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A numerical simulation using the multiple relaxation time lattice-Boltzmann method is carried out for the
purpose of investigating fluid flow over two vibrating side-by-side circular cylinders and the effect of moving
the cylinders on the wake characteristics. As a benchmark problem to assess the validity and efficiency of the
model, the calculation was carried out at Reynolds number of 200 and four pitch ratios �T /D, where D is the
cylinder diameter while T is the center-to-center spacing between the two cylinders� of 1.2, 1.6, 2.2, and 3.2,
respectively. The calculated results indicate that the vibration of the cylinder pair has significant influence on
the wake patterns. When the amplitude of vibration is big enough, the vibration locks up the vortex shedding
and formation. For each cylinder vibration frequency, there exists a threshold of vibration amplitude for the
lock-up phenomenon. With the vibration frequency is increased, the threshold of vibration amplitude decreases.
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I. INTRODUCTION

Complex wakes behind a single or multiple circular cyl-
inders have attracted a great deal of research experimentally
and, more recently, numerically, due to their academic and
engineering importance �1–5�. So far, flow over a single cir-
cular cylinder has been used just as a building-block problem
for understanding the vortex dynamics and controlling vortex
shedding in a bluff-body wake. Therefore, much research has
been performed on single-cylinder flow. However, as re-
ported by Jester and Kallinderis �6�, many engineering struc-
tures involve multiple bluff bodies in proximity. Depending
on the configuration of these bodies relative to the flow, a
wide variety of interference phenomena can be observed.
Even the simplest case of two identical circular cylinders
presents a rich spectrum of different flow features.

The present study numerically investigates one of the sim-
plest complex-geometry flows, that is, flow over two identi-
cal circular cylinders in a side-by-side arrangement, which is
found in many applications such as tube bundles in heat
exchangers, fuel and control rods in nuclear reactors, piers
and bridge pilings, oil and gas pipelines, cooling-tower ar-
rays, suspension bridges, and high-rise buildings. The flow
field of two finite cylinders is strongly influenced by the
cylinders’ pitch ratios �T /D, where D is the cylinder diam-
eter while T is the center-to-center spacing between the two
cylinders�. When two finite circular cylinders are arranged in
a staggered configuration, the interaction between the down-
wash flows from the two cylinders, along with the strong
flow interference happening at the bases of the two cylinders,
makes the flow pattern even more complex and challenging
to study. Most of the previous work on the flow around two
staggered finite circular cylinder has been focused on mea-
surements of the mean pressure distributions and aerody-
namic forces.

Numerous experimental studies have been performed on
the flow around two side-by-side cylinders set normal to the

free stream. Spivack �7� investigated the predominant fre-
quencies in the flow field behind a pair of cylinders using a
hot wire technique over a Reynolds number range of 1.5
�104–9.3�104, and discovered three distinct regimes of
flow with different spacing ratios T /D. Bearman and Wad-
cock �8� suggested that the repulsive forces acting between
two circular cylinders originated from a rotation of the re-
sultant force created by the presence of the neighboring cyl-
inder. They also found that the asymmetry was due to a
near-wake phenomenon and not to the position of the bound-
ary layer separation. On the other hand, Williamson �9�
found the existence of harmonic vortex-shedding modes be-
hind a pair of cylinders, and observed that the shedding fre-
quency on one side of the wake was a multiple of that on the
other. Sumner et al. �10� studied the fluid-structure interac-
tion phenomenon in a water tunnel. They found that the re-
ported bistable nature of the biased flow was not detected in
the water tunnel experiments. Consequently, they questioned
whether this was a coincidence or whether there was a
deeper underlying reason.

