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Improved discretization of the Kardar-Parisi-Zhang equation

Chi-Hang Lam and F. G. Shin
Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Hong Kong

~Received 7 May 1998!

We propose a spatial discretization of the Kardar-Parisi-Zhang~KPZ! equation in 111 dimensions. The
exact steady state probability distribution of the resulting discrete surfaces is explained. The effective diffusion
coefficient, nonlinearity, and noise strength can be extracted from three correlators, and are shown to agree
exactly with the nominal values used in the discrete equations. Implications on the conventional method for
direct numerical integration of the KPZ equation are discussed.@S1063-651X~98!15011-0#

PACS number~s!: 64.60.Ht, 05.40.1j, 05.70.Ln, 64.60.Ak
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I. INTRODUCTION

The Kardar-Parisi-Zhang~KPZ! equation is one of the
most important models for growth of fractal surfaces@1,2#. It
gives the local growth rate of a profileh(x,t) at substrate
positionx and timet @3#:

]h~x,t !

]t
5n¹2h1

l

2
~¹h!21h~x,t !, ~1!

wheren andl are the diffusion coefficient and the nonline
parameter, respectively. The noiseh has a Gaussian distri
bution and mean zero and a correlator

^h~x,t !h~x8,t8!&52Dd~x2x8!d~ t2t8!. ~2!

The profileh(x,t) is assumed to have been coarse grained
to some implicit lower wavelength cutoff.

Direct numerical integration has been an important
proach for the investigation of the KPZ equation. Most stu
ies are based on the discrete equation

hi
n115hi

n1DtFn0~hi 11
n 1hi 21

n 22hi
n!1

l0

8
~hi 11

n 2hi 21
n !2G

1A2D0Dtj i
n ~3!

or its simple variants@4–7#. The surface heighthi
n approxi-

matesh(xi ,tn) at thei th lattice point and thenth time step.
The lattice constantDx has been taken as 1, without loss
generality while the time stepDt must be small enough to
ensure convergence. Everyj i

n is an independent random
variable with mean zero and unit variance following t
Gaussian distribution. The subscripted parametersn0 , l0 ,
andD0 denote nominal values used in the discrete equa
to be distinguished from the effective values which can
different due to numerical errors.

Despite being widely used as a means of numerical in
gration, Eq.~3! admits certain properties which appear to
fundamentally different from those of its continuum orig
@7,8#. Recently, we reported a detailed study of surfaces g
erated from numerical integrations using Eq.~3! at n05D0
51 andl053 @9#. In brief, the values of the effective pa
rametersl, n, and D were measured. Using an invers
method@10#, it was found thatl.l0 and D.D0 , as ex-
PRE 581063-651X/98/58~5!/5592~4!/$15.00
p

-
-

n
e

-

n-

pected, but quite surprisinglyn.1.14Þn0 . The parameters
D and n were computed at a short time limit to avoid an
renormalization. These values imply a scaling amplitudeA
5D/n.0.877 which agrees nicely with independent es
mates ofA.0.879 and 0.876 taken, respectively, from sa
rated surface width and correlation function measureme
The discrepancy betweenn and n0 cannot be rectified by
decreasingDt or Dx. It has thus been concluded in Ref.@9#
that the conventional discretization is not a genuine appro
mation of the continuum KPZ equation, although univers
ity does imply many common properties. The problem h
been attributed to microscopic roughness in the surfa
which leads to inaccuracy in the finite difference expressi
in Eq. ~3!.

This work aims at a better understanding of the relatio
ship between the KPZ equation and its discretizations. T
is made possible by studying a spatial discretization of
KPZ equation in 111 dimensions. Unlike conventiona
schemes, these discrete equations can be studied analyt
and their properties can thus be compared with those of
continuum counterpart. By calculating analytically the valu
of three correlators, we found that the effective parameterl,
n, andD all agree with the nominal values. We emphas
that we have only investigated three correlators out of in
nitely many possible ones, and have not shown that effec
parameters extracted from other correlators all give con
tent values.

The rest of the paper is structured as follows. In Sec.
we define the discretization. Section III explains an ex
steady state distribution of the discrete surfaces follow
from the equations. In Sec. IV we extract the continuu
parameters in the KPZ description of their dynamics. Sect
V discusses implications of our results on the conventio
discretization scheme, and we conclude in Sec. VI with so
further discussion.

