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Improved discretization of the Kardar-Parisi-Zhang equation
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We propose a spatial discretization of the Kardar-Parisi-ZH&RY) equation in 11 dimensions. The
exact steady state probability distribution of the resulting discrete surfaces is explained. The effective diffusion
coefficient, nonlinearity, and noise strength can be extracted from three correlators, and are shown to agree
exactly with the nominal values used in the discrete equations. Implications on the conventional method for
direct numerical integration of the KPZ equation are discugs&t63-651X98)15011-7

PACS numbe(s): 64.60.Ht, 05.40tj, 05.70.Ln, 64.60.Ak

I. INTRODUCTION pected, but quite surprisingly=1.14# v,. The parameters
D and v were computed at a short time limit to avoid any
The Kardar-Parisi-ZhangKPZ) equation is one of the renormalization. These values imply a scaling amplitéde

most important models for growth of fractal surfa¢ég]. It =D/v=0.877 which agrees nicely with independent esti-
gives the local growth rate of a profile(x,t) at substrate mates ofA=0.879 and 0.876 taken, respectively, from satu-
positionx and timet [3]: rated surface width and correlation function measurements.

The discrepancy between and v, cannot be rectified by
decreasing\t or Ax. It has thus been concluded in RE3]

that the conventional discretization is not a genuine approxi-
mation of the continuum KPZ equation, although universal-
wherev andX are the diffusion coefficient and the nonlinear ity does imply many common properties. The problem has
parameter, respectively. The noigehas a Gaussian distri- been attributed to microscopic roughness in the surfaces,

dh(x,t)
at

A
=vV2h+§(Vh)2+ n(x,1), )

bution and mean zero and a correlator which leads to inaccuracy in the finite difference expressions
in Eq. (3).
(n(x, ) p(x",t"))=2D &(x—x") 8(t—t"). %) This work aims at a better understanding of the relation-

ship between the KPZ equation and its discretizations. This
The profileh(x,t) is assumed to have been coarse grained ups made possible by studying a spatial discretization of the
to some implicit lower wavelength cutoff. KPZ equation in ¥ 1 dimensions. Unlike conventional

Direct numerical integration has been an important apschemes, these discrete equations can be studied analytically

proach for the investigation of the KPZ equation. Most stud-and their properties can thus be compared with those of the
ies are based on the discrete equation continuum counterpart. By calculating analytically the values
of three correlators, we found that the effective parameters
v, andD all agree with the nominal values. We emphasize
that we have only investigated three correlators out of infi-
nitely many possible ones, and have not shown that effective

A
h* = hi+ At vo(hfl y+ by =20 + 2 (], —hfL )7

+\2DoAtE] (3 parameters extracted from other correlators all give consis-
o _ . . tent values.
or its simple variant$4—7]. The surface height;’ approxi- The rest of the paper is structured as follows. In Sec. Il

matesh(x; ,t,) at theith lattice point and theth time step. we define the discretization. Section Ill explains an exact
The lattice constanAx has been taken as 1, without loss of steady state distribution of the discrete surfaces following
generality while the time stedt must be small enough to from the equations. In Sec. IV we extract the continuum
ensure convergence. Evedf is an independent random parameters in the KPZ description of their dynamics. Section
variable with mean zero and unit variance following theV discusses implications of our results on the conventional
Gaussian distribution. The subscripted parametgrsig, discretization scheme, and we conclude in Sec. VI with some
and D, denote nominal values used in the discrete equatiofurther discussion.
to be distinguished from the effective values which can be
different due to numerical errors. II. IMPROVED DISCRETIZATION

