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Abstract—The way to select the “best” relay for for-
warding the received signal to the destination is critical
in opportunistic relaying. In this paper, we analyze the
asymptotic outage probability of the amplify-and-forward
opportunistic relaying (AF-OR) under a generalized selec-
tion criterion termed as the max-generalized-mean (MGM)
selection criterion. We show that this generalized selection
framework can be regarded as a class of selection crite-
ria achieving full diversity in the AF-OR, encompassing
the conventional selection criteria as special cases. The
asymptotic outage probability can be further minimized
by optimizing the parameters associated with the MGM
selection criterion. It is shown that under this generalized
selection framework, the conventional max-min selection
criterion is optimal for the AF-OR in the sense that it
achieves the minimum outage probability.

I. INTRODUCTION

Cooperative communication is widely regarded as a
promising technique to enhance signal reliability in wire-
less networks by exploiting the spatial diversity provided
by the terminals distributed in space [1] [2] [3]. A simple
and distributed opportunistic relaying approach has been
proposed to select the “best” relay for forwarding the
signal from the source instead of utilizing all relays to
transmit at the same time [4] [5]. It is shown that the
opportunistic relaying can achieve the same diversity-
multiplexing tradeoff as the distributed space-time cod-
ing. Furthermore, the opportunistic relaying adapts itself
to the distributed nature of cooperation communication
with small cooperation overhead as opposed to other
complex relaying protocols. In the opportunistic relay-
ing, two conventional ways of selecting the best relay are
(1) maximize the minimum of the source-relay channel
gain and the relay-destination channel gain (referred to as
the max-min selection), and (2) maximize the harmonic
mean of the two channel gains (referred to as the max-
harmonic-mean (MHM) selection).

The diversity-multiplexing tradeoff has been analyzed
for the opportunistic relaying incorporated with the
amplify-and-forward (AF-OR) and the selection decode-
and-forward (SDF-OR) relaying strategies [6]. The ap-
proximate ergodic capacity and the outage probability
of the AF-OR at a low to medium signal-to-noise-

ratio (SNR) have also been studied recently [7]. Based
on the max-min selection criterion, different relaying
protocols have been designed and compared in terms
of the outage performance [8]. Furthermore, the exact
analytical performance of the outage probability and
the symbol error probability have been derived for the
AF-OR based on the max-min selection criterion [9].
Subsequently, the asymptotic analysis is generalized to
that based on the MHM selection criterion [10] and it is
shown that at a high SNR, the outage performance of the
MHM selection and the max-min selection are identical.

While most of the previous works focus on the
conventional max-min and MHM selection criteria, a
weighted harmonic mean selection has been proposed
to equalize the power consumption of different relays
[11]. The “weighted harmonic mean” idea has inspired
the proposal of a generalized selection criterion, namely
the max-generalized-mean (MGM) selection criterion
in [12], which provides some degrees of freedom for
system behavior optimization. In [12], the performance
of the MGM selection criterion in the SDF-OR has
been analyzed. The results show that the MGM se-
lection criterion outperforms the conventional max-min
selection and MHM selection criteria with the optimized
associated parameters. However, the performance of the
MGM selection criterion for the AF-OR is still unknown
and it is worth studying on its own interest. In this paper,
we try to solve this problem by further investigating
the asymptotic outage performance of the AF-OR based
on the MGM selection criterion. Although the analysis
of the MGM selection criterion for the SDF-OR has
been conducted in [12], the analysis for the AF-OR
is nontrivial considering the fundamental difference in
these two relaying protocols [1] [4]. We show by analysis
and simulation that the conventional max-min selection
criterion is optimal under this generalized selection
framework, while the MGM criterion can be regarded
as a large class of selection criteria achieving the full
diversity.