Compared to experimental studies, there have been rela-
tively few numerical investigations of the flow around two
circular cylinders. Stansby �11� used an essentially inviscid
discrete-vortex method to investigate two side-by-side cylin-
ders in a cross flow and was able to reproduce most of the
gross wake features observed experimentally. Chang and
Song �12� simulated the flow around two side-by-side circu-
lar cylinders at Re=100 for T /D=1.7 and 3.0. They used a
blended technique, which was made up of a finite-element
method for the vicinity of the circular cylinders and a finite-
difference method for the rest of the flow field, to tackle the
problem. Flow visualization and force coefficients were
shown to agree well with experimental data. Mittal et al. �13�
used a stabilized finite element method to simulate three con-
figurations at Re=100 and 1000. Again, good agreement
with measured results was obtained. Furthermore, their re-
sults showed that Re=100 flow was sufficient to reproduce
flow features observed in experimental results gathered at a
much higher Reynolds number. Schulz and Kallinderis �14�*mmyliu@polyu.edu.hk; ysyou@zjnu.cn
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used a finite-volume method to compute the flow and struc-
tural response for a pair cylinders at Re=110. Their studies
proved that the vortices obtained from two parallel circular
cylinders could interfere with each other and generate a bi-
ased flow pattern which affects the flow-induced forces;
moreover, this biased flow pattern switches intermittently
from being directed towards one cylinder to the other, and
the flow pattern is termed bistable. Tezduyar et al. �15� used
a finite-element formulation with the streamline-upwind
Petrov-Galerkin method to investigate a similar problem
with T /D=1.5 and Re=100. On the other hand, Slaouti and
Stansby �16� studied the flow around two side-by-side circu-
lar cylinders using the random-vortex method. Their calcula-
tions were carried out at Re=200 and several T /D ratios.
Most of the numerical investigations considered rigid cylin-
ders only, where the cylinders are assumed to have infinite
structural stiffness. Consequently, the interactions between
the fluid and the elastic structures were not investigated.

Actually, the wake patterns behind two side-by-side cir-
cular cylinder are approximately categorized into three pri-
mary flow regimes �17�. The first is single body �T /D
�1.2�, similar to the tandem case, when the cylinders are
placed side-by-side in extremely close proximity, they be-
have as a single body with a single vortex street. The second
is biased gap �1.2�T /D�2.0�, where for intermediate spac-
ings, the flow in the gap between the cylinders is deflected
toward one of the cylinders. Thus, two distinctive near wakes
are formed, one wide and one narrow. The particular direc-
tion of the bias will intermittently change, indicating another
bistable state. The last is coupled vortex streets �2.0�T /D
�4.0�. In this region, two distinct vortex streets are formed.
These vortex streets are usually coupled in a symmetric man-
ner, i.e., vortices are alternatively shed on the gap side and
then the outside of the cylinders.

To our knowledge, the physical nature of the transition to
two-dimensional �2D� wake is one of the most basic and
revealing cases in the general subject of circular cylinder-
body flow. On the other hand, simulations of the correspond-
ing 2D flow around a long slender cylinder and the associ-
ated flow-induced forces have been amply carried out �18�.
Most of the numerical simulations rely on a continuum
model described by the Navier-Stokes equations. These
simulations provide valuable time series for the mean and
fluctuating forces and for the velocity field in the wake flow.
Most of the 3D numerical studies invoked periodic boundary
conditions at both ends of the cylinder, thus tacitly assuming
the spanwise variations to have a certain period that is speci-
fied a priori. These studies could provide an approximate
model for the midspan wake flow, but fail to take the end
effects into account. Only very few calculations have at-
tempted to consider the effect of the end walls on the wake
flow. Direct numerical simulation employing a spectral
method was used to calculate the wake flow and the unsteady
forces acting on a stationary rigid cylinder assuming periodic
boundary conditions �19�. Again, only results at midspan
were given and no spanwise variation of the unsteady forces
was reported. In all these calculations, the flow-induced
forces were tacitly assumed to be stationary after the tran-
sient period has elapsed. Therefore, these data are inappro-
priate to use to carry out an investigation of wake effects on

the behavior of the flow-induced forces, if any.
In most cases presented in the literature, the Reynolds

number is large and the flows are transitional or turbulent.
Because of this, many of the flow features have a complex
structural nature. These characteristics make numerical
analysis difficult, even using direct numerical simulation of
the governing Navier-Stokes equations �20�. Therefore, it is
necessary to develop powerful numerical methods to treat
such problems. Recently, a different numerical simulation
method, the lattice-Boltzmann method �LBM� has been used
frequently �21–24� because of its advantages of easy pro-
gramming and good parallelism to directly solve various
fluid problems. In particular, many LBM simulations were
done on the problem of cylinders in a cross flow
�5,14,25–28�. As described earlier in these papers, all the
work employed the Bhatnagar-Gross-Krook collision opera-
tor for which every variable relaxes toward equilibrium with
the same time scale �; this is termed the single relaxation
time �SRT� method. But Luo and Lallemand found that the
SRT is not stable enough in some complicated cases �23�,
and they proposed using a more complicated collision opera-
tor for which each variable relaxes toward equilibrium with
different time scales �i. This is the multiple relaxation time
�MRT� collision operator. Recently, our team carried out sev-
eral studies on cylinder wakes �29–33�. In these studies, the
cylinders were rigid and the flow was three dimensional.
Now we extend our study to the effect of a moving boundary
on cylinder wakes using MRTLBM.

