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Abstract
Dynamic invariants are often estimated from experimental time series with the aim of
differentiating between different physical states in the underlying system. The most popular
schemes for estimating dynamic invariants are capable of estimating confidence intervals, however,
such confidence intervals do not reflect variability in the underlying dynamics. We propose a
surrogate based method to estimate the expected distribution of values under the null hypothesis
that the underlying deterministic dynamics are stationary. We demonstrate the application of this
method by considering four recordings of human pulse waveforms in differing physiological states
and show that correlation dimension and entropy are insufficient to differentiate between these
states. In contrast, algorithmic complexity can clearly differentiate between all four rhythms.

1. Background
Various dynamic invariants are often estimated from time
series in a wide variety of scientific disciplines. It has long
been known that these estimates (and in particular corre-
lation dimension estimates) alone are not sufficient to dif-
ferentiate between chaos and noise. Most notably, the
method of surrogate data [1] was introduced in an
attempt to reduce the rate of false positives during the
hunt for physical examples of chaotic dynamics. Although
it is not possible to find conclusive evidence of chaos
through estimation of dynamic invariants, surrogate
methods are often used to generate a distribution of statis-
tic values (i.e. the estimates of the dynamic invariant)
under the hypothesis of linear noise. In the most general
form, the standard surrogate methods can generate the
distribution of statistic values under the null hypothesis of
a static monotonic nonlinear transformation of linearly
filtered noise.

In this communication, we introduce a significant gener-
alisation of a recent surrogate generation algorithm [2,3].
The pseudo-periodic surrogate (PPS) algorithm allows one to
generate data consistent with the null hypothesis of a
noise driven periodic orbit – provided the data exhibits
pseudo-periodic dynamics. Previously, this algorithm has
been applied to differentiate between a noisy limit cycle,
and deterministic chaos. By modifying this algorithm and
applying it to noisy time series data, we are able to gener-
ate surrogate time series that are independent trajectories
of the same deterministic system, measured via the same
imperfect observation function. That is, we assume that
there is a deterministic dynamical system subject to addi-
tive independent and identically distributed (i.i.d.) obser-
vational noise. This ensemble of attractor trajectory
surrogates (ATS) can then be used to estimate the distribu-
tion of statistic values for estimates of any statistic derived
from these time series.
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The statistics of greatest interest to us are dynamic invari-
ants of the underlying attractor, and in particular correla-
tion dimension and entropy estimates provided by the
Gaussian kernel algorithm (GKA) [4,5]. Our choice of the
GKA is entirely arbitrary, but based on our familiarity with
this particular algorithm. True estimation of dynamic
invariants from noisy data is a process fraught with diffi-
culty, in this paper we are only concerned with estimating
the distribution of estimates. To emphasise this point fur-
ther we repeat out analysis with another quantity, Lempel-
Ziv complexity [6], which does not constitute a dynamics
invariant. Nonetheless, our algorithm provides a reliable
estimate of the distribution of statistic values for this sta-
tistic as well.

An important application for the ATS technique is to
determine whether dynamic invariants estimated from
distinct time series are significantly different. The question
this technique can address is whether (for example) a cor-
relation dimension of 2.3 measured during normal elec-
trocardiogram activity is really distinct from the
correlation dimension of 2.4 measured during an episode
of ventricular tachycardia [7,8]. Estimates of dynamic
invariants (including the GKA [4,5]) often do come with
confidence intervals. But these confidence intervals are
only based on uncertainty in the least-mean-square fit,
not the underlying dynamics. Conversely, it is standard
practice to obtain a large number of representative time
series for each (supposedly distinct) physical state, and
compare the distribution of statistic values derived from
these. But, this approach is not always feasible: in [7,8] for
example, the problem is not merely that these physiolog-
ical states are difficult and dangerous to replicate, but that
inter-patient variability makes doing so infeasible.

In the remainder of this paper we describe the new ATS
algorithm and demonstrate that it can be used to estimate
the distribution of dynamic invariant estimates from a
single time series of a known dynamical system (we dem-
onstrate this with the Hénon map and the chaotic Rössler
system). We then apply this same method to four record-
ings of human pulse waveforms, measured via photo-
plethysmography [9,10]. Each of the four recordings cor-
respond to a distinct physiological state. We compute cor-
relation dimension and entropy using the GKA method
and show that the expected distribution of correlation
dimension and entropy estimates are insufficient to differ-
entiate between these four physiological states. In con-
trast, we show that algorithmic complexity can clearly
differentiate between all four rhythms.

