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Quantum entanglement of excitons in coupled quantum dots
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Optically controlled exciton dynamics in coupled quantum dots is studied. We show that the maximally
entangled Bell states and Greenberger-Horne-Zeilinger~GHZ! states can be robustly generated by manipulat-
ing the system parameters to be at the avoided crossings in the eigenenergy spectrum. The analysis of popu-
lation transfer is systematically carried out by using a dressed-state picture. In addition to the quantum dot
configuration that has been discussed by Quiroga and Johnson@Phys. Rev. Lett.83, 2270~1999!#, we show that
the GHZ states also may be produced in a ray of three quantum dots with a shorter generation time.
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I. INTRODUCTION

Entanglement is of great interest in many areas of ac
research in contemporary quantum physics, such as qua
computation@1#, quantum teleportation@2#, and fundamenta
tests of quantum mechanics@3,4#. How to design and realize
quantum entanglement is extremely challenging due to
intrinsic decoherence, which is caused by the uncontrolla
coupling with environmental degrees of freedom. A varie
of physical systems have to be chosen to investigate the
trolled, entangled states. Among these are trapped ions@5#,
spins in nuclear magnetic resonance@6#, cavity-quantum-
electrodynamics systems@7#, Josephson junctions@8#, and
quantum dots@9#.

Recently, the combination of progresses in ultrafast op
electronics@10# and in nanostructure fabrication@11# brings
out dense study of the coherent-carrier control in semic
ductor quantum dots~QDs!. Present ultrafast laser techno
ogy allows the coherent manipulation of carrier~electron
and/or hole! wave functions on a time scale shorter th
typical dephasing times@12#. It has been envisioned that op
tical excitations in QDs could be successfully exploited
quantum information processing: Quiroga and Johnson@13#,
and Reinaet al. @14,15# suggested that the resonant trans
interaction between spatially separated excitons in quan
dots can be exploited to produce many-particle entan
ment. Based on numerical analysis of realistic double Q
Biolatti et al. @16#, and Troianiet al. @17# proposed anall
optical implementation of quantum information processin
Chenet al. @18#, and Piermarocchiet al. @19# suggested the
controlling of spin dynamics of two interacting excitons wi
pulses of spin-polarized optical excitations. Stievateret al.
@20# successfully observed the single-qubit rotation of ex
tonic Rabi oscillation and in a QD. Chenet al. @21# measured
the quantum entanglement between a pair of electron
hole. Furthermore, Bayeret al. @22# demonstrated the en
tanglement of electron-hole pairs. Up to now, the basic
gredient double-qubit operation, i.e., the controlled-NOT

~CNOT! operation has not been experimentally demonstra
In this paper, we study the optical control of the excit

dynamics in multiple QDs. Following Ref.@13#, we assume
1050-2947/2003/67~1!/012312~8!/$20.00 67 0123
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that the excitonic occupation operatorn̂l for the l th QD has
only two eigenvaluesnl50 andnl51, corresponding to the
absence and the presence of a ground-state exciton. Thu
single-qubit basis consists ofu0& l and u1& l . The whole com-
putational state space is spanned by the basisun&5 ^ l unl&
(nl50,1). We show that the avoided crossing in eigenene
spectrum enables the robust generation of maximally
tangled Bell state of two qubits and GHZ states of thr
qubits. The entangled state generation time is analytic
obtained by adiabatically eliminating the dark multiexcito
states.

This paper is organized as follows. Section II contains
theoretical model: in Sec. II A, we present the Hamiltoni
of the multiple QDs equidistant from each other, whereas
Hamiltonian of the QDs with a linear arrangement is p
sented in Sec. II B. The maximally entangled Bell-state g
eration is showed in Sec. III. In Sec. IV, the maximally e
tangled GHZ state generation is shown for the three Q
with equal distance. The GHZ state generation process
the QDs with a linear configuration is analyzed in Sec. V
summary is given in Sec. VI.

II. THEORETICAL MODEL

We consider a system ofN identical QDs radiated by
classical optical field. Ignoring any constant energy term
the Hamiltonian describing the formation of single excito
within the individual QDs and their interdot hopping is give
by

H~ t !5
«

2 (
n51

N

~en
†en2hn

†hn!2
1

2 (
n,n851

N

Vnn8~en
†hn8en8hn

†

1hnen8
† hn8

† en!1
V~ t !