The main objective of the present paper is to investigate
the two-dimensional wake interference behind a vibrating
side-by-side cylinder pair in a cross flow. The MRTLBM and
two-dimensional nine-velocity �D2Q9� model are selected.
The parallel cylinder pair vibrate periodically and synchro-
nously, and a moving boundary condition is used. The cal-
culation is carried out at T /D=1.2,1.6,2.2,3.2, respectively,
and Re=200.

The rest of this paper is organized as follows. In Sec. II,
the numerical model and method are briefly described, and in
Sec. III, the treatment of the moving boundary of the cylin-
ders is demonstrated. Section IV shows numerical results and
the analysis, and then come the conclusions in Sec. V.

II. NUMERICAL METHOD

A. Problem description

A schematic view is illustrated in Fig. 1. The two side-by-
side circular cylinders, bounded by a rectangular computa-
tional domain in which the width is H /D=16 and the length
is L /D=24–40 are exposed to a cross flow, and the two
cylinders are vibrating along the x axis synchronously and
periodically at the amplitude A /D=0.2–1.0 and the fre-
quency 0.2–0.6. The two circular cylinders are identical, with
diameter D. Incompressible flow with constant fluid density
� and dynamic viscosity � is assumed. A Cartesian coordi-
nate system �x ,y�, where the x axis is aligned with the
streamwise direction, is used to describe the flow. All physi-
cal parameters are normalized by D, �, �, and U�. The nor-
malized flow-induced force coefficient acting on the cylinder
axis is decomposed into a drag coefficient Cd�t� and a lift
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coefficient Cl�t�, where the nondimensional time is defined
as t= t̃U� /D and the nondimensional coordinates are denoted
by capital letters. Here, the tilde is used to denote dimen-
sional quantities. A lattice-Boltzmann method with multiple
relaxation times is used to solve the flow field numerically.
In the simulation, the boundary conditions are given as fol-
lows: at the inlet, the velocity is uniform, i.e., u=0.1; at the
outlet, Neumann conditions are used; on the surface of the
moving cylinders, the no-slip condition is applied and the
bounce-back boundary condition and the interpolation are
implemented. In the flow field, we tested two different lattice
cases: one has 24 lattices in one diameter and the other 32.
The results for the mean values of the drag and lift on the
cylinder showed that the discrepancies of these mean forces
between this two settings are below 5%. So the setting of 24
lattices in one diameter is accurate enough.

B. Multiple relaxation time lattice Boltzmann method

A D2Q9 model is adopted in the calculation. The Boltz-
mann equation is formulated based on the one-body distribu-
tion function f�x ,e , t�, which is the density of molecules at
position x and speed e at time t, so macroscopic variables
like the fluid density � and velocity u are expressed as mo-
ments of a discrete set of f�x ,e , t�,

� = � f i, �u = � ei f i, �1�

where ei is the particle speed, and f can be written in its
nondimensional form as

�f

�t
+ e · �f = G�f , f� , �2�

where the terms on the left side of Eq. �2� describe the free
streaming of molecules in space, and the term G�f , f� on the
right side of Eq. �2� represents a complicated integral opera-
tor in the velocity field expressing intermolecular interac-
tions or collisions. In the MRT method, the collision operator
G�f , f� makes variables relax toward equilibria with different
time scales. The MRT model �34� is implemented in this
study. The lattice Boltzmann equation �LBE� can be written
as

f�ri + e	
t,t + 
t� = f�ri,t� − S��f�ri,t�� − feq�ri,t�� , �3�

where

f�ri,t� � „f0�ri,t�, f1�ri,t�, . . . , fN�ri,t�…T, �4�

f i
eq = wi�	1 + 3ei · u +

9

2
�ei · u�2 −

3

2
u2
 . �5�

With MRTs, Eq. �3� becomes �23,34�

f�ri + e	
t,t + 
t� − f�ri,t� = − M−1Ŝ�m�ri,t� − meq�ri,t�� ,

�6�

where m is the moment, meq is the equilibrium value of the
moment, M is the transformation matrix, m=Mf , and f
=M−1m. Following the method of Ginzburg �35�, the trans-
formation matrix M of the incompressible MRTLBM is
obtained:

