drive to the inactive ones. Hence,
through the STDP learning process, the high level of excit-
ability of those active neurons is fully exploited to trigger the
whole network to fire synchronously, which becomes more
excitable than the original network �Fig. 1�e��. It should be
noted that when the driving of external applied signal is re-
moved, the sustained synchronous firing after learning will
terminate and the whole network returns the normal rest
state. Instead of the synchronous activity, the main point of
this paper is the reorganized network topology. Its enhance-
ment on coherence and SR will be discussed in the Sec. IV.

As the inhibitory synapses are not involved in the update
procedure, the size and distribution of the number of excita-
tory and inhibitory neurons will not influence the formation
of final network topology, but just the speed of the conver-
gence process. Also, if the initial excitatory synapses are set
to be gmax or randomly distributed in �0, gmax�, similar re-

sults can be obtained but need longer convergence time.
Moreover, to ensure that our results do not depend on the
specific realization of the uniform distribution of parameter
bi among neurons, we have performed the learning process
over several different realizations and find no significant
changes of the final network topology.
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FIG. 2. �Color online� Histogram and distribution of the synaptic matrix G
at learning times of 200 and 6000 s. Synapses gij from cell j to cell i with bj

and bi, respectively, are plotted. The black dots are the strong synapses
satisfying gij �0.9gmax, the blue circles are the weak synapses satisfying
gij �0.1gmax, and the red plus signs are intermediate values of synapses.
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IV. CR AND SR

In this section, we investigate the efficiency of the SON
obtained via STDP in signal processing by comparing its
performance on CR and SR with three other networks, i.e.,
the network with the same synaptic distribution as SON but
shuffled �RNS�, the random network with synapses uni-
formly distributed in �0, gmax� �RNG�, and the globally
coupled network with constant synapses gmax /2 �CN�. All
these four types of network are composed of heterogeneous
cells that are bidirectionally coupled and have the same mean
value of synapses being about gmax /2. Ten trials are con-
ducted for each network.

CR is a noise-induced effect, which describes the occur-
rence and optimization of periodic oscillatory behavior due
to noise perturbations.14 With an intermediate noise intensity,
the system can behave the most regular periodic oscillations.
We take S and Tmean as the coherence factors of the firing
events. They are defined as

S =
1

N
�
i=1

N

Si, Si = �Tk
i 	t/
Var�Tk

i �, Tmean =
1

N
�
i=1

N

�Tk
i 	t. �5�

Tk
i =
k+1

i −
k
i is the pulse internal, where 
k

i is the time of the
kth firing of the ith cell. �·	t denotes average over time. S
describes the degree of spiking regularity in neural systems.

Tmean is the average interspike interval �ISI�. Here, Iex=0 and
all the cells are in the subthreshold region in the absence of
noise. Figure 3�a� shows that the optimal regularity occurs
when the noise intensity D equals about 0.06. The corre-
sponding S in SON is much larger than the other networks,
indicating the high coherent output of SON. The best perfor-
mance of SON on CR with intermediate noise intensity
D=0.06 is shown in Fig. 4�a�. The flat curve of Tmean near
the optimal case �see Fig. 3�b�� reflects that the regular ISIs
in SON can exist in a relatively wide range of noise intensity,
while due to the inefficient connectivity, the other networks
display unsynchronized and inactive activities, causing the
small S and large Tmean �ISI�. This is because, under the
driving of the same noise intensity, neurons with different
levels of excitability show diverse firing patterns. Only the
SON that has a reasonably selected synapse distribution can
couple the neurons efficiently and generate regular spiking.