The rest of the paper is organized as follows. Section
II presents the system model and the MGM criterion
for selecting the best relay. Section III analyzes the
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Fig. 1: The cooperative communication system model
under study.

asymptotic performance of the AF-OR based on the
MGM selection criterion. Section IV derives the optimal
parameters to obtain the lowest outage probability at a
high SNR. Section V shows the simulation and analytical
results. Finally, Section VI concludes the paper.

Throughout the paper, we denote the probability den-
sity function (PDF) of a random variable X by pX(x)
and the cumulative distribution function (CDF) of X by
FX(x).

II. SYSTEM MODEL AND MGM SELECTION

CRITERION

We consider a system with one source denoted by s,
M relays denoted by 1, 2, . . . ,M , and one destination
denoted by d, as illustrated in Fig. 1. Due to the space
constraint, all terminals are assumed to be equipped with
a single antenna. We denote ak,l as the instantaneous
channel gain of the k–l link, where k can be the
source s, relay i, i ∈ {1, 2, . . . ,M} or the best relay
denoted by r; and l can be relay i, the best relay r
or the destination d. Furthermore, the channel gains are
modeled as independent but not necessarily identical
complex Gaussian random variables with zero mean and
variance σ2

k,l. The transmission process is divided into
the following two phases.
First Phase: The source broadcasts its messages to the
M relays and the destination.
Second Phase:

1) The “best relay”, denoted by r ∈ {1, 2, . . . ,M},
is selected in a distributed manner [4] according
to a generalized selection criterion to be defined
shortly.

2) AF-OR: The Relay r amplifies the signal ac-
cording to its power constraint and forwards the
amplified signal to the destination.

3) The destination combines the signal received in the
two phases using maximal ratio combining (MRC)
and decodes the message.

Definition 1 (Generalized Mean [13]): Given two
variables x and y, we define the generalized mean of x
and y as μw,p(x, y) = (wxp + w̄yp)

1
p , where w ∈ [0, 1],

w̄ = 1− w and p is a real number.

We assume that the channel gains remain constant
during the two transmission phases. Recall that for the
ith relay, the source-relay channel gain is defined as as,i
and the relay-destination channel gain is defined as ai,d.
The max-generalized-mean (MGM) selection criterion
aims to select the relay having the largest generalized
mean of |as,i|2 and |ai,d|2, which is formally defined as
follows.

Definition 2: (Max-Generalized-Mean (MGM) Selec-
tion Criterion [12]) For the Relay i, we define the
generalized mean of |as,i|2 and |ai,d|2 as

μwi,p(|as,i|2, |ai,d|2) = (wi|as,i|2p + w̄i|ai,d|2p) 1
p (1)

where wi ∈ [0, 1], w̄i = 1 − wi and p is a real number.
In general, wi can be different for different values of i.
In the MGM selection criterion, the Relay r is selected
as the “best relay” where

r = arg max
i∈{1,2,...,M}

μwi,p(|as,i|2, |ai,d|2).

Note that the max-min and the MHM selection cri-
teria are two special cases of the MGM selection cri-
terion. As p → −∞, r = argmaxi∈{1,2,...,M} min
(|as,i|2, |ai,d|2) and the MGM selection criterion be-
comes the max-min selection criterion [4]. When p =
−1 and wi = 1/2 for all i = 1, 2, . . . ,M , r =

argmaxi∈{1,2,...,M}
2|as,i|2|ai,d|2
|as,i|2+|ai,d|2 and the selection cri-

terion is equivalent to the MHM selection criterion [4].

III. PERFORMANCE ANALYSIS

We study the asymptotic outage probability of the
AF-OR based on the MGM selection criterion with the
parameter p < 0. The outage performance for p ≥ 0 can
be derived following a similar analysis method. Define
SNR as P/N0, where P denotes the transmitting power
of the source and the relays; and N0 denotes the variance
of the Gaussian noise at the receiving terminal (relay or
destination). Also, we denote the transmission rate by R
in bits/s/Hz.