M = ��p�, �e�, �e2�, �ux�, �qx�, �uy�, �qy�, �pxx�, �pxy��T. �7�

The corresponding equilibrium distribution functions in mo-
ment space, meq, are given by

m = ��0,eeq,e2eq,ux,qx
eq,uy,qy,pxx

eq,pxy
eq�T. �8�

The collision matrix Ŝ=M−1SM is

Ŝ = diag�0,s1,s2,0,s4,0,s6,s7,s8� , �9�

where s1=1.63, s2=1.14, s4=s6=1.92, and

� =
1

3
	 1

s7
−

1

2

 =

1

3
	 1

s8
−

1

2

 , �10�

i.e., s7=s8=1 / �3�+0.5�, where � is the viscosity determined
by the Reynolds number.

In the works of Lallemand and Luo �23� and d’Humières
et al. �36�, the dispersion, dissipation, isotropy, Galilean in-
variance, and stability of the LBM are discussed thoroughly.
With the optimized parameters given in those papers, the
hydrodynamics regime, impressibility, and stability can be
ensured when u and � vary within specified limits. In our
simulation, u=0.1 and �=4�10−3, which satisfy this re-
quirement.

III. BOUNDARY CONDITIONS

For the LBM, there have been several models to tackle
the moving boundary problem, particularly the treatment for
a curved boundary. The treatment for a curved boundary is a
combination of the bounceback scheme and interpolations.
Lallemand and Luo �37� made a simple modification to this
treatment, which is illustrated in Fig. 2.

In this study, we follow the method of Lallemand and Luo
�37�. When the cylinders are vibrating, the following inter-

polation formulas �where the notations f̂	 and f	 denote the
postcollision distribution functions before and after advec-
tion� are used:

FIG. 1. Schematic view of the problem: T is the center-to-center
distance of two cylinders; D is the diameter; H and L are the width
and length of the flow field, respectively; A is the vibration ampli-
tude of the two cylinders.
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f 	̄�r j,t� = q�1 + 2q� f̂	�r j,t� + �1 − 4q2� f̂	�r j�,t�

+ q�1 − 2q� f̂	�r j�,t� + 3w	�e	 · uw�, q � 1/2,

�11�

f 	̄�r j,t� =
1

q�2q + 1�
f̂	�r j,t� +

�2q − 1�
q

f 	̄�r j�,t�

−
2q − 1

2q + 1
f 	̄�r j�,t� +

3w	

q�2q + 1�
�e	 · uw�, q � 1/2,

�12�

where f 	̄ is the distribution function of the velocity
e	̄�−e	, and uw is the velocity of the moving wall at the
point rw in Fig. 2. The term in proportion to w	�e	 ·uw� is the
momentum exerted on the fluid by the moving wall of ve-
locity uw. Suppose a forcing term F is introduced due to the
fluid-wall interaction, then the mass conservation �	F	=0
and the momentum conservation �	e	F	=�0uw immediately
lead to F	=3w	�e	 ·uw� �38,39�.

In practice, by combining collision and advection into one
step, the actual formulas used in simulations are

f 	̄�r j,t� = q�1 + 2q�f	�r j + e	
t,t� + �1 − 4q2�f	�r j,t�

− q�1 − 2q�f	�r j − e	
t,t� + 3w	�e	 · uw�, q �
1

2
,

�13�

f 	̄�r j,t� =
1

q�2q + 1�
f	�r j + e	
t,t� +

�2q − 1�
q

f 	̄�r j − e	
t,t�

−
2q − 1

2q + 1
f 	̄�r j − 2e	
t,t� +

3w	

q�2q + 1�
�e	 · uw� ,

q �
1

2
. �14�

The above formulas are implemented as follows.
Suppose the vibrating velocity of cylinder is uw, as shown

in Fig. 2; when a grid point s moves from the nonfluid region
into the fluid region, the unknown distribution functions
f	�rs� on this node have to be specified. We use a second-
order extrapolation to compute the unknown distribution
functions along the direction of a chosen discrete velocity e	

which maximizes the quantity n̂ ·e	, where n̂ is the out-
normal vector of the wall at the point through which the node

moves to the fluid region. For example, the unknown distri-
bution functions f	�rs� at node s as depicted in Fig. 2 is
given by the following extrapolation formula:

f	�rs� = 3f	�r j� − 3f	�r j�� + f	�r j� + e	� . �15�

Obviously, the method used to compute values of the un-
known distribution functions �on the nodes which move from
the nonfluid to the fluid region� is not unique. One could
choose any similar method and get similar results.

