What is the ground electronic state of KO?

Edmond P. F. Lee, Pavel Soldán, and Timothy G. Wright

Citation: J. Chem. Phys. 117, 8241 (2002); doi: 10.1063/1.1511179
View online: http://dx.doi.org/10.1063/1.1511179
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v117/i18
Published by the American Institute of Physics.

Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/
Journal Information: http://jcp.aip.org/about/about_the_journal
Top downloads: http://jcp.aip.org/features/most_downloaded
Information for Authors: http://jcp.aip.org/authors
What is the ground electronic state of KO?

Edmond P. F. Lee a)
Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong and Department of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom, SO17 1BJ

Pavel Soldán b)
Department of Chemistry, University of Durham, South Road, Durham, United Kingdom, DH1 3LE

Timothy G. Wright c)
Spectroscopy of Complexes and Radicals (SOCAR) Group, Department of Chemistry, School of Chemistry, Physics and Environmental Science, University of Sussex, Falmer, Brighton, United Kingdom, BN1 9QJ

(Received 12 July 2002; accepted 12 August 2002)

High-level, restricted coupled cluster with singles, doubles, and perturbative triples calculations are performed to determine the ground electronic state of KO. In the absence of spin–orbit coupling, we find that the ground state is a ~2Σ+ state, with a 2Σ state lying just over 200 cm⁻¹ higher in energy. We ascertain that basis set extension, higher-order correlation energy, mass-velocity, and Darwin relativistic terms do not change this ordering. We then calculate the low-lying Ω states when spin–orbit coupling is turned on. The ~2Σ+1/2 state undergoes an avoided crossing with the 2Π1/2 state, and we therefore designate the ground state as 2Σ+1/2. This state is essentially ~2Σ+1/2 at short R, but essentially 2Π1/2 at long R; there is a corresponding A+1/2 state with the opposite behavior. These states have significantly different shapes and so spectroscopy from the adiabatic states. Finally, we calculate the dissociation energy D₀ of KO as 66±1 kcal mol⁻¹ and derive ΔH(R(KO, 0 K) as 13.6±1 kcal mol⁻¹. © 2002 American Institute of Physics. [DOI: 10.1063/1.1511179]

I. INTRODUCTION

The alkali-metal monoxides continue to attract interest both theoretically and spectroscopically. In part, this comes from their important roles in atmospheric, combustion, and energy chemistry. Recently, we have performed a number of studies on these species, with reports on the thermodynamics and spectroscopy of LiO and LiO⁺, NaO and NaO⁺, the photoionization of NaO, and in addition the spectroscopy and thermodynamics of RbO, CsO, and FrO and their cations.

These species are also of interest as, like other series of molecules, there is a change in the symmetry of the ground state. For LiO (Refs. 14 and 15) and NaO (Ref. 16), the electronic ground state has been established as 2Π, while it has been shown to be 2Σ⁺ for RbO (Ref. 17) and CsO (Ref. 18); this changeover was explained by Allison et al. as being due to the competing effects of the quadrupole attraction of O⁻, which favors the 3Π⁺ state, and Pauli repulsion, which favors the 4Σ⁺ state. The changeover point comes at KO, and the identity of its ground electronic state has proved to be a controversial topic.