In Section 2 we describe the algorithm we employ in this
paper, and in Section 2.2 we demonstrate that, for suitable
parameter values, this technique will preserve the deter-
ministic dynamics of the underlying system. In Section 3

we present some numerical case studies and in Section 4
we finally present our conclusions.

2. Attractor trajectory surrogates
In the first part of this section we will review the PPS algo-
rithm presented in [2] and describe the novel features of
the ATS approach. In section 2.2 we examine the founda-
tion of this technique's ability to preserve the underlying
deterministic dynamics.

2.1 The algorithm

In what follows we assume that the measured scalar time
series xt represents discretely sampled measurements of a

deterministic dynamical system (possibly continuous)
under the influence of observational noise. In other
words, the dynamics are determined by a smooth mani-

fold M and deterministic evolution operator φ : M → M.

The output of the evolution of an initial condition m0 ∈ M

under φ (i.e. mt = φt(m0)) are observed via the differentia-

ble function h : M → R. Unfortuantely, experimental
measurement is not perfect and the observed time series

{xt} is subject to observational noise, hence, xt = h(φt(m0))

+ εt where εt ~  is drawn from some stationary noise dis-

tribution . For the case of dynamic noise, the situation
is complicated further as the evolution of mt is governed

by mt+1 = φ(mt) + ξt where ξt is stochastic.

The ATS algorithm may now be described as follows.
Embed the observed scalar time series {xt} to obtain a vec-
tor time series {zt}, zt ∈ Rd, of N observations. The choice
of embedding is arbitrary, but has been adequately dis-
cussed in the literature (there are numerous works in this
field, [11] for example, provides references to several of
them). We assume that the embedding is such that there
exists a continuously differentiable map Ξ : M → Rd

between the underlying manifold M and the embedding
space Rd such that both Ξ and DΞ are one-to-one. Under
these conditions, the dynamics of (φ, M) and the evolu-
tion of zt = Ξ(mt) ∈ Rd are considered to be equivalent.
From the embedded time series, the surrogate is obtained
as follows. Choose an initial condition, w1 ∈ {zj|j = 1, ...,
N}. Then, at each step i, choose the successor to wi with
probability

where the noise radius ρ is an as-yet unspecified constant.
That is, the successor of wi, wi+1 is chosen to be the point
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zj+1 with probability proportional to ,

where zj is the antecedent of zj+1. In other words, the suc-

cessor to wi is the successor of a randomly chosen neigh-

bour of wi. Equation (1) may then be written as

where  (and similarly,

). Finally, from the vector time series

{wi} the ATS {si} is obtained by projecting wi onto [1 0 0

0 � 0] ∈ Rd (the first coordinate). Hence

st = wt·[1 0 0 0 � 0] (2)

In [2,3] this algorithm was shown to be capable of differ-
entiating between deterministic chaos and a noisy peri-
odic orbit. In the context of the current communication
we assume that {xt} is contaminated by additive (but pos-
sibly dynamic) noise and we choose the noise radius ρ
such that the observed noise is replaced by an independ-
ent realisation of the same noise process. Furthermore, we
assume that the deterministic dynamics are preserved by
suitable choice of embedding parameters. Under these
two assumptions, {zt} and {wt} have the same invariant
density and {xt} and {st} are therefore (noisy) realisation
of the same dynamical system with (for suitable choice of
ρ) the same noise distribution. We illustrate this more
precisely in the following section.

2.2 Invariance
As in [2,3] the problem remains the correct choice of ρ.
This is the major difference between the ATS described
here and the PPS of [2,3]. However, since the null hypo-
thesis we wish to address is different from (and more gen-
eral than) that of the PPS, choice of ρ for the ATS is less
restrictive. For t = T given, one can compute P(wt+1 ≠ zi+1 ∧
||wt - zi|| = 0|t = T) directly from the data by applying (1)
to the embedded time series(we use the symbol ∧ here in
the usual manner to denote logical conjunction). Assum-
ing the process is ergodic (that is, ergodic with respect to
the standard measure – this assumption is sufficient rather
than necessary) one can then sum

