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Abstract
In the study of epidemic spreading two natural questions are: whether the spreading of epidemics
on heterogenous networks have multiple routes, and whether the spreading of an epidemic is a
local or global behavior? In this paper, we answer the above two questions by studying the SIS
model on heterogenous networks, and give the global conditions for the endemic state when two
distinct routes with uniform rate of infection are considered. The analytical results are also verified
by numerical simulations.

Introduction
The dynamical behaviors of epidemic diseases have been
studied for quite a long time, SIS and SIR are the two
important and fundamental epidemic models [1]. For the
SIS epidemic model, each individual can exist in two
states: S-susceptible and I-infected. At each time, the sus-
ceptible individual which is connected to an infected
neighbor will be infected with rate λ. Meanwhile, the
infected individuals may be recovered and become sus-
ceptible individuals at a rate γ. For the SIR model, there are
two different aspects from the SIS model: on one hand,
individuals can exist in another state: R-recovered/
removed; on the other hand, once an infected individual
becomes recovered then the individual cannot be infected
again.

In order to explore the mechanism of the evolution of
complex networks, in 1999, Barabási and Albert
addressed a new model of complex networks: scale-free
networks (BA) [2]. In a scale-free network the probability
P(k) for any node with k links to other nodes is distributed

according to the power law P(k) ~ k-γ. Then researchers
found that many real complex systems are scale-free net-
works, such as the WWW (World Wide Web), the Internet,
and so on. These types of networks are considered as het-
erogenous networks (with a degree distribution exhibiting
large fluctuations). Because many epidemic diseases occur
in communities exhibiting characteristics consistent with
heterogenous networks, many researchers studied the
mechanism of the spreading of epidemics on heteroge-
nous networks [3-10] (see also Zhang HF, Fu XC: The
spread of epidemics on scale-free networks with nonlinear
infectivity. Nonl Anal, Series A, in press, and d'Onofrio A:
A note on the global behaviour of the network-based SIS
epidemic model. Nonl Anal Real World Appl, in press).

For the mechanism of the spreading of epidemic on com-
plex networks, different researcher gave different explana-
tions [3,6,10]. For instance, Pastor-Satorras et al.
concluded that the epidemic threshold λc = 0 for heterog-
enous networks with sufficiently large size [3], and Zhou
et al suggested that the threshold λc is a constant value,
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regardless of the size of networks and the degree distribu-
tion [6]. Both of the results were obtained just by consid-
ering one route of spreading epidemic, and the
corresponding results are too special to completely reflect
the mechanism of spreading of epidemics. Contrary to the
above assumptions, many diseases can be spread in many
ways, and they have positive thresholds which are relevant
to the degree distribution and the size of networks, e.g,
people transmit HIV by having unprotected sex, by receiv-
ing infected blood transfusions or, through birth. Further-
more, some epidemics just can prevail in a local place,
and some kind of epidemics will globally prevail. In order
to better explain the mechanism of the spreading of epi-
demic on complex networks, and answer whether the
spreading of an epidemic is a local or global behavior, we
consider two distinct routes of spreading of epidemics on
heterogenous networks, and obtain some new results
which are not given previously.

The rest of this paper is organized as follows: In Section 2,
we study two routes of spreading epidemics on complex
networks by a method [11] (and see d'Onofrio A: A note
on the global behaviour of the network-based SIS epi-
demic model. Nonl Anal Real World Appl, in press) which
answers explicitly whether the spreading of an epidemic is
a local or global behavior. Though the threshold can also
be obtained by solving a self-consistency equation [3-5],
however, such method did not answer whether the
endemic state is locally or globally stable. In order to dem-
onstrate the advantage of the method we used [11] (also
d'Onofrio A: A note on the global behaviour of the net-
work-based SIS epidemic model. Nonl Anal Real World
Appl, in press), another two routes of spreading epidemics
is considered in Section 3, here the threshold cannot be
obtained by solving a self-consistency equation. In Sec-
tion 4, we present numerical simulations to verify our
analytical results. And finally, conclusions are given in
Section 5.