To study the induced force on the cylinders, we have to
get the momentum transfer occurring on the boundaries of
cylinders. The momentum transfer � along the direction of
e	 is equal to

�	 = e	�f	�rw,t� + f	̄�rw,t�� . �16�

The above formula gives the momentum flux through any
boundary normal to e	 located at boundary point rw or rw� in
Fig. 2. In the simulations, we use the above formula to evalu-
ate momentum exchange in the interaction between the fluid
and the solid bodies.

IV. RESULTS AND DISCUSSION

The computational code for the three-dimensional case
was validated against measurements and other calculations
elsewhere �33�; the interested reader can refer to that paper.
To further validate the credibility of our code in 2D domain,
we compare the mean force on two side-by-side rigid cylin-
ders in a cross flow at Re=200 and T /D=1.5,2.0,3.0,4.0
with those of Meneghini et al. �4�. The current calculated
mean drag and mean lift and the data of Meneghini et al. are
tabulated in Table I. The agreement is good, and the largest
discrepancy is about 4%.

Having validated the MRTLBM for a 2D rigid cylinder
calculation, the next step is to assess the effect of cylinder
vibrations on the wake flow and, in turn, the influences of the
wake flow on the flow-induced forces. Here, how cylinder

FIG. 2. Illustration of boundary scheme. Empty circles are the
fluid nodes, and empty squares are the solid nodes. Dark disks are
the boundary-located nodes. The thin solid lines are the grid lines,
the dashed lines are the boundary locations situated arbitrarily be-
tween two grids, and the boundary moves from w at time t to w�
after a time step, so node s becomes a fluid instead of a solid node.

TABLE I. Comparison of the mean drag and lift coefficients
between Meneghini et al. �4� and present study.

T /D C̄d1 C̄d2 C̄l1 C̄l2

Meneghini et al. �4�
1.5D 1.32 1.32 −0.40 0.40

2D 1.42 1.42 −0.22 0.22

3D 1.41 1.41 −0.10 0.10

4D 1.34 1.34 −0.05 0.05

Present study

1.5D 1.31 1.31 −0.39 0.38

2D 1.43 1.43 −0.23 0.23

3D 1.41 1.41 −0.09 0.09

4D 1.32 1.32 −0.05 0.05
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vibrations would modify this effect is examined in detail by
comparing the rigid and vibrating cases. The calculations
were carried out for both rigid and vibrating cases at T /D
=1.2, 1.6, 2.2, and 3.2, respectively. Since the vortex shed-
ding frequency of these cylinder arrangements is about 0.1
and 0.2, respectively, we choose the representative cylinder
vibration frequency as 0.4 which is the harmonic of the Stro-
hal number and could produce the vortex lock-up phenom-

enon easily �40�. Later, we will also examine the effect of
vibration frequency on the vortex lock-up phenomenon with
vibration frequencies of 0.2–0.6. The vibration amplitude is
set as A /D=0.2, 0.3, 0.4, 0.5, and 1.0, respectively.

Figure 3 shows the vortex patterns of rigid cylinders at
different spacing ratios. Vortex formation shows that the cyl-
inder pair at T /D=1.2 behaves like a single bluff body; in
one cycle two vortices are released, one from the bottom and

FIG. 4. �Color� Vibrating cylinder pair vortex formation at T /D=1.2 and different vibration amplitudes.