SR describes the cooperative effect between a weak sig-
nal and noise in a nonlinear system, leading to an enhanced
response to the periodic force. The neuron model is an ex-
citable system, which can potentially exhibit SR.24 To evalu-
ate SR, we set the periodic input to be Iex=B sin�t�, with
B=0.1 and =0.3. The amplitude of the input signal is small
enough to ensure that there is no spiking for all the neurons
in the absence of noise. Also, the frequency  is much
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FIG. 3. �Color online� Comparisons of four types of neural networks on ��a� and �b�� CR and ��c� and �d�� SR. SON is the self-organized network obtained
via STDP. RNS is the network with the same synaptic distribution as SON but shuffled. RNG is the random network with synapses uniformly distributed in
�0, gmax�. CN is the globally coupled network with constant synapses gmax /2. ��a� and �b�� S and Tmean vs noise intensity D, respectively. �c� Q vs noise
intensity D, where B1=0.75. �d� The influence of inactive cells on SR. Qmax is the maximum of Q. Only cells with parameter bi� �0.45, B1� are subject to
external signal. This figure is the average result of ten trials.
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slower than that of the neuron’s inherent periodic spiking.
Fourier coefficient Q is used to evaluate the response of

output frequency to input frequency. It is defined as25

Q = 
Qsin
2 + Qcos

2 , Qsin =


2�n
�

0

2�n/

2Vi�t�sin�t�dt ,

�6�

Qcos =


2�n
�

0

2�n/

2Vi�t�cos�t�dt .

Here n is the number of periods 2� / covered by the inte-
gration time. Vi is the average membrane potential among
the network. The quantity Q measures the component from
the Fourier spectrum at the signal frequency . The maxi-
mum of Q shows the best phase synchronization between
input signal and output firing. Again, SON exhibits greater
SR than the other cases �Fig. 3�c��. In the three other net-
works that have inefficient connections, active cells fire
much more frequently than the periodic driven signal while
the inactive ones may be even at the rest state. The active-

cell-dominant connection in SON regulates well the network
activity and eventually achieves a balanced energy distribu-
tion among neurons. The best performance of SON on SR
with intermediate noise intensity D=0.02 is shown in Fig.
4�b�. In order to investigate the importance of active cells,
only cells with bi� �0.45, B1�, where 0.47�B1�0.75, are
subject to the periodic input. Figure 3�d� shows that whether
the inactive cells are subject to external signal or not has
little effect on SR. This indicates that the contributions of
inactive cells to SR are negligible, while the active cells are
critical and play a vital role to trigger the whole network
response with external signal.

V. CONCLUSION

In this paper, a new type of self-organized neural net-
work with heterogeneous neurons is obtained via STDP
learning. The internal dynamics of different neurons is
shown to be clearly encoded in the topology of the emergent
network after learning. During the STDP learning process,
the synaptic strengths of the network are renewed by increas-
ing the influence of active cells over the others and the de-
pendence of inactive cells on the active cells. This process
mediates the internal dynamical properties of different neu-
rons and renders the whole network more synchronous and
therefore more sensitive to weak input. This effect is clearly
reflected from its improved performance on CR and SR.
Therefore, we believe that this self-organized heterogeneous
neural network is much efficient in signal processing tasks.
The network model we proposed may be biologically rel-
evant, considering the highly diversified behaviors of differ-
ent neurons and the time-varying synaptic connectivity. Our
result may be further extended to the study of functional or
hierarchical connections in complex brain networks,26 where
heterogeneity is essential for certain brain activities.

Recently STDPs of inhibitory synapses are also ob-
served and investigated.27,28 This kind of synaptic plasticity
has been shown to play an important role in the neuronal
function, although the cooperation between these two types
of STDP is still unclear. It could be considered by using
more physiological neuron and synapse model in the future.
For simplicity, we use the excitatory postsynaptic current
�EPSC� of AMPA ��-amino-3-hydroxyl-5-methyl-4-
isoxazole-propionate� type as is used in Refs. 5–7, which is a
kind of fast synaptic current mediated by AMPA receptors.29

Further advancements on NMDA �N-methyl-D-aspartic acid�
receptors, which activate EPSC much slower than AMPA,
need to be studied in detail in terms of long-term synaptic
plasticity.30
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neurons and the last 10 inhibitory neurons. V1, V2, and V3 represent the
membrane potentials of three neurons with different values of b: V1, b
=0.4530; V2, b=0.6008; V3, b=0.7306. The black line in �b� �bottom� is the
input signal.
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