When the threshold can be obtained by solving a 
self-consistency equation
As for the mechanism of the spreading of epidemics on
heterogeneous networks, R. Pastor-Satorras et al consid-
ered that the infective capability of infected individuals is
proportional to their degrees, and the factor

 (here P (k'|k) denotes the conditional

probability that a node with degree k is connected to a
node with degree k', kmax is the maximal degree of the net-

works, and Ik' is the density of infected individuals with

degree k') was used to stand for the probability that an
edge emanating from a node of degree k points to an

infected nodes. As a result, the epidemic threshold λc = 0

for heterogenous networks with sufficiently large size [3-

5]. However, in [6], Zhou et al argue that Θ may have

another form, they let , just because

every infected individual may have the same infective
capability U to infect other individuals. And they

obtained the epidemic threshold , no matter the

individuals' degree and the size of scale-free networks.

Just as we mentioned in above section, both of them have
limitations, so we consider that both of these mechanisms
are concurrent on complex networks.

For the heterogeneous networks, we also classify individ-
uals into groups according to their degrees, then Sk and Ik
are the density of susceptible individuals and the density
of infected individuals with degree k respectively, so Sk +
Ik = 1.

Now we give the dynamical equations for the epidemic on
complex networks:

for k = 1, 2, ..., kmax and where λ, β are the two different

infective rates, and the recovery rate is assumed to be

unity, the parameter p, (0 ≤ p ≤ 1) gives the different ratio
between two routes of spreading epidemic. We suppose
the degree distribution is uncorrelated, that is,

, then we have

where . Then Eq(1) can be written in a

compact form:
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(where k = 1, 2, ..., kmax). By letting I = [I1, I2, ...,

, Eq(3) can be rewritten as a vector

form:

where AI is the linear part of I, and N(I, t) is the nonlinear
part of I, and

(k, k' = 1, 2, ..., kmax) where δkk' = 1 if k = k', or δkk' = 0 oth-
erwise.

(k = 1, 2, ..., kmax). By some computation, we can find that,
for the matrix A, there are (kmax - 1) eigenvalues equal to -
1.

In order to find the last eigenvalue of A, we let

V = [λ, 2λ, ..., Nλ]T (7)

and write matrix A as

where  is an identity matrix, then we have

From Eq (9), it follows that the kmax's eigenvalue of the
matrix A is

If the solution I = 0 of the Eq(3) is stable, all eigenvalues
of the matrix A must be non-positive, that is, u ≤ 0.

So we have the following conclusion:

If

then the solution I = 0 of the Eq(3) is globally asymptotically
stable, otherwise the unique endemic solution

 (0 is a zero vector) is globally asymp-

totically stable, except when there are no infected individuals in
the networks at the initial time.

From the inequality (11), we can find the thresholds for
the outbreak of epidemics on complex networks with the
two routes of spreading epidemic mentioned above, and
at the same time we can answer whether the endemic state
is globally stable.

When p = 1, that is, there is only one way of spreading of
epidemic on complex networks, as discussed in [3], then

we obtain the threshold for , the same as the

result given in [3-5].

When p = 0, then we obtain the threshold for , the

same as the result given in [6].

When 0 <p < 1, i.e., there are two routes of spreading of
epidemic on complex networks, our result suggest that the
threshold for the outbreak of epidemic is positive, which
is relevant to the ratio of two routes of spreading of epi-
demic, the degree distribution, and the size of the net-
works. So the threshold we obtain is neither zero nor just
a constant given by previous authors.

When threshold cannot be obtained by solving a 
self-consistency equation
In the above section, the threshold for the case we consid-
ered can also be obtained by solving a self-consistency
equation, although this does not explicitly determine
whether the equilibrium is globally stable. In this section,
in order to demonstrate the advantage of the method we
used in the above section, we consider another case where
the threshold cannot be obtained by solving a self-consist-
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ency equation. Moreover, such case may exist in the real
networks.

We suppose that there are also two routes of the spreading
epidemics on complex networks, one route is given by Θ1,
another route of the spreading of epidemic is the standard
SIS model [1].

The dynamical equations are

(k = 1, ..., kmax). Here, we should distinguish the second
term of the right-hand side of Eq(12) from the second
term of the right-hand side of Eq(3). In Eq(3), Zhou et al
considered that the susceptible individuals which may be
infected are proportional to their degrees k though they
are irrelevant to the infected individuals, however, in
Eq(12) we suppose that all of the susceptible individuals
which may be infected are proportional to a constant rate,
i.e. (k).

By using the same method as in Section 2, we can rewrite
Eq(12) in the following vector form,

and

(k, k' = 1, 2, ..., kmax).