to get the probability of a temporal discontinuity in the
surrogate at any time instant. By temporal discontinuity
we mean that wi = zj but wi+1 ≠ zj+1. That is, a point where
the surrogate trajectory does not exactly follow the data.
There is a one-to-one correspondence between a value p =
P(wt+1 ≠ zi+1 ∧ ||wt - zi|| = 0) and ρ, and we choose to imple-
ment (1) for a particular value of p (i.e. a particular transi-
tion probability) rather than a specific noise level ρ. In
what follows we find that studying intermediate values of
p (p ~ 0.1) is sufficient. For p ∈ [0.1, 0.8] the qualitative
behaviour over the corresponding narrow range of ρ is
uniform. We choose to illustrate with p = 0.1, but the
results for other choices are similar. Of course, for p → 1
or p → 0 the algorithm will not work well.

Now, suppose that the embedding parameters τ and de

have been selected correctly and the noise in the data is
not too large, then the transformation xt # zt dictated by

these parameters is an embedding. That is, the operator Ξ
: M → Rd with Ξ(mt) = zt (in the absence of noise) and its

derivative DΞ are both one-to-one. Hence, the dynamic

evolution of  can be represented by

zj+1 = Φ(zj) + ej (4)

where Φ(·) is diffeomorphic to the true evolution opera-

tor (i.e. Φ = Ξ°φ°Ξ-1 where φ : M → M is the underlying

evolution operator, defined earlier) and ej are uncorre-

lated noise vectors (corresponding to the terms εt and pos-

sibly ξt described earlier). Now we consider the process of

constructing a surrogate. Let  denote the surrogate

vector time series of length N. Clearly, setting w1 = zk for

some randomly chosen k is simply some new initial con-
dition. Now, wi+1 = zj+1 where j is chosen randomly from a

distribution such that ||wi - zj|| is small. Let εi = zj - wi cor-

responding to the small (random) perturbation intro-
duced by selection according to (1), then

wi+1 = Φ(wi + εi) + ej. (5)

Note that, εj is the perturbation introduced in taking zj's
successor to be the successor of wi (it is a dynamic noise
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term, and it is a perturbation introduced by the ATS
method). Conversely, ej is the dynamic error in applying
Φ (this term is inherent to the data, and to our model of
the data). By taking n-th iterates of (4) and (5) we see that
the two noise terms ej and εi+1 will combine. In other
words, from (5) we get

wi+2 = Φ(Φ(wi + εi) + ej + εi+1) + ej+1, (6)

and so on. Suppose that ej ~  where  is some noise

distribution. Then, for the surrogates {st} to be a new real-

isation of the system that generated {xt} we require that ej

+ εi+1 ~ . But this is equivalent to the condition that zj -

wi ~ k  for sufficiently small k. Hence, the critical issue is

the choice of ρ such that the these two noise terms are
drawn from the same distribution and that therefore the
surrogate dynamic (5) is equivalent to (4). This requires

sufficient data, ergodicity, and ρ small enough. Note that,

as ρ becomes smaller and the surrogate data become more
like realisations of the same system, we also see less ran-
domisation. This is a natural and unavoidable tradeoff.

3. Results
The following subsections present the application of this
method for data generated from the Hénon map (section
3.1), the Rössler system (section 3.2) and experimental
measurements of human pulse pressure waves (section
3.3).

3.1 The Hénon map
One potential difficulty of this method is that the stretch-
ing-and-folding characteristic of Smale horseshoe type
chaos could easily destroy the dynamics of (5) and there-
fore produce surrogate trajectories that short-cut across
the attractor. Although we can see from equations (5) and
(6) that for sufficiently small perturbations this will never
be the case, we would like to test this possibility in prac-
tise. For this purpose we apply the method described in
the previous section to the extremely well studied Hénon
map: one of the archetypes of Smale horseshoe chaos.

Figure 1 illustrate typical ATS calculations for this data set.
Using short (1000 point) sections of the Hénon system,
with the addition of observational noise (the Figures
show 1% and 10% noise levels), we computed typical ATS
data for different values of transition probability p. We
find that in almost all cases (see Figure 1) the results for
the ATS data agree qualitatively with the data. Compari-
son of estimated dynamic invariant (results omitted) con-
firm this. In all cases, for moderate range of p (i.e. p
neither approaching 0 or 1) and moderate observational
noise, we find data and surrogate agree closely. When this
same computation was repeated for dynamic noise, we

found data and surrogates to be similarly indistinguisha-
ble (see Figure 2): except for the case of large p and small
noise (in this case, 1% dynamic noise and p = 0.8). Note
that, for the Hénon map larger values of dynamic noise
will actually force the system into an unstable régime.

