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Abstract. This work is concerned with the numerical simulations for two reaction-diffusion
systems, i.e., the Brusselator model and the Gray-Scott model. The numerical algorithm is
based upon a moving finite element method which helps to resolve large solution gradi-
ents. High quality meshes are obtained for both the spot replication and the moving wave
along boundaries by using proper monitor functions. Unlike [33], this work finds out the
importance of the boundary grid redistribution which is particularly important for a class of
problems for the Brusselator model. Several ways for verifying the quality of the numerical
solutions are also proposed, which may be of important use for comparisons.
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1 Introduction

The generation of spatial pattern of tissue structures is one of the elementary processes in mor-
phogenesis. Since the pioneering work of Turing [28] in 1952, there have been many studies
on two-component reaction-diffusion systems for the formation of spatially complex patterns,
see, e.g., [4, 7–9, 21]. A two-component reaction-diffusion system with general reaction terms
f and g has the following form:

∂u
∂t

−Du∆u= f (u,v) in Ω×(0,∞), (1.1a)

∂v
∂t

−Dv∆v= g(u,v) in Ω×(0,∞), (1.1b)

subject to the no-flux boundary conditions and initial conditions

∂u
∂ν

=
∂v
∂ν

=0 on ∂Ω×(0,∞), (1.2a)

u(x,y,0)=u0(x,y), v(x,y,0)=v0(x,y) in Ω. (1.2b)

Based on many specific forms of the reaction terms f and g, various models have been pro-
posed for the pattern formation, such as Gray-Scott model [5], Schnakenberg model [25], Brus-
selator model [22] and Gierer-Meinhardt (GM) model [3]. These models have been widely
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used to model localization processes in nature, such as cell differentiation and morphogene-
sis [7, 20], and the formation of sea-shell patterns [21].

Asymptotic and analytical methodologies for the analysis of these reaction-diffusion sys-
tems mainly concentrated on the one-dimensional model, see, e.g., [11, 12, 27]. Recently, for
the semi-strong interaction regime Du ≪1 with Dv =O(1), several asymptotic methodologies
have been developed in two space dimensions, see, e.g., [30, 31]. However, for the weak in-
teraction regime, where Dv =O(Du)≪1, there are only a few works, see, e.g., [32]. Note that
in [32], the case Du≪1 and Dv≫1 is also considered. A survey of the asymptotic methods for
reaction-diffusion systems is given in [29].

Numerical simulations play an important role in studying pattern formations, especially
when there is difficulty in using the asymptotic and analytical approaches. In this paper, we
will focus on the numerical studies on the two-dimensional Gray-Scott model and Brusselator
model in the weak interaction regime. The Gray-Scott model is given by:

ut =Du∆u−uv2+γ(1−u), (1.3a)
vt =Dv∆v+uv2−(γ+κ)v, (1.3b)

and the Brusselator model is given as follows:

ut =Du∆u+A+uv2−(B+1)u, (1.4a)
vt =Dv∆v+Bu−uv2. (1.4b)

Here, the diffusion coefficients Du,Dv ≪1 and f ,k,A,B are chemical reaction parameters.
The common aspect of these pattern formation problems is the subtle interplay between

diffusion and reaction. Many of the numerically computed patterns for these two models have
shown that the smaller the diffusion parameters Du and Dv are chosen, the steeper the so-
lutions become [22, 32]. These patterns include spots, labyrinthine stripes and mixed spots
and stripes. Furthermore, these spots and stripes also have some dynamical behaviors, such
as long-time oscillation, annihilation, replication, and so on. Consequently, very fine meshes
over the spatial extension of the spots and stripes are needed in numerical simulations. Al-
though it is possible to solve the problems using a very large number of equidistantly spaced
spatial mesh points dynamics in one space dimension, it is computationally inefficient for
two-dimensional simulations; and it is extremely challenging for three-dimensional simula-
tions. As a result, adaptive grid methods seem necessary in resolving various pattern formu-
lations with small diffusion parameters. One of such adaptive methods is the moving mesh
method. In past years, several moving mesh strategies are proposed to solve (1.1). In [26],
One-dimensional GM and Schnakenberg models were solved using the moving mesh method.
One-dimensional Gray-Scott model was solved in [2]. Two-dimensional Gray-Scott and Brus-
selator model have been solved by a moving mesh method in [33]. In [23], simulations of
various of spikes dynamics of the two-dimensional GM model has been demonstrated. The
study of the pattern formation of Turing-type reaction-diffusion systems on growing domains
has attracted a lot of attention recently. It is not feasible to obtain meaningful analytical so-
lutions due to the nonlinear nature of the reaction-diffusion system that is coupled with the
domain growth. In [16–19], a moving grid finite element method is used to study the pattern
formation on growing domains in one and two-dimensions.