2
e2 ivt (

n51

N

en
†hn

†

1
V* ~ t !

2
eivt (

n51

N

hnen ~1!

in the rotating wave approximation. Hereen
† (hn

†) is the elec-
tron ~hole! creation operator in thenth QD,« is the QD band
©2003 The American Physical Society12-1
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gap, whileVnn8 represents the interdot Coulomb interacti
between thenth andn8th QDs, the time dependence ofV(t)
describes the laser-pulse shape whilev is the optical fre-
quency. As in the atomic case, the conditionv@uV(t)u en-
ables the rotating wave approximation used inH(t) above.

A. Equidistant quantum dots

In the case that the QDs are equidistant from each ot
i.e., N52 dots on a line,N53 dots at the vertices of a
equilateral triangle, the interdot Coulomb interactionVnn8
5V is independent ofn andn8. Thus the spatial symmetr
of the Hamiltonian~1! enables us to introduce the glob
angular momentum operators@13#

Jx5
1

2 (
n51

N

~en
†hn

†1hnen!, ~2a!

Jy5
2 i

2 (
n51

N

~en
†hn

†2hnen!, ~2b!

Jz5
1

2 (
n51

N

~en
†en2hnhn

†!, ~2c!

which obey standard angular-momentum commutation r
tionships@Ja ,Jb#5 iJg , where (a,b,g) represent a cyclic
permutation of (x,y,z). In terms of these new operators th
Hamiltonian for the equidistant QDs can be rewritten a
direct sum over variousJ-invariant Hamiltonian, i.e.,

H~ t !5 %

J50

N/2

H ~J!~ t !, ~3!

where

H (J)~ t !5«Jz2V~J22Jz
2!1

1

2
V~ t !e2 ivtJ1

1
1

2
V* ~ t !e2 ivtJ2 , ~4!

whereJ65Jx6 iJy are the usual raising and lowering oper
tors. To proceed we introduce the time dependent uni
transformation U5exp(2ivtJz). The transformed Hamil-
tonian in the rotating frame is

HRF
(J)5DJz2V~J22Jz

2!1Vx~ t !Jx1Vy~ t !Jy , ~5!

where D is the detuning from resonant excitation,Vx(t)
5Re@V(t)# and Vy(t)5Im@V(t)# are the Rabi coupling
strength along thex andy axes, respectively.

B. Quantum dots with a linear configuration

When the quantum dots are prepared along a ray,
value ofVn,n8 depends onn or n8. Here, we assume that th
exciton transfer can only be excited by the hopping betw
the nearest neighbors. Thus, onlyVn,n115V (n
51,2, . . . ,N21) is not zero, while the otherVnn8 are zero
01231
r,
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a
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n

in the tight-binding approximation. In this case, we introdu
the local 1/2-pseudospin operators

sn
x5

1

2
~en

†hn
†1hnen!, ~6a!

sn
y5

2 i

2
~en

†hn
†2hnen!, ~6b!

sn
z5

1

2
~en

†en2hnhn
†!, ~6c!

which obey the commutation relationships among three P
matrices@sn

a ,sn8
b

#5 idn,n8sn
g . The Hamiltonian can be re

written in terms of these local 1/2-spin operators as

H~ t !5«(
n

N

sn
z2V (

n51

N21

~sn
2sn11

1 1sn
1sn11

2 !

1
1

2
V~ t !e2 ivt (

n51

N

sn
11

1

2
V* ~ t !eivt (

n51

N

sn
2 ,

~7!

wheresn
65sn

x6 isn
y . In deriving Eq.~7!, we have neglected

all constant energy terms that have no contribution to
dynamics. Again, we transform the Hamiltonian~7! into the
rotating frame by introducing the unitary transformationU
5exp(2ivlast(n

Nsn
z) as follows:

HRF5(
n

N

Dsn
z2V (

n51

N21

~sn
2sn11

1 1sn
1sn11

2 !

1V~ t ! (
n51

N

sn
11V* ~ t ! (

n51

N

sn
2 . ~8!

In the absence of optical field, the Hamiltonian~8! is identi-
cal to an one-dimensionalX-Y model in the magnetic sys
tem. In the limit N→`, one can obtain the exact groun
state with the help of the well-known Jordan-Wigner tran
formation.