Assuming that the channel-state-information (CSI)
assisted AF protocol [1] is used, the mutual information
of the AF-OR is given by

IAF−OR =

1

2
log

(
1 + SNR|as,d|2 + SNR2|as,r|2|ar,d|2

SNR|as,r|2 + SNR|ar,d|2 + 1

)
.

(2)

As a result, the outage probability of the AF-OR is given
by

P out
AF−OR = Pr {IAF−OR < R}

= Pr

{
|as,d|2 + f(SNR|as,r|2,SNR|ar,d|2)

SNR
< g(SNR)

}
,

(3)

where f(x, y) = xy
x+y+1 and g(SNR) = (22R−1)/SNR.

In the Rayleigh fading model, |as,i|2 and |ai,d|2
are two exponentially distributed random variables with



mean σ2
s,i and σ2

i,d, respectively. Consequently, we can
use the following lemma [12] to derive the asymptotic
outage probability.

Lemma 1: Let V = max
i∈{1,2,...,M}

i�=k

μwi,p

(|as,i|2, |ai,d|2
)
.

When v is very small, the asymptotic CDF of V is given
by

FV (v) =
M∏

i=1
i�=k

(
σ−2
s,iw

− 1
p

i + σ−2
i,d w̄

− 1
p

i

)
vM−1. (4)

Based on Lemma 1, the asymptotic outage probability
of the AF-OR under the MGM selection criterion can be
derived as follows.

Theorem 1: The asymptotic outage probability of the
AF-OR based on the MGM selection criterion with p <
0 is given by

P out
AF−OR,p<0 ∼ σ−2

s,d

M(M + 1)

⎧⎪⎨
⎪⎩

M∑
k=1

⎡
⎢⎣

M∏
i=1
i�=k

(
σ−2
s,iw

− 1
p

i +

σ−2
i,d w̄

− 1
p

i

)](
σ−2
s,kw

− 1−M
p

k + σ−2
k,dw̄

− 1−M
p

k

)}
(g(SNR))M+1.

(5)

Proof: Please refer to Appendix A.
By comparing Theorem 1 and the results derived in

[8], it can be seen that by substituting p = −∞ into (5),
the asymptotic outage probabilities are reduced to those
for the max-min selection criterion. By comparing Theo-
rem 1 and the results derived in [10], it can be observed
that when p = −1 and wi = 1/2 ∀i = 1, 2, . . . ,M , (5)
gives the asymptotic outage probabilities for the MHM
selection criterion. Another interesting point is that by
setting wi = 1/2 ∀i = 1, 2, . . . ,M in (5), the outage
probability of the AF-OR under the MGM selection
criterion becomes identical to that obtained under the
max-min selection criterion regardless of the parameter
p.

Definition 3 (Diversity Gain and Multiplexing Gain):
The diversity gain d(m) is defined as
d(m) = lim

SNR→∞
− logP out(SNR,m)

log SNR where P out denotes

the outage probability and m represents the multiplexing
gain defined as m = lim

SNR→∞
R

SNR .

Corollary 1: Based on Theorem 1, the diversity-
multiplexing tradeoff [14] for the the AF-OR protocol
equals dp<0(m) = (M + 1)(1 − 2m) under the MGM
selection criterion with p < 0 and is plotted in Fig. 2.

Corollary 1 shows that the MGM selection criterion
with p < 0 serves as a large class of selection criteria
achieving the full diversity M + 1.

IV. OPTIMAL PARAMETERS FOR MGM SELECTION

CRITERION

Although the MGM selection criterion with p < 0
can always provide the full diversity as shown in the

m

)(md
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1

Fig. 2: Diversity-multiplexing tradeoff for the max-
generalized-mean (MGM) selection criterion in the AF-
OR.

previous section, the parameters wi ∀i = 1, 2, . . . ,M
can be further optimized to minimize the asymptotic
outage probability.