In this paper, we will employ a moving finite element method, introduced in [14, 15], to
solve the Gray-Scott model and the Brusselator model in two space dimension. This mov-
ing finite element method is based on a harmonic mapping framework. One of the primary
features of this method is that the mesh redistribution part and the PDE evolution part are
separated. It allows us to use any appropriate PDE solver for solving (1.3) or (1.4) which is
independent on mesh redistribution strategy.
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For the Gray-Scott model, the soution with large gradient is far away from the boundary
even after a long time. So by using moving mesh method, boundary points redistribution
seems less important. However, this is not the case for the Brusselator model whose solution
with large gradient may appear on the boundary. In [33], numerical results are also shown
for both models. Results for Gray-Scott model look very good: the algorithm detected the
replication procedure successfully, and such procedure is represented by the high quality of the
mesh produced. For the Brusselator model, however, as to be demonstrated in our numerical
experiments there are large phase errors along the boundary using the approach in [33]. We
will show that this is due to the use of the fixed boundary grid points.

This paper is organized as follows. In section 2, we present a moving finite element method
to solve the two reaction-diffusion systems (1.3) and (1.4) numerically. In section 3, numerical
results are given to demonstrate the importance of the use of small time stepping and the
boundary mesh redistribution. With correct use of the time stepping and boundary mesh
redistribution, we can obtain satisfied numerical simulations efficiently. We end this paper
with some concluding remarks in section 4.

2 Numerical Methods

2.1 PDE solver

In this work, we will employ standard finite element methods to discretize the governing equa-
tions spatially. To resolve the large variation of the solution accurately, the moving mesh tech-
nique is used. For consideration of numerical accuracy on the temporal discretization, the
fourth-order Runge-Kutta (RK4) scheme is adopted.

Spatial Discretization

To describe the PDE solver, for simplicity, we rewrite the systems (1.3) or (1.4) into the compact
form

Mut =K∆u+f(u), (2.1)

where u=(u,v),

M :=
(

1 0
0 1

)
, K :=

(
Du 0
0 Dv

)
. (2.2)

For the Brusslator model,

f(u) :=
(

A+uv2−(B+1)u
Bu−uv2

)
; (2.3)

and for the Gray-Scott model,

f(u) :=
(

−uv2+γ(1−u)
uv2−(γ+κ)v

)
. (2.4)

For the spatial discretization, we use the linear finite element approximation. Let T = {K}
be a finite element partition of Ω into triangular element K. Now we define the linear finite
element space

Sh ={w∈C(Ω) : w|K∈P1(K),∀K∈T },
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where P1(K) denotes the space of polynomials of degree 1 over K. Then the finite element
scheme of (2.1) is: Find uh ∈ (Sh)

2 such that(
M

∂uh

∂t
,wh

)
+K(∇uh,∇wh)=(f,wh), ∀wh ∈ (Sh)

2, (2.5a)

(uh(x,0),wh)=(u0
h,wh), ∀wh ∈ (Sh)

2, (2.5b)

where
u0

h(x) :=
(
u0

h(x,y),v0
h(x,y)

)T ∈ (Sh)
2

is the finite element approximation to u0(x) :=
(
u0(x,y),v0(x,y)

)T.

Temporal Discretization

So far we have only considered spatial discretization, leaving the time variable continuous. In
this section, we give the full discretization scheme of (2.5).

The popular method to discretize the ODE system (2.5) is the semi-implicit time integration
method. That is, the diffusive term is dealt with implicitly and the reaction term explicitly. The
main advantage is that solving a nonlinear system, with for instance the Newton’s method, can
be avoided, while still having reasonable stability properties, at least for mildly stiff equations
[33].