3.2 The Rössler system
We now demonstrate the applicability of this method for
a more realistic example: noisy time series data simulated
from the Rössler differential equations (during "broad-
band" chaos). We integrated (one thousand points with a
time step of 0.2) the Rössler equations both with and
without multidimensional dynamic noise at 5% of the
standard deviation of the data. As far as possible, we gen-
erated realisations of the Rössler system that superficially
resemble the physiological data of 3.3. The purpose of this
is to provide a more realistic test of our method. We then
studied the x-component after the addition of 5% obser-
vational noise. We selected embedding parameters using
the standard methods (yielding de = 3 and τ = 8) and then
computed ATS surrogates for various exchange probabili-
ties p = 0.05, 0.1, 0.15, ..., 0.95.

For the data set and each ensemble of surrogates we then
estimated correlation dimension D, entropy K and noise
level S using the GKA algorithm [4,5]. The GKA embed-
ding used embedding dimension m = 2, 3, ..., 10 and
embedding lag of 1. It is important to note that, a correla-
tion dimension estimate is not the same thing as the
actual correlation dimension. In particular, this algorithm
estimates correlation dimension and noise level simulta-
neously (as well as entropy). A lower correlation dimen-
sion (associated with the presumed determinism in the
system) is accompanied by an increase in the estimated
noise level. That is, the estimated dimension can be lower
because the algorithm is attributing more of the variation
in the data to noise, and therefore estimating a higher
noise level (and hence, in some case, the correlation
dimension falls below 1). Similarly, the fact that the
entropy is negative in the first case is associated with the
system noise. Nonetheless, we are using these numbers
only as measures, that is, as test statistics. Figure 3 depicts
the results when the GKA is applied with embedding
dimension m = 4 and the exchange probability is p = 0.1.
Other values of m gave equivalent results, as did various
values of p in the range [0.1, 0.8].

For such moderate p we found that the estimate of noise S
from the GKA algorithm coincided for data and surro-
gates, but this was often not the case for more extreme val-
ues of p. This estimate of signal noise content is therefore
a strong test of the accuracy of the dynamics reproduced
by the ATS time series. One expects this to be the case as
noise level is precisely the parameter upon which the ATS
method depends. Furthermore to confirm the spread of
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Sample reconstructed attractors for data and surrogates of the Hénon mapFigure 1
Sample reconstructed attractors for data and surrogates of the Hénon map. Panels (a) and (f) are embedded time 
series data from the x-component of the Hénon system with the addition of 1% and 10% observational noise (respectively). 
The remaining panels are representative ATS time series. Panels (b), (c), (d) and (e) are surrogates for panel (a), and Panels (g), 
(h), (i) and (j) are for panel (f). Each surrogate is computed with a different level of transition probability P. In panels (b) and (g), 
p = 0.2; in panels (c) and (h), p = 0.4; in panels (d) and (i), p = 0.6; and, in panels (e) and (j), p = 0.8. In each case the attractors 
reconstructed from the surrogates have the same qualitative features as that of the data – with the possible exception of panel 
(e). The likely reason for this noted exception is the relatively high transition probability (p = 0.8) and the relatively low noise 
level (1%). Of course, for smaller values of p (i.e. p = 0.1) the similarity is even more striking.
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the data we also estimated D, K, and S for 20 further real-
isations of the same Rössler system (with different initial
conditions). In each case, as expected, the range of these
values lies within the range predicted by the ATS scheme.
We do see, for example, in Figure 3(c) that the range of
noise level exhibited by the true Rössler system is not as
expansive as that for the surrogates (to some extent, we
can also observe the same problem with entropy in Figure
3(e)). This is due to the fact that the ATS method can be
made to introduce more randomisation than absolutely
necessary. By tuning down the randomisation we (obvi-
ously) will converge to the true data. By increasing the
randomisation we cover an ever widening range, which
will always include the true value. For large randomisa-

tion, and for statistics that are most sensitive to noise (in
this case K and S) there may also be some bias – the
observed difference in the means. Although it is desirable
that both distributions coincide exactly, it is re-assuring
(and sufficient) that the ATS distribution contains the true
distribution.