Early experiments on KO were inconclusive, with Herm and Herschbach initially concluding that the ground electronic state was 2Σ⁺ on the basis of magnetic deflection experiments and then concluding that the nonobservation of an electron spin resonance (ESR) spectrum was consistent with its being 2Π. Allison et al. calculated the ground state of KO to be 2Π (with the 2Σ⁺ state lying 830 cm⁻¹ above) using configuration interaction (CI) calculations and a double-ζ basis set, with polarization functions on the oxygen atom. Later, however, Langhoff et al., again employing the configuration interaction with single and double excitations (CISD) method, using very large basis sets and concluded that the ground state of KO was in fact 2Σ⁺. In 1991, Langhoff et al. published complete-active-space self-consistent-field (CASSCF) and CASSCF+multireference configuration interaction (MRCI) calculations, which indicated that the CASSCF level of theory, the ground state of KO was determined to be 2Π, but that at the CASSCF+MRCI level, it was 2Σ⁺—a fact that they confirmed in a careful series of calculations in 1992 (Ref. 24) (as well as in a study of the photodetachment process on KO⁻). This latter conclusion was also confirmed in CASSCF calculations by Serrano-Andrés et al. In 1993, two of the present authors were involved in an ab initio study of KO, and in line with Allison et al., the ground state of KO was calculated to be 2Π. One of the authors was also involved in a photoelectron study of KO (Ref. 29) (as well as LiO and NaO). The KO was formed by either the reaction K⁺ + N₂O or the reaction K + O₃. The reaction of K⁺ + N₂O was expected to yield KO in the 2Σ⁺ state on the basis of correlation arguments and molecular beam magnetic deflection experiments as applied to the Na⁺ + N₂O reaction—a conclusion also inferred in Ref. 29 from the intensities of bands...
in the NaO photoelectron spectrum. (This preference for formation of the $^2\Sigma^+$ state has been addressed recently.) If the $^2\Sigma^+$ state of KO is formed almost exclusively, then the appearance of features assigned to the $^3\Pi$ state in the photoelectron spectrum from the K+N$_2$O route was taken to imply that the $^2\Pi$ state is the lower, populated by collisional deactivation. Very recently, Hirota has outlined the results of as-yet-unpublished microwave spectroscopic studies of the KO molecule, where it was concluded that the ground state is $^2\Pi$, with the $^2\Sigma^+$ state lying 200 cm$^{-1}$ higher in energy. All of the above present a very confusing picture, but this situation is made all the more nebulous by the aforementioned study of Langhoff, Bauschlicher, and Dyall, who performed a very careful ab initio study, taking into account basis set, level of theory, basis set superposition error (BSSE), and relativistic (spin–orbit) effects—their conclusion was that the ground state of KO was $^2\Sigma^+$, and they could not see any effect that could alter that conclusion. This is in apparent direct contradiction to the detailed microwave experiments, which tend to yield very reliable results. Consequently, two apparently reliable studies reach opposite conclusions, and the conflicting conclusions of the other studies do not help.

It is the purpose of the present work to look into this matter further by performing state-of-the-art ab initio calculations and to try and give a definitive answer to the question posed in the title of this paper. A particular point of interest is how does the interaction between the $^2\Pi_{1/2}$ spin–orbit component and the $^2\Sigma^+_J/2$ spin–orbit state affect the picture? Finally, we further investigate the effects of relativity, as well as basis set extension and core-valence correlation energy.

II. COMPUTATIONAL DETAILS

First, we generated potential energy curves for the lowest $^2\Sigma^+$ and $^3\Pi$ states using the Feller misc. CVQZ basis set for K from the Gaussian basis set order form (GBSOF), which in its original form has s and p functions from Partridge, with core and polarization functions from Feller, and has the contracted form $(23s19p6d4f2g)/(10s9p6d4f2g)$. In the present work, the contracted [4s2p] functions of that basis set were taken and augmented with

\[
\begin{align*}
nine s: \ & \xi = 9.0 - 0.00589824, \text{ ratio} = 2.5; \\
ten p: \ & \xi = 19.0 - 0.00498073, \text{ ratio} = 2.5; \\
six d: \ & \xi = 7.5 - 0.05227, \text{ ratio} = 2.7; \\
four f: \ & \xi = 2.0 - 0.1016, \text{ ratio} = 2.7; \\
gthree g: \ & \xi = 1.485 - 0.2037, \text{ ratio} = 2.7; \\
two h: \ & \xi = 0.8 \text{ and } 0.2963,
\end{align*}
\]

giving a [13s12p6d4f3g2h] basis set. For O, the standard aug-cc-pV5Z basis set was employed. These will be referred to as basis A below. This was used with the RCCSD(T) procedure, as implemented in MOLPRO. We performed a scan over short and long R, but were restricted in the long-R region by the emergence of multireference behavior, as the ionic-covalent avoided crossing starts to occur.

A second set of calculations also employed the RCCSD(T) procedure, but this time employed the $(24s16p)$ basis set from Huzinaga and Klobukowski, which was contracted to [3s2p]. This was augmented with the same uncontracted $(9s10p6d4f3g2h)$ basis functions as above, giving a [12s12p6d4f3g2h] basis set. For O, the standard aug-cc-pV5Z basis set was again employed. These will be referred to as basis B below. For these calculations we also investigated the effect of the BSSE by performing the full counterpoise (CP) correction at all points.