FIG. 3. �Color� Rigid cylinder pair vortex formation at Re=200: T /D=1.2, 1.6, 2.2, and 3.2. The green bottom denotes the flow field; the
red denote clockwise and blue counterclockwise vortices, in this and the following figures.
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the other from the top, and they are aligned behind the cyl-
inder pair. For T /D=1.6 and 2.2, the predominant wake pat-
tern observed is the deflected wake pattern. According to
Williamson �9�, for Re=200, there are two types of basic
behavior in the vortex dynamics of the combined wake for a
biased flow pattern. In the first case, vortices formed along-

side the biased gap flow are squeezed and amalgamated into
dominant vortices on the outside of the two-cylinder con-
figuration, the side to which the flow is biased. This amal-
gamation process eventually produces a single vortex street
in the combined wake. In the present calculation, the figure
of T /D=1.6 exactly shows the simulation of this phenom-

FIG. 5. �Color� Vibrating cylinder pair vortex formation at T /D=1.6 and different vibration amplitudes.

FIG. 6. �Color� Vibrating cylinder pair vortex formation at T /D=2.2 and different vibration amplitudes.
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enon. In the second case of Williamson, the combined wake
of the two cylinders is marked by pairs of vortices down-
stream of the cylinder with a narrow near-wake region, and
single larger vortices downstream of the cylinder with a
wider near-wake region, on the opposite side. In this case,
the gap vortices are amalgamated into the side of the wake
where the pairs form. For T /D=3.2, the interaction of the
two cylinders is weak, and the vortex shedding from the two
cylinders is antiphase. This leads to the formation of a single,
binary vortex street in the combined wake of the two cylin-
ders.

Figure 4 shows the effect of vibration amplitude on vortex
formation at vibration frequency fv=0.4 for T /D=1.2. To
properly count the vortex formation behind the cylinder pair,
the downstream domain is extended to 40D. For vibration
amplitude A /D=0.2, the vortex shedding pattern behind the
vibrating cylinder pair is slightly modified; the spacing be-
tween the vortices is no longer equal but exhibits alternately
a long short pattern due to the streamwise motion of the
cylinder pair. Moreover, the vortex street seems to oscillate
in the transverse direction. At A /D=0.3, the cylinder vibra-
tion speed is faster, and this vibration seems to lock up the
vortex formation. In one cycle, two small vortices are re-
leased almost simultaneously from both top and bottom of
the pair; these two vortices superpose on the vortices re-
leased in the previous cycle to form two parallel connected
vortex streets. After these two parallel connected vortex
streets, a larger alternative vortex is formed that exhibits the
typical Karmon vortex street. Also, the alternately long-short

pattern is observed due to the streamwise motion of the cyl-
inder pair. With increasing vibration amplitude �A /D=0.4
and 0.5�, the parallel connected vortex street becomes longer,
the spacing between the vortices is uniform, and the long-
short pattern disappears.

Figure 5 shows the vortex formation at fv=0.4 for T /D
=1.6 with different vibration amplitude. Again, the down-
stream domain is extended to 40D, which allows the vortices
to develop thoroughly. At A /D=0.2 and 0.3, there is no ma-
jor change in the wake behind the vibrating cylinder pair
compared to the rigid case. When the vibration amplitude is
increased to A /D=0.4, and 0.5, the vibration regulates the
vortex shedding, four parallel connected vortex streets are
formed, and then these small vortices evolve into a Karmon
vortex street. With larger vibration amplitude, the four par-
allel connected vortex streets are longer, and the vortex for-
mation is more regular.

Figure 6 shows the vortex formation at fv=0.4 for T /D
=2.2 with different vibration amplitudes. At A /D=0.2, there
is almost no discernible change in the vortex formation.
When the amplitude is increased to A /D=0.3–0.5, the vor-
tex shedding is regulated by the vibration to a long-short
pattern, and the interaction between the two cylinders be-
comes weak. Figure 7 shows the vortex formation at fv
=0.4 for T /D=3.2 with different vibration amplitude. At this
spacing ratio, the interaction of the two cylinders is weak,
and the vortex shedding from the two cylinders is antiphase.
This leads to the formation of a single, binary vortex street in
the combined wake of the two cylinders. The vibration modi-

FIG. 7. �Color� Vibrating cylinder pair vortex formation at T /D=3.2 and different vibration amplitudes.
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fied the vortex formation slightly, the spacing between vortex
is lengthened and exhibits an alternately long-short pattern
due to the streamwise vibration of the cylinders.