Theorem 2: Under the MGM selection criterion, the
optimal asymptotic outage probability of the AF-OR is
attained by setting wi = 1/2 ∀i = 1, 2, . . . ,M and is
given by

P out,opt
AF−OR,p<0 =

1

M + 1
σ−2
s,d (g(SNR))M+1

∑
(j1,...,jM )∈J

M∏
i=1

σ−2
(i,ji)

, (6)

where ji ∈ {0, 1} ∀i = 1, 2, . . . ,M ; σ(i,ji) equals
σs,i and σi,d when ji = 0 and 1, respectively; and
J denotes the set of all combinations of (j1, . . . , jM ).
Consequently, |J | = 2M .

Proof: By expanding the asymptotic outage proba-
bility of the AF-OR in (5), we obtain

P out
AF−OR,p<0 ∼ σ−2

s,d

M(M + 1)
(g(SNR))M+1 ×

∑
(j1,··· ,jM )∈J

(
M∏
i=1

σ−2
(i,ji)

w
− 1

p

(i,ji)

)(
M∑
k=1

w
M
p

(k,jk)

)

(a)

≥ 1

M + 1
σ−2
s,d (g(SNR))M+1

∑
(j1,··· ,jM )∈J

M∏
i=1

σ−2
(i,ji)

, (7)

where w(i,ji) equals wi and w̄i when ji = 0 and
1, respectively; and (a) follows from the arithmetic-
geometric-mean inequality, i.e., x1 + x2 + · · · + xM ≥
M(x1x2 · · ·xM )

1
M . It is readily shown that the equality

is attained when w(i,ji) = w(k,jk) ∀i, k = 1, 2, . . . ,M
and ji, jk ∈ {0, 1}, yielding wi = 1/2 ∀i = 1, 2, . . . ,M .

It can be seen that the optimal selection parameters
wi are independent of the channel parameters σ2

s,i and
σ2
i,d. Setting wi = 1/2 ∀i = 1, 2, . . . ,M yields the

minimum outage probability for the AF-OR in the high
SNR region. The minimum outage probability is also
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Fig. 3: Comparison of the simulated (sim) and the ana-
lytical asymptotic (asym) outage probabilities of the AF-
OR under the max-generalized-mean (MGM) selection
criterion when p < 0. Number of relays M = 4.

independent of the parameter p, as shown in (6). More-
over, the optimized asymptotic outage probability based
on the MGM selection criterion is identical to that based
on the max-min selection criterion [8] [9] and that based
on the MHM selection criterion [10].

V. SIMULATION RESULTS

In this section, we show the simulated and the analyt-
ical outage performance of the AF-OR under the MGM
selection criterion for p < 0. In our simulations, we
assume that the number of relays is M = 4 and the trans-
mission rate is R = 1 (bit/s/Hz). The channel parameters
being used are as follows: σ2

s,d = 0.025; σ2
s,1 = 1.25σ2

s,d

σ2
s,2 = 1.5σ2

s,d σ2
s,3 = 2.5σ2

s,d and σ2
s,4 = 2σ2

s,d;
σ2
1,d = 2.5σ2

s,d σ2
2,d = 2σ2

s,d σ2
3,d = 1.25σ2

s,d and
σ2
4,d = 1.5σ2

s,d. Also, we use wi = w ∀i = 1, . . . ,M .
Figure 3 shows the simulated outage probability of

the AF-OR together with the analytical results derived
in (5). We can observe that the simulated results are
close to the analytical ones in the high SNR region. The
results indicate that the asymptotic expressions derived
in (5) can accurately predict the outage performance of
the AF-OR in the high SNR region. In Fig. 4, we present
the simulated outage performance of the AF-OR under
the MGM selection criterion for different values of p and
w. It is observed that the MGM selection criterion can
always achieve the full diversity.