III. BELL-STATE GENERATION IN DOUBLE QDS

To give a systematic analysis on the exciton dynamics,
start with the exploitation of the maximally entangled Be
state generation. In the absence of optical excitation, the
no interband transition, so there are no excitons in the dou
QDs, i.e., we start with the vacuum stateu00&. In the follow-
ing we will show how to generate the maximally entangl
Bell state of the formuCBell&5(1/A2)(u00&1eifu11&) with
0 (1) denoting a zero-exciton~single-exciton! QD. Accord-
ing to Eq. ~2!, the initial vacuum stateu00& is identical to
uJ51,Jz521& ~denoted byu1,21& in the following! in the
angular-momentum representation, thus the subsequent
2-2
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evolution in the presence of the laser field will be restric
to the J51 subspace. This means that the antisymme
single-exciton state is light inactive. The evolution of a
initial stateuC(0)& under the action ofHRF

(J51) in Eq. ~5! can
ll

iv-
t
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in
be
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t

k

h
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d
ic
be thus expressed asuC(t)&5c1(t)u1,1&1c2(t)u1,0&
1c3(t)u1,21& in the angular-momentum representatio
Here, the coefficientsck(t) are determined by the Schro¨-
dinger equation
iS ċ1

ċ2

ċ3

D 5S D2V uVue2 iw/A2 0

uVueiw/A2 22V uVue2 iw/A2

0 uVueiw/A2 2D2V
D S c1

c2

c3

D , ~9!
ains

m.

e

ll
lling

rt-
ant
fun-
en-
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-

whereuVu5AVx
21Vy

2/2 andw5tan21(Vy /Vx). Therefore,
the probabilityrBell for finding the maximally entangled Be
state in a double quantum dot is given by

rBell5
1

2
uc3~ t !1eifc1~ t !u2. ~10!

The eigenenergies associated with the Schro¨dinger equa-
tion ~9! can be solved analytically for general values of dr
ing frequencyv. For brevity, we do not give the explici
expressions here. Instead, we illustrate in Fig. 1 the spect
features by plotting the eigenenergies as a function of driv
frequency. It shows in Fig. 1 that an avoided crossing
tween energiesE1 and E2 occurs at the value ofv5«,
which corresponds to the exact resonance conditionD50.
The occurrence of avoided crossing in the energy spect
implies the strong resonant oscillation between the co
sponding eigenstates. The oscillation frequency can be e
read out from the difference between the energy levels aD
50. In this case, the eigenenergies and eigenstates~not nor-
malized! of Eq. ~9! are

uw1&5u1,1&2
b

A2uVu
u1,0&1u1,21&, E15a2V,

~11a!

uw2&52u1,1&1u1,21&, E2522V, ~11b!

uw3&5u1,1&2
a

A2uVu
u1,0&1u1,21&, E35b2V,

~11c!

where a5(2V2AV214uVu2)/2, and b5(2V
1AV214uVu2)/2. From Eq.~11!, we can see that for a wea
driving field uVu!V, the statesuw1& and uw2& are nearly
degenerate and dominated by the zero-exciton stateu1,21&
and double-exciton stateu1,1&, whereas the stateuw3& is
dominated by the single-exciton stateu1,0&. Starting from the
initial state u1,21&, we expect its resonant oscillation wit
u1,1&, with the oscillation frequency approximated by

v r5E22E1.uVu2/V. ~12!
m
g
-

m
-
ily

Because the population of the single-exciton state rem
very small during time evolution, we can approximatec2(t)
in Eq. ~9! to first order ofuVu/V

c2~ t !5
uVu

A2V
eiwc1~ t !1

uVu

A2V
e2 iwc3~ t !. ~13!

By introducingc2(t) from Eq.~13! in the Schro¨dinger equa-
tion we reduce the system to an effective two-level syste
The reduced equation has the form

i S ċ1

ċ3
D 5S 2V1

uVu2

2V

uVu2

2V
e2 i2w

uVu2

2V
ei2w 2V1

uVu2

2V

D S c1~ t !

c3~ t !
D . ~14!

Thus, with the initial zero-exciton state, we have the tim
evolution of the system as follows:

c1~ t !52 i expF i S V1
uVu2

2V D t Gexp~2 i2w!sin@ uVu2t/~2V!#,

~15a!

c3~ t !5expF i S V1
uVu2

2V D t Gcos@ uVu2t/~2V!#. ~15b!