3.3 Photo-plethysmographic recordings
We now consider the application of this method to photo-
plethysmographic recordings of human pulse dynamics
over a short time period (about 16.3 seconds). We have
access to only a limited amount of data representative of
each of four different dynamic regimes. In any case, we
would expect the system dynamics to change if measured

Sample reconstructed attractors for data andsurrogates of the Hénon mapFigure 2
Sample reconstructed attractors for data andsurrogates of the Hénon map. Panel (a) is an embedded time series 
data from the x-component of the Hénon system with the addition of 1% dynamic noise. The remaining panels are representa-
tive ATS time series. Each surrogate is computed with a different level of transition probability P. In panel (b) p = 0.2; in panel 
(c) p = 0.4; in panel (d) p = 0.6; and, in panels (e) p = 0.8. In each case the attractors reconstructed from the surrogates have 
the same qualitative features as that of the data.
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over a significantly longer time frame. The data collection
and processing with the methods of nonlinear time series
analysis are described in [9,10]. Previously, we have stud-
ied nonlinear determinism in cardiac dynamics measured
with electrocardiogram (ECG) [7,8]. Although we do not
consider ECG data here, this data would be another useful
system to examine with these methods. Actually, the
problem with ECG data is that we have too much data and
it is therefore difficult to fairly select a "representative"
small number of short time series. However, we intend to
examine this data more carefully in the future. However,
we do note in passing that both PPG and ECG are meas-
ures of cardiac activity and are therefore potentially equiv-
alent [12,13]. The four data sets we examine in this
communication are depicted in Figure 4.

For each data set we repeated the analysis described for the
Rössler time series. Results for GKA embedding dimen-
sion m = 6 and p = 0.1 are depicted in Figure 5. As with the
Rössler system, variation of the parameters m and p did
not significantly change the results. We find that in every

case (except for extreme values of p) the distribution of D,
K and S estimated from the ATS data using the GKA
included the true value. Most significantly, this indicates
that the range of values of p is appropriate. Moreover,
these results are consistent with the hypotheses that the
noise is effectively additive and can be modelled with this
simple scheme, and that the underlying deterministic
dynamics can be approximated with a local constant
modelling scheme.

We also estimated the statistics D, K and S for additional
available data (subsequent, contiguous, but non-overlap-
ping) from each of the four rhythms. This small amount
of data afforded us two or three additional estimates of
each statistic for each rhythm. For the unstable and quasi-
stable rhythm we observed good agreement. For the stable
(normal and post-operative) rhythms, this is not the case.
On examination of the data we find that this result is to be
expected. Both the stable rhythms undergo a change in
amplitude and baseline subsequent to the end of the orig-
inal 16 second recording, this non-stationarity is reflected

Distribution of statistics D, K and S for short and noisy realisations of the Rössler systemFigure 3
Distribution of statistics D, K and S for short and noisy realisations of the Rössler system. The histogram shows the 
distribution of statistic estimates (D, K and S) for 500 ATS time series generated from a 1000 point realisation of the Rössler 
system. The tall vertical line on each plot is the comparable value for the data and the shorter vertical lines indicate 20 inde-
pendent realisations of the same process. The top row of figures depicts results for the Rössler system with observational 
noise only, the bottom row of figures has both observational and dynamic noise. Panels (a) and (d) show correlation dimension 
estimates, (b) and (e) are entropy, and (c) and (f) are noise level.
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in the results. This same non-stationarity has also been
observed independently in Bhattacharya and co-workers
[9,10].

We now return to the question that the ATS test was
designed to address: can we differentiate between these
four rhythms based on the GKA? Figure 6 provides the
answer. In Figure 6 we see the estimated distribution of
statistic values (D, K and S) for each of the four rhythms
shown in figure 4. Clearly (and not surprisingly), the cor-
relation dimension estimate and noise level of the unsta-
ble rhythm is significantly different from the other three
rhythms.

Our analysis indicates that, contrary to what one may
expect from individual measurements, the stable or

"quasi-stable" rhythms cannot be properly distinguished
based on these nonlinear statistics derived from the GKA.
Moreover, we find that entropy estimated with the GKA
algorithm K is of no use in differentiating between any of
these four rhythms. Although it is not the purpose of this
paper to provide a discriminating statistic for this data, it
would be nice to do so. Therefore, in Figure 7 we repeat
the calculation of surrogates and statistic distribution for
the same data, but using algorithmic complexity (see [11]
and the references therein) with binary, ternary, and qua-
ternary encodings with equal likelihood for each symbol.
Using this scheme it can be seen from Figure 7 that it is
possible to distinguish, with a high level of certainty
between three of these rhythms. Distinguishing between
all four is also possible, with a small likelihood of error
(see Figure 7(a)).