Despite being widely used as a means of numerical inte-
gration, Eq.(3) admits certain properties which appear to be  Equation(3) results from both spatial and temporal dis-
fundamentally different from those of its continuum origin cretizations of the KPZ equation. We now suggest a scheme
[7,8]. Recently, we reported a detailed study of surfaces gerinvolving only a spatial discretization denoted symbolically
erated from numerical integrations using E8) at v,=D, @S
=1 and\y=3 [9]. In brief, the values of the effective pa-
rameters\, v, and D were measured. Using an inverse dhi(t) _ r +E\P 4ot 4)
method[10], it was found that\=\, and D=D,, as ex- gt - volit it m().
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Any further temporal discretization for conducting numerical conditions and a lattice of siZe. The probability distribu-
integrations is straightforward, but will be omitted in our tion P[h;,t] of the discretized surfack; follows a similar
discussion. In the equatiory;(t)=h(x;,t) is the surface Fokker-Planck equation

height at theith lattice point and timé. We take a spatial

discretizationAx=1. Both the diffusive term dP[h;,t] L No L 9%P
—_— == — || voli+ =¥ |P[+Dp>, —>.
at =1 oh; 2 i=1 dh;
I'i=hj 1 +hi—1—2h (5 (11)
and the noisey with mean zero and a correlator, When\o=0, i.e., in the linear case, it can be shown easily
, , by direct substitution that a steady state solution is
(m(t)7;(t"))=2D,o5;; 8(t—t"), (6)
L
1
are the conventional choices. The uniqueness of this discreti- P[hi]:exp{ ~ oA 2 (hjyq1— hi)z}, (12
zation comes from a nonlinear tenin; defined as 0i=1
W =1[(h 1 —h)2+(h 1 —h)(h—h,_)+(h—h_1)?]. whereAy=D,/vy. A special feature of our discretization is

7 thatP[ h;] given above is also the steady state solution for all

values of\ . In fact, whenP[h;] is substituted into Eq11),
This finite difference approximation foi(h)? has an error the Ao dependent term on the right-hand side is proportional
of order Ax?, as can be easily shown by standard Taylort0
expansions. The reason for this rather unusual choice is that

L L
it enables elegant analytical treatments which will become 4 1 1
apparent in subsequent sections. ;1 a_hilpip_ 3 ;1 0= 01~ A_o( "o 0|P,
On the other hand, i; is replaced by the usual choice (13
\If?:%(hiﬂ—hi,l)z, (80 whered,=h;,1—h;. Itis easy to see that it vanishes due to

exact cancellation of terms after applying the periodic
a further temporal discretization of E@l) immediately leads boundary conditions. Therefore, the distributi®ph;] is not
to the conventional discretization in E@). The error of\Iin affected by the nonlinearity, and can remain as the steady
in approximating ¥h)? is proportional toAx? as well. Ifh; ~ state solution even for nonzekg. Note that the form of¥;
represents some smooth profills, or ¥ will only lead to a ~ defined in Eq(7) has been chosen precisely to allow for this
small difference in the numerical accuracy. However, sinceancellation of terms. Furthermore, our calculations have

h; is in fact rough at all scale®], they lead to significantly Pbeen based on analogous considerations for the continuum
different results. case[1]. In particular, the distributiorP[h;] is also a dis-

cretized form ofP[h(x)] in Eq. (10).

Ill. STEADY STATE DISTRIBUTION
IV. EXTRACTION OF CONTINUUM PARAMETERS

The main advantage of our discretization is that the steady . o .
state probability distribution of the corresponding discrete USing the exact distribution explained above, we now cal-
surfaces can be solved exactly. This is in fact a direct conculate the effective continuum parameters. In contrast to the
sequence of analogous properties of the continuum Kpresults for_ the qonver_monal dl_screpzatlon, _al_l three param-
equation, which will first be summarized. LB{h(x),t] be eters o_btamed, mc_ludlng the d_|ffu5|on coefficient, agree ex-
the time dependent probability functional of a surface de2Ctly with the nominal values, i.e.,
scribed by the KPZ equation. A Fokker-Planck equation

V="7q, )\:)\0, D:Do, (14)
M: _f dxi ( vV2h+ E(Vh)Z}p] as will be proved below.
at oh 2 Let us first examine the scaling amplitude= D/» which