The simplest discretization method is the semi-implicit Euler scheme. The advantage of
Euler method is its low requirement of storage. For each time level, just the variables at the
previous time level are needed, and no more extra variable is needed. But it does not mean that
it is an efficient way. Since it is a first order scheme, very small length of time step is needed
to keep the accuracy. However, the time step can not be too small, since the accumulation of
rounding error also may affect the accuracy of numerical solutions. So the numerical results
after a long time calculation become not reliable, which results in that the Euler method is not
suitable for the application.

Based on the consideration above, in our simulation, the semi-implicit fourth order Runge-
Kutta method (RK4) is used to discretize the ODE system (2.5), and the full discretization
scheme is given as follows:

1
∆t

(Mun+1
h ,wh)+K(∇un+1

h ,∇wh)=
1

∆t
(Mun

h ,wh)

+
1
6
(k1+2k2+2k3+k4),∀wh ∈ (Sh)

2, (2.6a)

(uh(x,0),wh)=(u0
h,wh), ∀wh ∈ (Sh)

2, (2.6b)

where
k1 = ( f (un

h),wh),

k2 = ( f (un
h+

k1

2
),wh),

k3 = ( f (un
h+

k2

2
),wh),

k4 = ( f (un
h+k3),wh),

By using the above RK4 method, at each time level, not only the extra storage is needed,
but also total eight linear systems are solved (four for each variable). However, first, the results
obtained from RK4 is much more accurate than that obtained from the Euler method. From the
numerical experiment in the last section, the RK4 method can depict the phase of numerical
solution even after a long time calculation, while the Euler method will introduce big phase
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error with the same length of time step. Second, the RK4 method has larger stable region than
the Euler method does, that means much larger length of time step can be adopted for the RK4
method. So in the simulations, the semi-implicit RK4 method is used.

2.2 Mesh-redistribution

In Sec. 3, two reaction-diffusion models will be simulated, the Gray-Scott model and the Brus-
selator model. In the simulations of both models, there are always solutions with large gradi-
ent of the solutions in the domain. The adaptive methods become necessary to resolve these
solutions effectively. In this work, the moving mesh method will be used for this aim.

Note that there are differences between the numerical results obtained from two models.
For the Gray-Scott model which describes the splitting and replication of spots in the domain,
the solutions with large gradient appear in regions which are far away from the boundary.
However, this is not the case for the Brusselator model, which the solutions with large gradient
move along the boundary with the evolution of the time. Based on the above observation, one
can imagine that a moving mesh method which can redistribute the internal grid points and
boundary grid points simultaneously is needed to guarantee the numerical accuracy of both
models.

So far, there are several ways proposed in the literature to redistribute the grid points on
the boundary. Before [14, 15], the classical way is to solve a (N−1)-dimensional problem on
the boundary (suppose the original problem is N-dimensional), and then move the mesh ac-
cording to the solution of this (N−1)-dimensional problem. This method is always used for
2-dimensional problem. For 3-dimensional problem, it is very complicated to use this method.

In [14, 15], Li et al. proposed a uniform way to redistribute all grid points simultaneously.
Instead of solving a Poisson equation with Dirichlet boundary condition to construct the har-
monic mapping, an optimization problem is solved. With such method, both 2-dimensional
and 3-dimensional problems can be handled well. For details of this method, we refer to [14,15]
and references therein. In the following, we just give a brief summarization.

First, we need to construct an initial logical mesh. This can be done by solving the following
optimization problem

min∑
k

∫
Ω

∑
i

(
∂ξk

∂xi

)
dx⃗,

s.t. ξ |∂Ω= ξb ∈K,

where x⃗ and ξ⃗ are the local coordinates of two compact Riemannian manifolds Ω and Ωc
respectively, and K is a mapping set from ∂Ω to ∂Ωc. During the whole simulation, this initial
logical mesh is unchanged, and is used to measure the movement of the grid point in the
logical domain.

Now assume that we have obtained a finite element solution (un
h ,vn

h) at t= tn on the mesh
T n using the methods described in section 2.1. The outline of the moving mesh algorithm is
given in Algorithm 1.

According to Algorithm 1, when || ξ⃗∗− ξ⃗0 ||L∞ is small enough, we get a new mesh T n+1

for t= tn+1. Then we can solve the PDE on the new mesh following the algorithm described in
section 2.1. The detail in the above iteration can be found in [14, 15] and the codes for all the
computations below are based on the adaptive finite element package AFEPack [13].