Substituting Eq.~15! into Eq. ~10!, we have the probability
for finding the Bell state (1/A2)(u00&1eifu11&) at time t,

rBell~ t !5
1

2
@11sin~v r t !cos~f22w2p/2!#, ~16!

wherev r5uVu2/V. From Eq.~16!, one can see that the Be
state with an arbitrary phase can be generated by contro
the Rabi coupling strength. In the case ofVy50 and con-
stant value ofVx , we obtain the same result as in Ref.@13#.
Note that the Bell-state generation time is significantly sho
ened by applying stronger laser pulses. This is import
because a short pulse length for Bell-state generation is
damental to experimental observation of such maximally
tangled state that is impeded by inevitable decoherence
curred in the realistic double quantum dot system. We fi
Eq. ~16! is remarkably valid for the slowly varying ampli
tudeV(t).
2-3
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For numerical calculations, we consider Gaussian tem
ral pulse shape for the excitation laser. The time-depend
Schrödinger equation is numerically integrated using t
fourth-order Runge-Kutta scheme. The results of the B
state generation dynamics are shown in Fig. 2. The la
pulse shape is plotted as a dotted line. The square amplit
of the vacuum stateu00& and biexciton stateu11& are denoted
by uc3u2 and uc1u2, respectively, and plotted as solid line
The population of single-exciton state is given byuc2u2. As
one can see from Fig. 2, the quantity ofuc2u2 is always near
zero during time evolution. This light-inactive property e
ables us to adiabatically eliminate its contribution and red
the system to an effective two-level model, as we have d
in deriving Eq. ~16!. The probabilityrBell for finding the
maximally entangled Bell state (1/A2)(u00&1eip/2u11&) is
also shown in the figure as dashed line. It achieves its m
mum value of almost unity in the middle of optical excitatio
and remains unchanged afterwards.

FIG. 1. The energy spectrum of a double quantum dot system
a function of the frequency of laser pulse. Parameters are«55V
and uVu50.2V.
Z
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IV. GHZ STATE GENERATION IN EQUIDISTANT
QUANTUM DOTS

In this section, we show the optical excitation of max
mally entangled GHZ state (1/A2)(u000&1eifu111&) in
three coupled QDs equidistant from each other. The ini
state is chosen to be the vacuum stateu000&, i.e., the eigen-
state u3/2,23/2& of the angular-momentum operatorJz .
Thus, the subsequent time evolution of the system is c
fined to theJ53/2 subspace. The evolution of wave functio
can be expressed as

uC~ t !&5c1~ t !u3/2,3/2&1c2~ t !u3/2,1/2&1c3~ t !u3/2,21/2&

1c4~ t !u3/2,23/2&,

where the coefficientsck(t) are determined by the Schro¨-
dinger equation

as
FIG. 2. The Bell-state generation process as a function of ti

The pulse shapeV(t) is plotted as a dotted line. The probabilit
rBell(t) of maximally entangled Bell state is shown as a dash
line. The population of three exciton number states are also plo
~solid lines!.
i
d

dt S c1

c2

c3

c4

D 5S 3~2V1D!

2
A3uVue2 iw/2 0 0

A3uVueiw/2
27V1D

2
uVue2 iw 0

0 uVue2 iw 27V2D

2
A3uVue2 iw/2

0 0 A3uVueiw/2
3~2V2D!

2

D S c1

c2

c3

c4

D . ~17!
il-
t
rgy

tisfy
-
fre-
The probability for finding the maximally entangled GH
state is given by

rGHZ5
1

2
uc4~ t !1eifc1~ t !u2. ~18!
Figure 3 shows the eigenenergy spectrum of the Ham
tonian in Eq.~17! as a function of the driving frequency. I
shows that there are two avoided crossings in the ene
spectrum where the driving frequency approaches to sa
the resonance conditionD50, which implies resonant oscil
lations between the relevant eigenstates. The oscillation
2-4
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quency can be obtained from the difference of the ene
levels atD50. In this case, the eigenenergies are

E1,2525V/27uVu2A~2V7uVu!213uVu2, ~19a!

E3,4525V/27uVu1A~2V7uVu!213uVu2. ~19b!