II. IMPROVED DISCRETIZATION

Equation~3! results from both spatial and temporal di
cretizations of the KPZ equation. We now suggest a sche
involving only a spatial discretization denoted symbolica
as

dhi~ t !

dt
5n0G i1

l0

2
C i1h i~ t !. ~4!
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Any further temporal discretization for conducting numeric
integrations is straightforward, but will be omitted in o
discussion. In the equation,hi(t)5h(xi ,t) is the surface
height at thei th lattice point and timet. We take a spatia
discretizationDx51. Both the diffusive term

G i5hi 111hi 2122hi ~5!

and the noiseh i with mean zero and a correlator,

^h i~ t !h j~ t8!&52D0d i j d~ t2t8!, ~6!

are the conventional choices. The uniqueness of this disc
zation comes from a nonlinear termC i defined as

C i5
1
3 @~hi 112hi !

21~hi 112hi !~hi2hi 21!1~hi2hi 21!2#.
~7!

This finite difference approximation for (¹h)2 has an error
of order Dx2, as can be easily shown by standard Tay
expansions. The reason for this rather unusual choice is
it enables elegant analytical treatments which will beco
apparent in subsequent sections.

On the other hand, ifC i is replaced by the usual choice

C i
05 1

4 ~hi 112hi 21!2, ~8!

a further temporal discretization of Eq.~4! immediately leads
to the conventional discretization in Eq.~3!. The error ofC i

0

in approximating (¹h)2 is proportional toDx2 as well. If hi

represents some smooth profile,C i or C i
0 will only lead to a

small difference in the numerical accuracy. However, sin
hi is in fact rough at all scales@9#, they lead to significantly
different results.

III. STEADY STATE DISTRIBUTION

The main advantage of our discretization is that the ste
state probability distribution of the corresponding discr
surfaces can be solved exactly. This is in fact a direct c
sequence of analogous properties of the continuum K
equation, which will first be summarized. LetP@h(x),t# be
the time dependent probability functional of a surface
scribed by the KPZ equation. A Fokker-Planck equation

]P@h~x!,t#

]t
52E dx

d

dh H Fn¹2h1
l

2
~¹h!2GPJ

1DE dx
d2

dh2 P ~9!

follows, from which we can obtain the well-known stead
state solution

P@h~x!#5expF2
1

2A E dx~¹h!2G , ~10!

whereA5D/n @1#.
While the KPZ equation is a partial differential equatio

the spatial discretization in Eq.~4! denotes a set of couple
ordinary differential equations. Consider periodic bound
l
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conditions and a lattice of sizeL. The probability distribu-
tion P@hi ,t# of the discretized surfacehi follows a similar
Fokker-Planck equation

]P@hi ,t#

]t
52(

i 51

L
]

]hi
F S n0G i1

l0

2
C i D PG1D0(

i 51

L
]2P

]hi
2 .

~11!

Whenl050, i.e., in the linear case, it can be shown eas
by direct substitution that a steady state solution is

P@hi #5expF2
1

2A0
(
i 51

L

~hi 112hi !
2G , ~12!

whereA05D0 /n0 . A special feature of our discretization i
thatP@hi # given above is also the steady state solution for
values ofl0 . In fact, whenP@hi # is substituted into Eq.~11!,
the l0 dependent term on the right-hand side is proportio
to

(
i 51

L
]

]hi
C i P52

1

3 (
i 51

L Fd i2d i 212
1

A0
~d i

32d i 21
3 !GP,

~13!

whered i5hi 112hi . It is easy to see that it vanishes due
exact cancellation of terms after applying the period
boundary conditions. Therefore, the distributionP@hi # is not
affected by the nonlinearity, and can remain as the ste
state solution even for nonzerol0 . Note that the form ofC i
defined in Eq.~7! has been chosen precisely to allow for th
cancellation of terms. Furthermore, our calculations ha
been based on analogous considerations for the contin
case@1#. In particular, the distributionP@hi # is also a dis-
cretized form ofP@h(x)# in Eq. ~10!.