For the choice of the monitor function M, a popular one has the following form

M=
√

1+α |∇u |2, (2.7)

where α>0 is a parameter which controls the adaptivity of the moving mesh method. Larger
α means larger adaptivity, while α=0 results in no adaptivity. (2.7) can satisfy a large amount
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Algorithm 1: Flow Chart of Moving Mesh Method

• Step 1 : Solving the following optimization problem

min∑
k

∫
Ω

Gij ∂ξk

∂xi
∂ξk

∂xj dx⃗,

s.t. ξ |∂Ω= ξb ∈K,

to obtain a logical mesh ξ⃗∗, where G = (Gij) =M−1. M is called a monitor
function.

• Step 2 : Judge if || ξ⃗∗−ξ⃗0 ||L∞ is small enough, where ξ⃗0 is the fixed initial logical
mesh. If yes, the iteration is over. Otherwise, do the following procedure.

• Step 3 : Using the difference ξ⃗∗− ξ⃗0 to compute the mesh-moving vector δx⃗ in
the physical domain. Then move the grid points in the physical domain by
using δx⃗.

• Step 4 : Update the numerical solutions from the old physical mesh to the new
physical mesh.

• Step 5 : Go to step 1.

of problems. Most recently, this arc-length type monitor function was used in [24] for the time
adaptivity in the simulation of the thin-film epitaxial growth. However, there is no universal
criterion for the selection of α because it is deeply problem-dependent. In the simulation, we
will use (2.7) as the monitor function, and use different α for two different models according
to our numerical experience. This monitor function may not be optimal to steer the mesh
adaptation. A new balancing method was proposed in [1] for the monitor functions, which
may be one possible way to avoid this ad hoc approach.

3 Numerical Experiments

In this section, numerical simulations of the Brusselator model are given first. There is no
analytical solution of this model, so we calculate a reference solution for the convergence test
of our algorithm. Then the convergence of our moving finite element method is checked. The
advantage of moving mesh method and the importance of movement of grid points on the
boundary are demonstrated respectively. Finally, the numerical results of simulations of Gray-
Scott model are presented.

For the simulation of Brusselator model, we use α=1 in (2.7). To describe the procedure of
the spots replication accurately for Gray-Scott model, more adaptivity, say, larger α is expected.
However, with the number of spots increases in the domain, the area of the region with large
solution variation also increases. That means we can not use too large α, otherwise there will be
not sufficient grid points to resolve after certain time. According to our numerical experience,
we use α=5 in the simulation of Gray-Scott model.
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3.1 The Brusselator model

We consider the two-dimensional Brusselator model with the following parameters:

Du =Dv =2×10−3, A=1 and B=3.4.

Neumann boundary conditions are imposed on the boundary of the square domain Ω=[0,1]×
[0,1]:

∂u
∂n

=
∂v
∂n

=0 on ∂Ω.

The initial conditions read

u(x,y,0)=
1
2
+y, v(x,y,0)=1+5x.

With these boundary and initial conditions, a wave will move along the boundaries peri-
odically. This model has also been studied in [6, 33].

We first find out reliable reference solutions of Brusselator model.

3.1.1 Reference results on the fine uniform mesh

Several numerical tests are carried out to give reliable reference results. First, we use an 100×
100 mesh, and different lengths of time step are tested such as ∆t=1.0e−02, 2.5e−03, 6.25e−04
and 1.5625e−04. According to the comparisons of results obtained with these time steps, we
find that the difference between the results obtained with ∆t=6.25e−04 and ∆t=1.5625e−04
is very small. So we fix the length of time step to be ∆t=6.25e−04 in our computations.

In the following, different mesh sizes will be used to test the numerical convergence of the
algorithm when ∆t=6.25e−04. The mesh size ∆h=1.6667e−02, ∆h=1.25e−02, ∆h=1.0e−02
and ∆h= 8.3333e−03 are used. According to the results, we find that the difference between
the results obtained with ∆h=1.0e−02 and 8.3333e−03 meshes is very small. So we fixed the
mesh size as ∆h=1.0e−02.