In the RCCSD(T) procedure, the 1s electrons on O and the 1s2s2p electrons on K were kept frozen. The RCCSD(T)/basis A and RCCSD(T)/basis B results were used to calculate spectroscopic constants employing LEVEL.

Subsequently, single-point energy calculations at the minima of the $^2\Sigma^+$ and $^3\Pi$ curves from the RCCSD(T)/basis B calculations were performed using basis C and basis D, which were constructed as follows:

Basis C: this consisted of the [12s12p6d4f3g2h] basis set from basis B, to which was added the following tight functions:

\[
\begin{align*}
four s: \ & \xi = 351.5625 - 22.5, \text{ ratio} = 2.5; \\
three p: \ & \xi = 296.875, 118.75 \text{ and } 47.5; \\
three d: \ & \xi = 147.6225, 54.675 \text{ and } 20.25; \\
two f: \ & \xi = 50.0 \text{ and } 5.4; \\
one g: \ & \xi = 15.0,
\end{align*}
\]
giving a [16s15p9d6f4g2h] basis set. For these calculations, no electrons were frozen in the RCCSD(T) procedure. The standard aug-cc-pCV5Z basis set was used for O.

Basis D: this consisted of the [12s12p6d] functions from the [12s12p6d4f3g2h] K basis set in basis C, but augmented with the following even-tempered functions:

\[
\begin{align*}
five f: \ & \xi = 5.488 - 0.089286, \text{ ratio} = 2.8; \\
four g: \ & \xi = 2.43 - 0.09, \text{ ratio} = 3.0; \\
three h: \ & \xi = 1.225, 0.35 \text{ and } 0.1; \\
two i: \ & \xi = 0.8 \text{ and } 0.2,
\end{align*}
\]
giving a [12s12p6d5f4g3h2i] basis set. The standard aug-cc-pV6Z basis set was used for O.

In addition, we calculated the mass-velocity and Darwin contributions to the relativistic energy employing basis E at the Hartree–Fock (HF) level. This consisted of the uncontracted (24s16p) functions from Huzinaga and Klobukowski as used in basis B for K, together with the six uncontracted d functions, giving a (24s16p6d) K basis set. We took the uncontracted (14s9p5d) standard functions from the aug-cc-pV5Z basis set for O. More details of the procedure used will be presented below.

The next stage of the calculations was to calculate the spin–orbit interaction. This was done by taking RCCSD(T)/basis B energies for the $^2\Pi$ and $^2\Sigma^+$ states and employing the state-interacting method (more details below).

III. RESULTS AND DISCUSSION

A. No spin–orbit coupling

In Fig. 1 are shown the RCCSD(T)/basis A curves. As may be seen, the $^2\Sigma^+$ curve is calculated to lie the lowest in energy. It has a minimum at $R_e = 2.170$ Å and a calculated 0-1 separation of 422.1 cm$^{-1}$. For comparison, the results using RCCSD(T)/basis B are $R_e = 2.170$ Å and 0-1 separa-
function of 422.0 cm$^{-1}$. The results are in good agreement with Bauschlicher et al.24 who obtained a value of $R_e = 2.187$ Å and a harmonic frequency of $\omega = 422$ cm$^{-1}$ using the modified coupled pair function (MCPF) approach. Similarly, from the RCCSD(T)/basis A curve for the $^2\Pi$ state $R_e = 2.323$ Å and the 0-1 separation was 387.9 cm$^{-1}$, while from the RCCSD(T)/basis B curve, $R_e = 2.323$ Å and the 0-1 separation was 388.4 cm$^{-1}$. These compare with the values of $R_e = 2.338$ Å and $\omega = 390$ cm$^{-1}$ from the MCPF calculations in Ref. 24. The T_e values were 241.5 cm$^{-1}$ using basis A and 243.1 cm$^{-1}$ using basis B. The best value from Ref. 24 was 229 cm$^{-1}$ at the CCSD(T) level. Of course, these results are under the approximation of no spin–orbit coupling. That the results from basis A and basis B are so similar indicates that the importance of the 4s contraction is small, since basis A has a contracted 4s function (based on the neutral K wave function), whereas basis B does not.