In Fig. 5, we examine the outage performance of the
AF-OR for different w with the SNR fixed at 30 dB. The
results in Fig. 5 have illustrated that the lowest outage
probability for the AF-OR is achieved by setting w =
1/2, which is in accord with Theorem 2. Moreover, the
minimum outage probabilities for different p are almost
identical, which again matches the conclusion drawn in
Theorem 2.
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Fig. 4: Simulated outage probability of the AF-OR under
the max-generalized-mean (MGM) selection criterion
when p < 0. Number of relays M = 4.
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Fig. 5: Simulated outage probability of the AF-OR under
the max-generalized-mean (MGM) selection criterion
when SNR = 30 dB. Number of relays M = 4.

VI. CONCLUSION

The max-generalized-mean (MGM) selection criterion
characterized by two parameters p and wi is applied to
the opportunistic relaying (OR) incorporated with the
amplify-and-forward (AF) relaying mode. For p < 0, the
asymptotic outage probability of the AF-OR is derived
analytically and it is shown that the full diversity can
be achieved. By optimizing wi for each relay under this
generalized selection framework, the outage performance
of the AF-OR converges to that based on the max-
min selection at a high SNR. An interesting question
is: How will the MGM selection criterion together with
the parameters p and wi affect the outage probability
in the low and medium SNR regions? This issue will
be investigated and the results will be reported in future
publications.

APPENDIX

PROOF OF THEOREM 1

Claim 1: Suppose that we are given p < 0, a function
g(t) and 0 < ε < 1. When 0 ≤ x ≤ g(t) and y ≥



(
w
w̄

) 1
p [(1 − ε)p − 1]

1
p g(t), we have μw,p(x, y) ≥ (1 −

ε)w
1
px. When 0 ≤ y ≤ g(t) and x ≥ (

w̄
w

) 1
p [(1 − ε)p −

1]
1
p g(t), we will have μw,p(x, y) ≥ (1 − ε)w̄

1
p y.

Proof: We show the proof of the first part of the
Claim and the second part can be proved similarly. To
prove μw,p(x, y) ≥ (1− ε)w

1
px is the same as proving

y ≥
(w
w̄

) 1
p

[(1− ε)p − 1]
1
px. (8)

Obviously, when y ≥ (
w
w̄

) 1
p [(1− ε)p− 1]

1
p g(t) and 0 ≤

x ≤ g(t), the inequality (8) must hold.

Lemma 2: Given a function g(t) that is con-
tinuous at t = t0 and satisfies g(t) → 0
as t → t0, we have Pr

{|as,r|2 < g(t)
} ∼

1
M

M∑

k=1

M∏

i=1
i�=k

(σ−2
s,i w

− 1
p

i + σ−2
i,d w̄

− 1
p

i )σ−2
s,kw

− 1−M
p

k (g(t))
M

and Pr
{|ar,d|2 < g(t)

} ∼ 1
M

M∑

k=1

M∏

i=1
i�=k

(σ−2
s,i w

− 1
p

i +

σ−2
i,d w̄

− 1
p

i )σ−2
k,dw̄

− 1−M
p

k (g(t))
M as t → t0.

Proof: Define Pk as the probability of the
event {(r = k) ∩ (|as,k|2 < g(t)

)} and let V =
max

i∈{1,2,...,M}
i�=k

μwi,p

(|as,i|2, |ai,d|2
)
. Hence Pk is given by

Pk = Pr
{|as,k|2 < g(t), V ≤ μwk,p(|as,k|2, |ak,d|2)

}

and Pr
{|as,r|2 < g(t)

}
=

M∑

k=1

Pk. For a positive and

very small g(t), the upper-bound of Pk can be calculated
as

Pk ≤ Pr

{
|as,k|2 < g(t), V ≤ w

1
p

k |as,k|2
}

(9)

=

∫ g(t)

0

M∏

i=1
i�=k

(
σ−2
s,i w

− 1
p

i + σ−2
i,d w̄

− 1
p

i

)
w

M−1
p

k

xM−1σ−2
s,ke

−σ−2
s,k

xdx (10)

∼ 1

M

M∏

i=1
i�=k

(
σ−2
s,i w

− 1
p

i + σ−2
i,d w̄

− 1
p

i

)
σ−2
s,kw

M−1
p

k (g(t))
M

(11)

where the inequality (9) is due to

μwk,p(|as,k|2, |ak,d|2) ≤ w
1
p

k |as,k|2 and (11) follows
from Corollary 1 for a very small g(t).