52 admits no renormalizatiofiLl1], and hence can be extracted

+ Df deP (9 relatively easily. Due to the factorized form of the probabil-
ity distribution P[h;] in Eq. (12), every step if; .1—h;) in

the discrete surface is an independent Gaussian variable. We

have neglected any correlation imposed by the periodic

boundary conditions which vanishes for large lattice $ize

It is then easy to show that the two-point correlation func-

P[h(x)]=ex;{— % dx(Vh)Z}, (10) tion, defined as

follows, from which we can obtain the well-known steady
state solution

Cn=((hi+,—h)?), (15
whereA=D/v [1].
While the KPZ equation is a partial differential equation, is given by
the spatial discretization in E@4) denotes a set of coupled
ordinary differential equations. Consider periodic boundary C(r)=Aqr? (16)
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for r<L, and we have usedl;=Dg/vy. The roughness ex- The identitiesA=A, and D=D,, already implyv=vy.
ponenta is 3 in 1+ 1 dimensions. It is well known that from However, we can gain some further insights by deriving it
the continuum KPZ equation, we hay&2] directly. We multiply Eq(22) by V2h, and take an ensemble
average at steady state. The noise term, which has a mean
C(r)=([h(x+1)=h(x)]?)=Ar?". (17 zero, vanishes. Furthermore, terms with odd powers in

. . including (V2h) and{(V2h)(Vh)?) also go to zero due to a
Comparing Egs(16) and (17), we see that the continuum reflection symmetry with respect to the transformation

scaling amplitude agrees with the nominal value, i&., —h, followed by the distributiorP[ h(x)] in Eq. (10). Some

=A, implying thatD/v=Dg/v,. furth t of th i i :
To extract\, we adopt the approach of Krug and Meakin urther rearrangement ot the resuting equation gives

previously applied to a single step modéB]. Consider a {(V?h)Ah)

screw boundary condition in which the surface has an aver- = AV (24

age slopeu. The steady state probability distribution in Eq.

(12) is generalized to which will be used to calculate. Applying the continuum
description to the discrete surfacds, now represents a

1 &L smoothed version df;. Coarse graining Eq4) gives
P[hi]=exr{ “ oA (hii—hi—w?l. (18
0i=1 )\0

Every steph; . ;—h; is still an independent Gaussian variable Ah=|wol'e+ ?WC At+AWe, (25

as before, but the mean is nawinstead of zero. We can

show easily that where the subscript denotes a coarse-grained quantity. The
discrete diffusive ternt’; is equal to the continuum counter-

((hir1=h (s 1—h))=Agd, Tu2 (19) part V2h at long wavelength, as can be easily demonstrated

in the Fourier space. Hence, substituting E2p) into Eq.

The average growth velocity(u) =(dh; /at) now depends (24 gives
on the inclination. Using Eqg4) and (19), we obtain
No (V)W)

V=t 5 e 26
NoRo Ao o3 (V)P (26)
U(U): 3 + ?U (20)

The steady state distributidd[h;] in Eq. (12) also follows

The nonlinear parameteris given by[13] an analogous up-down reflection symmetry, and hence
d% ((V2h)¥)=0, 27

)\ = 4 2 = )\o, (21) i .

du u=0 asV. is even inh;. Therefore, Eq(26) reduces tov=vy.

The exact continuum parametersk, andD calculated in
which again coincides with the nominal value. this section have all been verified numerically using correla-

The continuum parametens and D admit renormaliza-  tion function measurements and an inverse method. The de-
tions and are scale dependditl]. To calculate the bare tails, including the introduction of a higher order numerical
parameters, we consider a short time limit in which the surintegration algorithm and stability issues, will be reported
face is not able to evolve sufficiently to contribute to anyelsewherd14].
dynamical renormalizatiof9]. We denote the surface ad-
vance within a short periodt by Ah. The KPZ equation V. CONVENTIONAL DISCRETIZATION
implies