According to the above discussion, numerical results which are obtained with ∆t=6.25e−
04 and mesh size ∆h=1.0e−02( corresponds to 11833 degrees of freedom) are used as reference
results for the Brusselator model in our work.

3.1.2 Numerical results with moving mesh method

In this subsection, we first check the numerical convergence of the moving finite element
method according to the reference results described in Sect 3.1.1.

Numerical convergence

We mention again that α = 1 is used in (2.7), and the time step ∆t = 6.25e−04 is adopted.
In simulations, three different meshes with 506 degree of freedom (DOFs), 1941 DOFs, and
4396 DOFs are used, and numerical results are given in Fig. 1 and Fig. 2 when t = 11 and
t=19 respectively. The numerical convergence is demonstrated clearly in the figures. That is,
with the increment of number of DOFs, the difference between the numerical results and the
reference results becomes smaller.

It can also observed from Figs. 1 and 2 that the phase error of numerical results becomes
large with time evolution. In the following comparisons, it will be shown that the moving
finite element method has advantage on reducing the phase error.

7



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.2  0.4  0.6  0.8  1

u

x(y = 0)

fixed mesh 11833 DOF
moving mesh 506 DOF

moving mesh 1941 DOF
moving mesh 4396 DOF

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.32  0.33  0.34  0.35  0.36  0.37  0.38  0.39  0.4  0.41  0.42

u

x(y = 0)

fixed mesh 11833 DOF
moving mesh 506 DOF

moving mesh 1941 DOF
moving mesh 4396 DOF

Figure 1: Numerical results of moving mesh method with different mesh sizes on y=0 when t=11. Top: numerical
solutions of u on the whole line y=0; Bottom: numerical solutions on the range x∈ [0.32,0.42].
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Figure 2: Numerical results of moving mesh method and fixed mesh with different mesh sizes on y=0 when t=19.
Top: numerical solutions of u on the whole line y=0; Bottom: numerical solutions on the range x∈ [0.18,0.28].
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Compare with results obtained from the fixed mesh

It is very important for an algorithm to resolve the sharp phase of the solution as correct as
possible, otherwise the numerical results will be not reliable with time evolution.

As we can see that by using moving finite element method, the phase error of numerical
results when t=19 is larger than that when t=11. However, it should be noted that compared
with fixed mesh case, the moving finite element method is much better on resolving the sharp
phase. In Fig. 2, the numerical results obtained from fixed mesh with 7565 DOFs are also
demonstrated. It is obvious that the phase error of moving finite element method with 1941
DOFs is even smaller than that obtained from fixed mesh with 7565 DOFs. That means we can
use less DOFs to get more accurate results. In fact, the fixed mesh (7565 DOFs) is obtained by
globally refining the mesh (1941 DOFs) one time.

Besides the moving mesh method, we also would like to mention that the high-order tem-
poral discretization is also important for accurately depicting the sharp phase of the solutions.

As we mentioned before, in the Brusselator model, the sharp phase of solutions moves
along the boundary. We have demonstrated that moving finite element method had advantage
on resolving the sharp phase on the boundary y = 0. It can be imagined that moving finite
element methods also give much more accurate results than those obtained from fixed mesh
inside the domain. This is shown by Fig. 3 which demonstrates the three isolines (u=0.5,1.0,
and 1.5) when t = 19. From this figure, we can see that compared with the results obtained
from the fixed mesh with 7565 DOFs, the results obtained from the moving mesh method with
4396 DOFs are closer to the reference results (especially see Fig. 3, right column).

Based on the above discussion, we can claim that the moving finite element method pro-
posed in this paper is more efficient than the uniform mesh approach in simulating the Brus-
selator model. As the end of this subsection, we give a full view of numerical results on the
domain. Fig. 4 shows the numerical results for u by using moving mesh (1941 DOFs) when
t=1,15, and 19. From the mesh configurations which are shown on the right column, we can
see that our moving mesh method resolves the large solution variations successfully.

As we mentioned before, the Brusselator model is a special case because the solution with
large gradient appears along the boundary. So it is very important that the grid points on the
boundary can move together with the internal grid points at the same time, and its importance
will be shown in the next numerical experiment.