The corresponding unnormalized eigenstates are given b

uw i&5u3/2,23/2&1d i u3/2,21/2&7d i u3/2,1/2&

1u3/2,3/2& ~ i 51, . . . ,4!, ~20!

where d i5(Ei13V/2)/(A3uVu). From Eqs.~19! and ~20!
one can see that for a weak driving fielduVu!V, the states
uw3& and uw4& are nearly degenerate and dominated by
vacuum stateu3/2,23/2& and triexciton stateu3/2,3/2&,
whereas the statesuw1& and uw2& are dominated by the
single-exciton stateu3/2,21/2& and biexciton stateu3/2,1/2&.
Thus, under the initial vacuum state condition, the dynam
evolution of the system is characterized by the resonant
cillation betweenu3/2,23/2& andu3/2,3/2&, whereas the con

FIG. 3. The energy spectrum of a three quantum dot system
function of the frequency of laser pulse. Parameters are«55V and
uVu50.2V.
01231
y

e

c
s-

tribution from the statesu3/2,21/2& andu3/2,1/2& can be ne-
glected. To adiabatically eliminate these two states from
dynamics, we introduce the unitary transformation

R5S 1 0 0 0

0
1

A2

1

A2
0

0
1

A2
eiw 2

1

A2
eiw 0

0 0 0 1

D , ~21!

which transforms the state componentsc2(t) andc3(t) into
the diagonal representation. Defining the state vectocW

5(c1 , . . . ,c4)T, supposingcW (t)5ei3Vt/2RdW (t), we obtain
the equation of motion for the reduced state vector,

i
d

dt
dW ~ t !5Hd

(J53/2)dW ~ t !, ~22!

where the transformed resonant Hamiltonian (D50) is

FIG. 4. Exact numerical~solid line! and approximate results o
the time evolution of the probabilityrGHZ(t). Parameters areD
50, uVu50.2V, andw50.
a

Hd
(J53/2)5R1HRF

(J53/2)R13V/251
0 A3

8
uVue2 iw A3

8
uVue2 iw 0

A3

8
uVueiw 22V1uVu 0 A3

8
uVue2 i2w

A3

8
uVueiw 0 22V2uVu 2A3

8
uVue2 i2w

0 2A3

8
uVuei2w 2A3

8
uVuei2w 0

2 . ~23!

The two componentsd2 andd3 can now be adiabatically eliminated in the same matter in deriving Eq.~15!. Thus, one obtains
the effective two-state approximation as follows:
2-5
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i
d

dt
d1~ t !5x1d1~ t !1e2 i3wx2d4~ t !, ~24a!

i
d

dt
d4~ t !5ei3wx2d1~ t !1x1d4~ t !, ~24b!

where

x15
3uVu2

16V28uVu
1

3uVu2

16V18uVu
, ~25a!

x25
3uVu2

16V28uVu
2

3uVu2

16V18uVu
. ~25b!

With the initial conditiond1(0)50 andd4(0)51, one ob-
tains the solution of Eq.~24!,

d1~ t !52 ie2 i3weix1tsin~x2t !, ~26a!

d4~ t !5eix1tcos~x2t !. ~26b!

Substituting Eqs.~26! into the expression forrGHZ(t), one
obtains the probability for finding the maximally entangl
GHZ stateuCGHZ&,

rGHZ~ t !5
1

2
@11sin~v r t !cos~f23w2p/2!#, ~27!

where the oscillating frequencyv r52x2.3uVu3/(8V2).
Equation~27! shows that the maximally entangled GHZ sta
with an arbitrary phase can be generated by a selective p
of the laser field. In particular, in the case ofVy50, a p/2
pulse produces the GHZ state (u000&1eip/2u111&)/A2 at
time tG54pV2/(3uVu3). Note that the result of Eq.~27! in
the case ofw50 was first obtained by Quiroga and Johns
in the density-matrix formalism@13#. Our approach, which is
based on a combination of eigenenergy spectrum ana
and adiabatic elimination of dark states, may be combi
with the density-matrix method to highlight the physic
prospects in preparing entangled qubits.

To compare the analytical and numerical solutions for
unitary evolution described above. We show in Fig. 4
time evolution ofrGHZ(t) with Vy50 and a constant valu
01231
lse

is
d

e
e

of Vx50.2V. The solid line in Fig. 4 is the exact solutio
obtained by numerically integrating Schro¨dinger equation
~17!, whereas the dotted line is the result of Eq.~27!. Clearly
our two-state approximation describes the system’s evolu
very well when compared with the exact numerical solutio
implying that the system’s quantum state at timetG corre-
sponds to a maximally entangled GHZ stateuCGHZ&
5(u000&1eip/2u111&)/A2. For a more realistic consider
ation, we employ Gaussian temporal pulse shape and pre
in Fig. 5 the generation process of the GHZ stateuCGHZ&.
Again, one can see that the dynamics of the system is do
nated by the entanglement of the vacuum state and triexc
state, while the population of single-exciton and biexcit
states are strongly suppressed. As a consequence, the
ability rGHZ achieves and remains unity after laser pulse