P We have explained in Sec. Il that, for the linegg=0

5 N ) case,P[h;] in Eq. (12) is a steady state probability distribu-
Ah=12Vh+ 5 (Vh)7|At+AW, (22 tion of the discrete surfaces. Even when the nonlinar
term is introduced, the distribution is not disturbed, since all
where the additional terms induced in the Fokker-Planck equation
cancel nicely with each other. However, when the nonlinear
AL W, term is introduced in the conventional discretization, the
AW:J n(x,t")dt’ c At (23)  extrah, dependent term is proportional to
t
L L
Since the nois& W is of lower order inAt, the deterministic N 1 2 2
terms can be neglected in the short time limit corresponding 21 a_r“q’i P= 4A, 21 (8 =08 8-1= 860 1+8-1)P,
to At—0. Similarly, the noise term dominates in the discrete (28)

equation(4) as well. The two noise terms can therefore be

compared directly, disregarding any influence from the dewhich, unlike the analogous expression in ELB), remains

terministic parts. It is then easy to see that the noise terms ar®nzero in general. Therefor®[h;] is no longer a steady
equivalent at long length scalesif=D,. state solution, and we should hava @dependent probabil-
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ity distribution, which we have not been able to solve. Many VI. DISCUSSION
of the foregoing nice analytic properties thus do not apply to

the conventional discretization. the KPZ equation, the use of finite difference discretization

We mentioned in Sec. | that, for the conventional discreti- < peen taken for grantéd—6]. However, finite difference
zation, numerical studies indicate that the continuum and diséxpressions are accurate only.if the surfa'\ce is smooth micro-

In most investigations on direct numerical integration of

crete parameters bear the relationships scopically. As suggested previously, this is unfortunately not
true, and is evident from simple visual inspection of the sur-
v#vy, A=Ng, D=Dg (290  faces[9]. Furthermore, we have shown in this work that two

seemingly equally valid discretizations of the KPZ equation
in the short time limit9]. Due to the same reason of noise indeed behave very differently. Therefore, we believe that
domination explained in Sec. IV, it can be shown titat the relationship between continuum growth equations and
=D, is exact. However, without knowing the steady statetheir discretizations is actually a nontrivial problem. Similar
distribution, we have not been able to prave-\,, and it  discrete equations are routinely applied in direct numerical

may only hold approximately. integrations of the KPZ equation and other related growth
The resultv# v, is more interesting. For our discretiza- Problems[7,15-22. Our results may provide useful insights
tion, in Sec. IV we proved a definitive relation of= . into how those continuum growth equations are related to

This equality is a consequence of H87), which is in turn  their discretizations.

due to an exact up-down reflection symmetry of the steady Itis straightforward to generalize40ur disqretization to in-
state distributiorP[ h;] defined in Eq(12). However, for the clude higher order terms such &8H)™ [15] without affect-

conventional discretization, we haverg dependent distri- ing the exact solvability. The r_esqlts will be presented glse-
bution. It can be proved numerically that the reflection sym-Where [14]. However, generalization to higher dimensions
2 o may be difficult if not impossible, since our calculations
metry does not hol@14], and hencé(V-h)W¥)+0. Similar have been based on exact properties of the KPZ equation in
to Eq.(26), we have 1+1 dimensions, and most of them have no counterpart in
higher dimensions.
No ((Vzh)\lf8> In summary, we have suggested an analytically tractable
v=vot 2 W (30) spatial discretization of the KPZ equation. The effective pa-
rametersy, \, andD extracted from three correlators equal
with the correction term now nonvanishing. We are not ableexactly the nominal values. This is irrespective of the fact
to proceed further analytically without the knowledge of therhat the finite difference approximation mvolved is in general
steady state distribution. As summarized in Sec. I, the corinaccurate due to the presence of microscopic roughness.
rected numerical value of has been computed using an
inverse method9]. The formula adopted in that approach,
after simplifications due to symmetry, is actually equivalent This work is supported by RGC Grant No. 0354-046-A3-
to Eq. (30) derived here. 110.
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