Importance of movement of boundary points

The results of moving interior points but fixing the boundary points are shown in Fig. 5. As
shown by the figure, the results obtained using 4396 DOFs are unacceptable, because there is a
large phase error on the boundary y=0. Such results are even worse than that obtained from
our moving mesh method with 506 DOFs. It can be expected that with such large phase error
on the boundary, the internal solutions are also not reliable. This can be seen from Fig. 6 where
the numerical results nearby the boundary are demonstrated. It confirms our discussion above
that the moving mesh method without redistributing the boundary points is not suitable for
problems having solutions with large gradient along the boundary. With time evolution, the
error will become bigger and bigger. Fig. 7 shows the 2D view of solutions obtained using
moving mesh method with fixed boundary points (4396 DOFs).

In [33], authors use a moving mesh method with fixed boundary. Based on our numerical
experience, it seems that moving interior and boundary points simultaneously is important for
the simulation.
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(a)

(b)

(c)

Figure 3: Numerical results of u when t=19. (a): fixed mesh with 11833 DOFs. (b): fixed mesh with 7565 DOFs.
(c): moving mesh with 4396 DOFs. Left: isolines with u=0.5,1.0 and 1.5. Right: the detailed results shown in the
dashed box of the left figure.
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(a)

(b)

(c)

Figure 4: Numerical results for u (left column) obtained with moving mesh (1941 DOFs) when t=1,15, and 19. Right
column shows the corresponding mesh configuration. (a): t=1, (b):t=15, and (c): t=19.
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Figure 5: Same to Fig. 2 except for that results are obtained from different methods.

Figure 6: Same to Fig. 3, except for that results are obtained moving mesh (4396 DOFs) where the grid points on
the boundary are fixed.

3.2 The Gray-Scott model

The two-dimensional Gray-Scott model is considered in this section. We take the square do-
main Ω=[0,2.5]×[0,2.5]. At the boundaries, homogeneous Neumann boundary conditions are
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Figure 7: Same to Fig. 4 (c), except that the boundary points are not redistributed and 4396 DOFs are used when
t=19.

imposed both for u and v. The initial conditions are

u(x,y,0) = 1−2v(x,y,0),

v(x,y,0) =


1
4 sin2(4πx)sin2(4πy), if 1≤ x,y≤1.5,

0, elsewhere.

Thus the v-component consists initially of four spots near the center of the domain. In the
simulation, the parameters are taken as Du = 8×10−5,Dv = 4×10−5,γ= 0.024 and κ = 0.06 in
the Gray-Scott equations (1.3). With these parameters and initial values, the initial spots will
split, replicate, and form a spots pattern in the domain. This problem has also been studied
in [10]. As we discussed at the beginning of this section, α=5 in (2.7) is used for simulation of
the Gray-Scott model.

Fig. 8 shows the time evolution of the v-component by contour lines v=0.02×i,1≤ i≤14 in
the (x,y)−plane at various times with a time step ∆t=0.01. For clarity the solutions are only
displayed for 0.5≤ x,y≤ 2. The moving mesh solutions agree well with those obtained with
very fine uniform meshes shown in [10]. With the moving mesh strategy, the outlines of spot
are depicted by grid points perfectly.

Other patterns, e.g., stripes patterns, can be obtained with different choices of parameters
and initial values. More examples for the Gray-Scott model can be found in [27].

4 Conclusions

In this paper, we apply a moving finite element method to the two-dimensional Gray-Scott
model and Brusselator model in weak regime for simulating the pattern formation. High qual-
ity meshes are obtained for both the spots replication and the moving wave along boundaries.
Based on these high quality meshes, the two-dimensional Gray-Scott model and Brusselator
model are resolved. Moreover, the importance of moving interior and boundary points si-
multaneously is discussed. The importance of the boundary grids redistribution is due to the
solution itself. In case of the sharp layers interact with the boundary, the boundary grids is
to be redistributed to improve the solution quality. Several ways of verifying the quality of
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t=1 t=100 t=200

t=500 t=1000 t=1500

Figure 8: Time evolution (v-component) in the Gray-Scott model, together with the corresponding meshes. Region:
[0.5,2.0]×[0.5,2.0]
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the numerical solutions, such as one-dimensional plot with large gradients (Figs. 1 and 2) and
isolines (Figs. 3 and 6) are proposed in this work.
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