V. GHZ STATE GENERATION IN A RAY OF THREE
COUPLED QDS

In this section, we show the optical excitation of max
mally entangled GHZ states in a ray of three coupled Q
The dynamics of the system is now described by the Ham
tonian ~8!. In an exciton number basis consisting ofu000&,
u100&, u010&, u001&, u110&, u011&, u101&, and u111&, the
Schrödinger equation is

FIG. 5. The GHZ state generation process. The pulse sh
V(t) is plotted as a dotted line. The populations of single-exci
and biexciton states are again strongly suppressed and the prob
ity rGHZ(t) ~dashed line! is unity after laser pulse.
i
d

dt 1
c1

c2

c3

c4

c5

c6

c7

c8

2 51
23D V* V* V* 0 0 0 0

V 2D 2V 0 V* 0 V* 0

V 2V 2D 2V V* V* 0 0

V 0 2V 2D 0 V* V* 0

0 V V 0 D 0 2V V*

0 0 V V 0 D 2V V*

0 V 0 V 2V 2V D V*

0 0 0 0 V V V 3D

2 1
c1

c2

c3

c4

c5

c6

c7

c8

2 . ~28!
2-6
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The probability for finding the GHZ stateuCGHZ&5(u000&
1eifu111&)/A2 is given byrGHZ(t)5uc8(t)1eifc1u2/2.

Without knowing an analytical approximation of Eq.~28!,
we turn to numerically show the optical excitation of th
GHZ state. In the absence of laser field, one can see from
~28! that the subspaces of vacuum, exciton, biexciton,
triexciton states are not coupled. In this case, the typ
energy spectrum is shown in Fig. 6~a! as a function of de-
tuning D. It shows in Fig. 6~a! that whenD approaches to
zero, the spectrum is characterized by three degenerate
gies. The degenerate states with energyE50 consist of
vacuum stateu000&, triexciton stateu111&, and a pair of
single-exciton and biexciton states. The other two set of
generate states consist of a pair of single- and double-exc
states, respectively. The energy spectrum features are gr
changed in the presence of the optical field, which can
seen from Fig. 6~b!. It reveals that the degeneracies are co
pletely broken and three avoided crossings develop neaD
50. Among these crossings, the energy splitting between
eigenstates dominated by the statesu000& andu111& is small-
est, since these two states are coupled in an indirect w
Therefore, starting from the stateu000&, we expect that the
subsequent time evolution of the system is featured by
resonant oscillations between the vacuum and triexc
states. This is numerically verified in Fig. 7, where Fig. 7~a!
plots the probabilities for finding the system in the zero- a
triple-exciton states and Fig. 7~b! the probabilityrGHZ(t).
Clearly it shows that a selective pulse of laser field can
used to produce the maximally entangled GHZ states in a
of three QDs. Note that compared with the results in Fig
it shows in Fig. 7 thatthe GHZ state generation time for

FIG. 6. The energy spectrum of a ray of three quantum dot
a function of detuningD ~a! in the absence of laser field,~b! in the
presence of laser field for the value ofuVu50.2V. Other parameters
are«55V.
01231
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linear configuration is shorter than for a equidistant config
ration. Thus, the linear configuration of three QDs is pr
ferred to implement the maximally entangled GHZ states
its shorter generation time.

VI. CONCLUSION

In summary, we have studied the optically controlled e
citon dynamics in multiple QD systems. We have shown t
the robust occurrence of avoided crossing in the eigenen
spectrum enables the dynamics to be confined to a redu
two-state Hilbert space, in which the generation of ma
mally entangled Bell states and GHZ states with an arbitr
phase can be controlled by selective pulses of classical
herent optical light. The entangled state generation time
creases significantly with an increase of the laser-pu
strength. We have also found that the GHZ states can
implemented in a three-QD system with a linear configu
tion, with the generation time much shorter than in an eq
distant configuration. The results are expected to be usefu
exploiting the realizations of entanglement in quantum
systems.
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s FIG. 7. ~a! Time evolution of the population of the vacuum sta
~solid line! and triexciton state~dotted line!. ~b! Time evolution of
the probabilityrGHZ(t) for finding the maximally entangled GHZ
state (f5p/2) in a ray of three coupled quantum dots. Paramet
areD50, «55V, uVu50.2V, andw50.
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