Human pulse waveform recorded withphoto-plethysmographyFigure 4
Human pulse waveform recorded withphoto-plethysmography. Four recordings of human pulse waveform (61 Hz) in 
four different physiological conditions. The four time series correspond to: (a) normal, (b) quasi-stable, (c) unstable, and (d) 
post-operative (stable).
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Distribution of statistics D, K and S for human pulse waveformsFigure 5
Distribution of statistics D, K and S for human pulse waveforms. The histogram shows the distribution of statistic esti-
mates (D, K and S) for 500 ATS time series generated from each of the four time series depicted in figure 4. The taller vertical 
line on each plot is the comparable value for the shorter vertical lines are for the (limited) subsequent data recorded from each 
patient. In each case only two or three subsequent contiguous but non-overlapping time series were available. The figures are: 
(a) correlation dimension (D), (b) entropy (K), and (c) noise (S) for the normal rhythm; (d) D, (e) K, and (f) S for the quasi-stable 
rhythm; (g) D, (h) K, and (i) S for the unstable rhythm; and (j) D, (k) K, and (l) S for the post-operative stable rhythm.
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4. Conclusion
The results of this analysis are in general agreement with
those presented in [9,10]. Independent linear surrogate
analysis [1] has confirmed that each of these four rhythms
is inconsistent with a monotonic nonlinear transforma-
tion of linearly filtered noise (these calculations are rou-
tine, and not presented in this paper). The only significant
difference is that the correlation dimension estimates we
present here are significantly lower than those in [9,10].
This is due to the different correlation dimension algo-
rithm. Unlike the algorithm employed in [9,10], the GKA
seperates the data into purely deterministic and stochastic

components, and hence estimates both D and S. The cor-
relation dimension estimated in [9,10] is the combined
effect of both components of the GKA.

Although we have considered the specific application to
human pulse dynamics, the algorithm we have proposed
may be applied to a wide variety of problems. We have
shown that provided time delay embedding parameters
can be estimated adequately, and an appropriate value of
the exchange probability is chosen, the ATS algorithm
generates independent trajectories from the same dynam-
ical system. When applied to data from the Rössler system

Discriminating power of the statistics D, K and S for human pulse waveformsFigure 6
Discriminating power of the statistics D, K and S for human pulse waveforms. The distribution (a binned histogram) 
of statistic values estimated via the ATS method (as described in figure 5) for each of the four distinct physiological waveforms 
is shown. The four rhythms correspond to those in Figure 4. These figures show that correlation dimension alone is sufficient 
to differentiate between three of these four physiological states: on the left, "post-operative" and "quasi-stable" are indistin-
guishable, the correlation dimension for "normal" is bigger, and "unstable" is larger again We see that these three statistics are 
insufficient to differentiate between the "quasi-stable" and "post-operative" states, moreover, there is considerable overlap 
with the "normal" group.
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Discriminating power of complexity for human pulse waveformsFigure 7
Discriminating power of complexity for human pulse waveforms. The distribution (a binned histogram) of statistic 
values estimated via the ATS method (as described in figure 5) for each of the four distinct physiological waveforms is shown. 
The four rhythms correspond to those in figure 4. These figures show that complexity with 2, 3, and 4, symbols (plots (a), (b), 
and (c), respectively) is sufficient to differentiate between at least three of these four physiological states. The lowest complex-
ity corresponds to "post-operative" state, the next highest to "quasi-stable" followed by "healthy" and finally "unstable". As in 
figure 6 there is considerable overlap between the "normal" and "quasi-stable" samples. However, for complexity with a binary 
partition (panel (a)) the four rhythms do appear to be distinct.
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we confirm this result, and we demonstrate its application
to experimental data.

When the ATS algorithm is applied to generate independ-
ent realisation of a hypothesis test, one is able to construct
a test for non-stationarity. If two data sets do not fit the
same distribution of ATS data then they can not be said to
be from the same deterministic dynamical system. Unfor-
tunately, the converse is not always true and the power of
the test depends on the choice of statistic. The utility of
this technique as a test for stationarity remains uncertain.
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