The lower-bound of Pk is derived as

Pk ≥ Pr
{|as,k|2 < g(t), V ≤ μwk,p(|as,k|2, |ak,d|2),

|ak,d|2 ≥
(w
w̄

) 1
p
[(1− ε)p − 1]

1
p g(t)

}
(12)

≥ Pr
{
|as,k|2 < g(t), V ≤ (1− ε)w

1
p |as,k|2,

|ak,d|2 ≥
(w
w̄

) 1
p
[(1− ε)p − 1]

1
p g(t)

}
(13)

where (13) is due to Claim 1. Following the same
reasoning in deriving (11), we can obtain

lim
g(t)→0

Pk

(g(t))M
≥

1

M

M∏

i=1
i�=k

(
σ−2
s,iw

− 1
p

i + σ−2
i,d w̄

− 1
p

i

)
σ−2
s,k(1− ε)M−1w

M−1
p

k .

(14)

Since (14) holds for all 0 < ε < 1, by taking ε → 0, we
can prove that the asymptotic lower-bound of Pk is the
same as the upper-bound. Hence,

Pr
{|as,r|2 < g(t)

}
=

M∑

k=1

Pk

∼ 1

M

M∑

k=1

M∏

i=1
i�=k

(σ−2
s,iw

− 1
p

i + σ−2
i,d w̄

− 1
p

i )σ−2
s,kw

− 1−M
p

k (g(t))
M

.

(15)

The asymptotic expression of Pr
{|ar,d|2 < g(t)

}
can

also be derived in an analogous way.

Lemma 3: Given a function g(t) that is continu-
ous at t = t0 and satisfies g(t) → 0 as t →
t0, if we have Pr

{|as,r|2 < g(t)
} ∼ α (g(t))

M and
Pr

{|ar,d|2 < g(t)
} ∼ β (g(t))

M as t → t0, then
Pr {rt < g(t)} ∼ (α + β) (g(t))

M as t → t0, where
rt =

1
t f(t|as,r|2, t|ar,d|2).

Proof: Since
{|as,r|2 < g(t) ∪ |ar,d|2 < g(t)

}

implies that {rt < g(t)}, we have Pr {rt < g(t)} ≥
Pr

{|as,r|2 < g(t) ∪ |ar,d|2 < g(t)
}

=
Pr

{|as,r|2 < g(t)
}

+ Pr
{|ar,d|2 < g(t)

} −
2Pr

{|as,r|2 < g(t)∩ |ar,d|2 < g(t)
}

. Note that
Pr

{|as,r|2 < g(t)
}

+ Pr
{|ar,d|2 < g(t)

} ∼
(α + β) (g(t))

M and that |as,r|2 and |as,r|2 are not in-
dependent. We can use the method in deriving Lemma 2
to calculate Pr

{|as,r|2 < g(t) ∩ |ar,d|2 < g(t)
}

.

Let V = max
i∈{1,2,...,M}

i�=k

μwi,p

(|as,i|2, |ai,d|2
)
. There-

fore, we have Pr
{|as,r|2 < g(t) ∩ |ar,d|2 < g(t)

}
=∑

k

Pr
{|as,k|2 < g(t), |ar,k|2 < g(t), V ≤ μwk,p(|as,k|2,

|ak,d|2)
}

. It can be obtained that Pr
{|as,r|2 < g(t)

∩|ar,d|2 < g(t)
}

scales in the order of (g(t))M+1.
Hence we have

lim
t→t0

Pr {rt < g(t)}
(g(t))

M
≥ α+ β. (16)

Next we derive an upper bound of Pr {rt < g(t)}.
Given any γ2 > γ1 > 1, Pr {rt < g(t)} can
be written as Pr {rt < g(t)} = I1 + I2 + I3,
where I1 = Pr

{
rt < g(t), |ar,d|2 < γ1g(t)

}
, I2 =

Pr
{
rt < g(t), γ1g(t) ≤ |ar,d|2 < γ2g(t)

}
and I3 =

Pr
{
rt < g(t), |ar,d|2 ≥ γ2g(t)

}
.