IV. EXTRACTION OF CONTINUUM PARAMETERS

Using the exact distribution explained above, we now c
culate the effective continuum parameters. In contrast to
results for the conventional discretization, all three para
eters obtained, including the diffusion coefficient, agree
actly with the nominal values, i.e.,

n5n0 , l5l0 , D5D0 , ~14!

as will be proved below.
Let us first examine the scaling amplitudeA5D/n which

admits no renormalization@11#, and hence can be extracte
relatively easily. Due to the factorized form of the probab
ity distribution P@hi # in Eq. ~12!, every step (hi 112hi) in
the discrete surface is an independent Gaussian variable
have neglected any correlation imposed by the perio
boundary conditions which vanishes for large lattice sizeL.
It is then easy to show that the two-point correlation fun
tion, defined as

C~r !5^~hi 1r2hi !
2&, ~15!

is given by

C~r !5A0r 2a ~16!
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for r !L, and we have usedA05D0 /n0 . The roughness ex
ponenta is 1

2 in 111 dimensions. It is well known that from
the continuum KPZ equation, we have@12#

C~r !5^@h~x1r !2h~x!#2&5Ar2a. ~17!

Comparing Eqs.~16! and ~17!, we see that the continuum
scaling amplitude agrees with the nominal value, i.e.,A
5A0 implying thatD/n5D0 /n0 .

To extractl, we adopt the approach of Krug and Meak
previously applied to a single step model@13#. Consider a
screw boundary condition in which the surface has an a
age slopeu. The steady state probability distribution in E
~12! is generalized to

P@hi #5expF2
1

2A0
(
i 51

L

~hi 112hi2u!2G . ~18!

Every stephi 112hi is still an independent Gaussian variab
as before, but the mean is nowu instead of zero. We can
show easily that

^~hi 112hi !~hj 112hj !&5A0d i j 1u2. ~19!

The average growth velocityv(u)5^]hi /]t& now depends
on the inclination. Using Eqs.~4! and ~19!, we obtain

v~u!5
l0A0

3
1

l0

2
u2. ~20!

The nonlinear parameterl is given by@13#

l5
d2v
du2 U

u50

5l0 , ~21!

which again coincides with the nominal value.
The continuum parametersn and D admit renormaliza-

tions and are scale dependent@11#. To calculate the bare
parameters, we consider a short time limit in which the s
face is not able to evolve sufficiently to contribute to a
dynamical renormalization@9#. We denote the surface ad
vance within a short periodDt by Dh. The KPZ equation
implies

Dh5Fn¹2h1
l

2
~¹h!2GDt1DW, ~22!

where

DW5E
t

t1Dt

h~x,t8!dt8}Dt1/2. ~23!

Since the noiseDW is of lower order inDt, the deterministic
terms can be neglected in the short time limit correspond
to Dt→0. Similarly, the noise term dominates in the discre
equation~4! as well. The two noise terms can therefore
compared directly, disregarding any influence from the
terministic parts. It is then easy to see that the noise terms
equivalent at long length scales ifD5D0 .
r-

r-

g

-
re

The identitiesA5A0 and D5D0 already implyn5n0 .
However, we can gain some further insights by deriving
directly. We multiply Eq.~22! by ¹2h, and take an ensembl
average at steady state. The noise term, which has a m
zero, vanishes. Furthermore, terms with odd powers inh
including ^¹2h& and^(¹2h)(¹h)2& also go to zero due to a
reflection symmetry with respect to the transformationh→
2h, followed by the distributionP@h(x)# in Eq. ~10!. Some
further rearrangement of the resulting equation gives

n5
^~¹2h!Dh&
Dt^~¹2h!2&

, ~24!

which will be used to calculaten. Applying the continuum
description to the discrete surfaces,h now represents a
smoothed version ofhi . Coarse graining Eq.~4! gives

Dh5Fn0Gc1
l0

2
CcGDt1DWc , ~25!

where the subscriptc denotes a coarse-grained quantity. T
discrete diffusive termGc is equal to the continuum counte
part ¹2h at long wavelength, as can be easily demonstra
in the Fourier space. Hence, substituting Eq.~25! into Eq.
~24! gives

n5n01
l0

2

^~¹2h!Cc&

^~¹2h!2&
. ~26!