Figure 8 shows the lift time series at different spacing
ratios for rigid and vibrating cylinders at A /D=0.5. At
T /D=1.2, the vibration enhances and regulates the vortex

shedding; consequently, the lift time series exhibits a much
larger and regular pattern. At T /D=1.6, there exists a beating
phenomenon for the rigid case; however, for the vibrating
case, the vibration regulates the series and eliminates the
beating phenomenon. At T /D=2.2 and 3.2, the vibration en-
hances the vortex shedding and increases the lift amplitude.
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FIG. 8. Lift time series at dif-
ferent spacing ratios for rigid and
vibrating cylinders at A /D=0.5.
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Figure 9 shows the lift power spectrum at different spac-
ing ratios for both rigid and vibration cylinders at A /D
=0.5. The cylinder vibration has a significant influence on
the vortex shedding frequency. For the rigid case, the shed-
ding frequency is about 0.1 at T /D=1.2; but for the vibrating

case, the vortex shedding is locked up by the cylinder vibra-
tion and the shedding frequency becomes 0.4. The same phe-
nomena can be found at the other three spacing ratios; it is
obviously that the vortex shedding is locked by the cylinder
vibration �fv=0.4�, and the dominant vortex shedding fre-
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FIG. 9. Lift power spectral
analysis for both rigid and vibrat-
ing cylinders at A /D=0.5.
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quency is the same as the cylinder vibration frequency.
From the discussion of Figs. 4–7, it can be seen that, for

fv=0.4, there exists a threshold of vibration amplitude; when
the vibration amplitude is larger than this threshold, then the
vortex shedding is completely locked up by the cylinder vi-

bration frequency fv. Here, the term “completely locked up”
indicates that the cylinder vibration frequency fv completely
suppresses the original vortex shedding frequency in the
spectral analysis. The most distinct vortex lock-up phenom-
enon occurs at T /D=1.2 and 1.6. To further investigate the
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FIG. 10. �Color online� Vortex formation and lift power spectral analysis for vibrating cylinders at T /D=1.2.
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effect of vibration frequency and amplitude on vortex
lockup, we examined the vortex formation at vibration fre-
quency fv=0.2, 0.4, and 0.6, respectively. Figure 10 shows,
at T /D=1.2, the vortex lock-up phenomenon, and their spec-
tral analysis at different cylinder vibration frequencies and
amplitudes. At fv=0.6, the vortex shedding is locked up

when the vibration amplitude A /D=0.3, i.e., the vortex shed-
ding frequency is dominated by fv=0.6, which is evidenced
by the spectral analysis. At fv=0.4, this vortex lock-up am-
plitude becomes A /D=0.4; with further decrease in the vi-
bration frequency to fv=0.2, the vortex lock-up amplitude
increases to A /D=1.0. A similar phenomenon can be found
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for T /D=1.6, as shown in Fig. 11. From these discussions, it
can be concluded that, with lower vibration frequency, the
threshold of the vibration amplitude should be big enough to
capture the vortex lock-up phenomenon.

V. CONCLUSIONS

In the present study, a 2D fluid-structure interaction prob-
lem for two side-by-side cylinders vibrating in a cross flow
has been simulated using MRTLBM. A moving boundary
scheme is applied to accommodate the vibration of the cyl-
inders. Calculations were carried out for four spacing ratios
at Re=200. The present calculations limit T /D to those val-
ues that would not allow the cylinders to touch each other,
even under the most severe vibration. In order to establish
the credibility of the present numerical method, a thorough
comparison of the rigid case is made with previously re-
ported lift and drag calculations and their associated frequen-
cies, and flow visualization results. The following conclu-
sions can be drawn from the calculations.

�1� The current numerical technique can reproduce the
same phenomena observed in the experiments reported by
Williamson �9�, such as the flow patterns at different T /D.
This lends further credence to the mechanism of vortex for-
mation reported in the rigid case.

�2� The vibration of cylinders has a significant influence
on the vortex formation in the near wake. Particularly for
T /D=1.2 and 1.6, the cylinder vibration can regulate the
vortex shedding into regular patterns.

�3� The vortex shedding from the two cylinders can be
locked up by the vibration of the cylinder pair. There exists a
threshold for the vortex lock-up phenomenon. With increas-
ing cylinder vibration frequency, the threshold of the vibra-
tion amplitude for the lock-up phenomenon decreases.

�4� The proposed multiple relaxation time lattice Boltz-
mann method can be used effectively to resolve the flow-
induced vibration behavior in the case of two side-by-side
cylinders. This means that the technique could be extended
to similar problems with multiple structures.
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