The first term I1 can be upper-bounded as I1 ≤
Pr

{|ar,d|2 < γ1g(t)
} ∼ β (γ1g(t))

M . The second term
I2 can be upper-bounded as

I2 ≤ Pr

{
|as,r|2 <

g(t) + 1/tγ1
1− 1/γ1

, γ1g(t) ≤ |ar,d|2 < γ2g(t)

}

=

M∑
k=1

Pr

{
|as,k|2 <

g(t) + 1/tγ1
1− 1/γ1

,

γ1g(t) ≤ |ak,d|2 < γ2g(t), V ≤ μwk,p(|as,k|2, |ak,d|2)
}
(17)

∼ (g(t))M+1, (18)

where the first inequality is due to the fact that rt >
t|as,r|2γ1g(t)

t|as,r|2+tγ1g(t)+1 if |ar,d|2 ≥ γ1g(t). The third term I3
is upper-bounded as

I3 ≤ Pr

{
|as,r|2 <

g(t) + 1/tγ2
1− 1/γ2

, |ar,d|2 ≥ γ2g(t)

}

=
M∑

k=1

Pr

{
|as,k|2 <

g(t) + 1/tγ2
1− 1/γ2

, |ak,d|2 ≥ γ2g(t),

V ≤ μwk,p(|as,k|2, |ak,d|2)
}

≤
M∑

k=1

Pr

{
|as,k|2 <

g(t) + 1/tγ2
1− 1/γ2

, |ak,d|2 ≥ γ2g(t),

V ≤ w
1
p

k |as,k|2
}

∼ α

(
g(t) + 1/tγ2
1− 1/γ2

)M

. (19)

Combining the upper bounds derived for I1, I2 and I3,
we obtain

lim
t→t0

Pr {rt < g(t)}
(g(t))

M
≤ β (γ1)

M
+ α

(
1

1− 1/γ2

)M

.

(20)
Since the inequality holds for any 1 < γ1 < γ2, the
upper bound converges to the lower bound derived in
(16) as γ1 → 1 and γ2 → ∞, i.e., Pr {rt < g(t)} ∼
(α+ β) (g(t))M .

Making use of Lemma 3, it can be shown that

lim
SNR→∞

Pr {rSNR < g(SNR)}
(g(SNR))M

=

1

M

⎧⎪⎨
⎪⎩

M∑
k=1

M∏
i=1
i�=k

(
σ−2
s,iw

− 1
p

i + σ−2
i,d w̄

− 1
p

i

)(
σ−2
s,kw

− 1−M
p

k +

σ−2
k,dw̄

− 1−M
p

k

)}
, (21)

where rSNR = 1
SNRf(SNR|as,r|2, SNR|ar,d|2). As a

result, when p < 0, the outage probability of the AF-

OR in (3) at a high SNR is given by

P out
AF−OR,p<0 =∫ g(SNR)

0

Pr {rSNR < g(SNR)− u} σ−2
s,de

−σ−2
s,d

u
du

∼ σ−2
s,d

M(M + 1)

⎧⎪⎨
⎪⎩

M∑
k=1

⎡
⎢⎣

M∏
i=1
i�=k

(
σ−2
s,iw

− 1
p

i + σ−2
i,d w̄

− 1
p

i

)⎤⎥⎦×

(
σ−2
s,kw

− 1−M
p

k + σ−2
k,dw̄

− 1−M
p

k

)}
(g(SNR))M+1. (22)
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