The steady state distributionP@hi # in Eq. ~12! also follows
an analogous up-down reflection symmetry, and hence

^~¹2h!Cc&50, ~27!

asCc is even inhi . Therefore, Eq.~26! reduces ton5n0 .
The exact continuum parametersn, l, andD calculated in

this section have all been verified numerically using corre
tion function measurements and an inverse method. The
tails, including the introduction of a higher order numeric
integration algorithm and stability issues, will be report
elsewhere@14#.

V. CONVENTIONAL DISCRETIZATION

We have explained in Sec. III that, for the linearl050
case,P@hi # in Eq. ~12! is a steady state probability distribu
tion of the discrete surfaces. Even when the nonlinearC i
term is introduced, the distribution is not disturbed, since
the additional terms induced in the Fokker-Planck equat
cancel nicely with each other. However, when the nonlin
C0

i term is introduced in the conventional discretization, t
extral0 dependent term is proportional to

(
i 51

L
]

]hi
C i

0P5
1

4A0
(
i 51

L

~d i
32d i

2d i 212d id i 21
2 1d i 21!P,

~28!

which, unlike the analogous expression in Eq.~13!, remains
nonzero in general. Therefore,P@hi # is no longer a steady
state solution, and we should have al0 dependent probabil-
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ity distribution, which we have not been able to solve. Ma
of the foregoing nice analytic properties thus do not apply
the conventional discretization.

We mentioned in Sec. I that, for the conventional discre
zation, numerical studies indicate that the continuum and
crete parameters bear the relationships

nÞn0 , l5l0 , D5D0 ~29!

in the short time limit@9#. Due to the same reason of nois
domination explained in Sec. IV, it can be shown thatD
5D0 is exact. However, without knowing the steady sta
distribution, we have not been able to provel5l0 , and it
may only hold approximately.

The resultnÞn0 is more interesting. For our discretiza
tion, in Sec. IV we proved a definitive relation ofn5n0 .
This equality is a consequence of Eq.~27!, which is in turn
due to an exact up-down reflection symmetry of the ste
state distributionP@hi # defined in Eq.~12!. However, for the
conventional discretization, we have al0 dependent distri-
bution. It can be proved numerically that the reflection sy
metry does not hold@14#, and hencê(¹2h)Cc&Þ0. Similar
to Eq. ~26!, we have

n5n01
l0

2

^~¹2h!Cc
0&

^~¹2h!2&
, ~30!

with the correction term now nonvanishing. We are not a
to proceed further analytically without the knowledge of t
steady state distribution. As summarized in Sec. I, the c
rected numerical value ofn has been computed using a
inverse method@9#. The formula adopted in that approac
after simplifications due to symmetry, is actually equivale
to Eq. ~30! derived here.
s
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VI. DISCUSSION

In most investigations on direct numerical integration
the KPZ equation, the use of finite difference discretizat
has been taken for granted@4–6#. However, finite difference
expressions are accurate only if the surface is smooth mi
scopically. As suggested previously, this is unfortunately
true, and is evident from simple visual inspection of the s
faces@9#. Furthermore, we have shown in this work that tw
seemingly equally valid discretizations of the KPZ equati
indeed behave very differently. Therefore, we believe t
the relationship between continuum growth equations
their discretizations is actually a nontrivial problem. Simil
discrete equations are routinely applied in direct numer
integrations of the KPZ equation and other related grow
problems@7,15–22#. Our results may provide useful insigh
into how those continuum growth equations are related
their discretizations.

It is straightforward to generalize our discretization to i
clude higher order terms such as (¹h)4 @15# without affect-
ing the exact solvability. The results will be presented el
where @14#. However, generalization to higher dimensio
may be difficult if not impossible, since our calculation
have been based on exact properties of the KPZ equatio
111 dimensions, and most of them have no counterpar
higher dimensions.

In summary, we have suggested an analytically tracta
spatial discretization of the KPZ equation. The effective p
rametersn, l, andD extracted from three correlators equ
exactly the nominal values. This is irrespective of the fa
that the finite difference approximation involved is in gene
inaccurate due to the presence of microscopic roughnes
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