By solving the matrix A, we can find that there are kmax - 2
eigenvalues equal to -1, and the other two eigenvalues u
are given by the following equation

where

From Eq(16), (17), we have

In order to obtain both of the negative eigenvalues, by
solving Eq(18) we have

If

then the solution I = 0 of the Eq(15) is globally asymptotically
stable, otherwise the unique endemic solution

(0 is a zero vector) is globally asymp-

totically stable. Except when there are no infected individuals
in the networks at the initial time.

When p = 1, then we obtain the threshold for ,

the same as the result given in [3-5]. When p = 0, then we

obtain the threshold for , the same as the result on

homogenous networks.
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If 0 <p < 1, we can find the threshold for this two routes of
spreading epidemic is not just the linear combination of
threshold λ and β as shown in inequality (11), which
manifest that some complex behaviors may come forth.

We remark here that we can also consider more routes'
spreading of epidemics on complex networks, by using
the similar method, although here in this paper we have
only considered two routes of spreading epidemics.

Numerical simulations
In this section, we present numerical simulations to sup-
port the results obtained in previous sections. Our simu-
lations are based on the BA network with P(k) = k-γ, γ = 3,
N = 2000, and &#x3008;k&#x3009; = 6,
&#x3008;k2&#x3009; = 98.

In Figure 1, our simulations verify the inequality(11). In
order to simultaneously consider two infective rates λ, β,
in Figure 1(a), we study the ratio of λ/β with p changing,
then inequality (11) can be written as

In Figure 1(b), we study the ratio of β/λ, with p changing,
then inequality (11) can be written as

In Figure 2, our simulations verify the inequality (19). Just
as in Figure 1, we simultaneously consider two infective
rates λ, β, in Figure 2(a), we study the ratio of λ/β with p
changing, then inequality (19) can be written as

In Figure 2(b), we study the ratio of β/λ, with p changing,
then inequality (19) can be written as

Remark: From the above figures, we can find that the thresh-
olds are very small, this is because that we are simulating the
ratios between two parameters λ, β. In fact, if we fix one of
them, and simulate the threshold for another parameter by
changing p, here p can go from 0 to 1. For instance, in order to
demonstrate this case, we give simulations to verify inequality
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Verification of inequalities (20) and (21)Figure 1
Verification of inequalities (20) and (21). Figure 1 (a) Simulations show that λ/β is in accordance with inequality (20) by 
changing p. Figure 1 (b) Simulations show that β/λ is in accordance with inequality (21) by changing p.
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(19), by letting β = 0.1 unchanged, and consider the threshold
for λ, with p changing (see Figure 3).

Conclusion
In order to explain the mechanism of the spreading of epi-
demic, many results were proposed by researchers. These
results were often based on that the spreading of epidem-
ics on complex networks via a single mechanism, hence,
these results were often not so realistic. Moreover, many
results just gave the threshold for the outbreak of epidem-
ics, which can not explicitly answer whether the epidemic
will prevail locally or globally.

Because many diseases can spread in different ways, e.g.,
HIV virus, the avian flu, and so on, in this paper we con-
sider that the spreading of epidemics on complex net-
works via multiple routes. Under such assumption, we get
positive thresholds, neither a constant value nor a zero
value, which are more realistic. Furthermore, we answer
that the epidemic will prevail globally once some condi-
tions are satisfied.

In Section 3, the results can be obtained by solving a self-
consistency equation, and the threshold is the linear com-
bination of λ and β. However, when we consider the case

Verification of inequality (19)Figure 3
Verification of inequality (19). Simulations show that λ is 
in accordance with inequality (19) by changing p. And we can 
see that the smaller p is, the larger the threshold for λ is.
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Verification of inequalities (22) and (23). Figure 2 (a) Simulations show that λ/β is in accordance with inequality (22) by 
changing p. Figure 2 (b) Simulations show that β/λ is in accordance with inequality (23) by changing p.
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as in Section 4, the results can not be obtained by solving
a self-consistency equation, moreover, the threshold is
not the linear combination of λ and β, which suggest that
the threshold for the multiple routes of spreading epi-
demic is not just the addition of the respective way of
spreading epidemic, sometimes, some complex behavior
can happen. Finally, in Section 4, we present numerical
simulations to support our analytical results.
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