We also calculated BSSE-corrected curves at the RCCSD(T)/basis B level, where each point was corrected using the full CP correction.37 Analysis of these BSSE-corrected potentials led to the following results. For the $^2\Pi$ state, $R_e = 2.325$ Å and the 0-1 separation was calculated as 387.3 cm$^{-1}$; for the $^2\Sigma^+$ state, $R_e = 2.172$ Å and the 0-1 separation was calculated as 421.0 cm$^{-1}$. Thus the effect of the BSSE is to lead to a very slight increase in the R_e value and very small change in the shape of the curve: we conclude that the basis sets we are using are large and flexible enough that the BSSE is not affecting the shape or position of the curves. It does, however, have an effect on the calculated T_e value between the two states: From the BSSE-corrected curves, we obtain a T_e value of 230.5 cm$^{-1}$, which is 13 cm$^{-1}$ lower than the uncorrected curves. It is, however, small enough to conclude that the BSSE will not be able to lead to a reversal in the ordering of the curves. The BSSE difference is entirely due to K$^+$, owing to the difference in bond lengths between the two states: The calculated BSSE’s were 40 cm$^{-1}$ for O$^-$ in both states, 55 cm$^{-1}$ for K$^+$ in the $^2\Pi$ state, and 69 cm$^{-1}$ for K$^+$ in the $^2\Sigma^+$ state.

1. \textbf{Relativistic}

In order to calculate the effect of relativity, calculations were performed as follows: First, we calculated the mass-velocity plus Darwin relativistic contributions at the HF level. For these calculations we used basis E uncontracted. We calculated the mass-velocity and Darwin contributions for K$^+$ and O$^-$ using the full molecular basis set. We then calculated these relativistic terms for the KO molecule in each of the $^2\Pi$ and $^2\Sigma^+$ states, and hence could estimate the lowering of the potential energy curves owing to these two contributions.

We find that the $^2\Pi$ state increases in energy by 39.5 cm$^{-1}$ and the $^2\Sigma^+$ state increases in energy by 25.0 cm$^{-1}$, so that the $^2\Pi$-$^2\Sigma^+$ separation increases by ~15 cm$^{-1}$. Thus these effects are relatively small and will certainly not lead to a reversal of the ordering of the states—a conclusion also reached in Ref. 24.

2. \textbf{Core-valence correlation}

As noted above, we constructed basis C so that it contained tight functions to describe the core-valence correlation. The result of full RCCSD(T) calculations was that the $^2\Pi$ state was at a T_e separation of 254 cm$^{-1}$ compared to the $^2\Sigma^+$ state, which is very similar to the values obtained using basis A and basis B. We find that this separation reduces to 239 cm$^{-1}$ when the CP correction is applied. We conclude that core-valence interactions will not change the ordering.

3. \textbf{Further basis set extension and BSSE}

Using the very large basis D and freezing the O 1s and K 1s2s2p electrons, we find that the T_e value at the RCCSD(T) level is 253 cm$^{-1}$, which is very close to that obtained at the RCCSD(T, full)/basis C level and is only changed by ca. +10 cm$^{-1}$ compared to the RCCSD(T)/basis A and RCCSD(T)/basis B methods. Given this close agreement and also the agreement with the values obtained in Ref. 24, we conclude that the ordering of the $^2\Pi$ and $^2\Sigma^+$ states
will be unaltered by further increasing the basis set—indeed, if anything the separation will increase slightly. Again, as with basis B, we find that the BSSE is again almost entirely due to K\(^+\) because of the difference in bond lengths. We calculate the following BSSE’s: K\(^+\) (77 cm\(^{-1}\)) and O\(^-\) (16 cm\(^{-1}\)) for the \(^2\Pi\) state and K\(^+\) (95 cm\(^{-1}\)) and O\(^-\) (14 cm\(^{-1}\)) for the \(^2\Sigma^+\). Thus the correction for the BSSE leads to a decrease in the calculated \(T_\varepsilon\) by 16 cm\(^{-1}\), giving a value of 237 cm\(^{-1}\), which is very close to the BSSE-corrected values from basis B.

B. Inclusion of spin–orbit coupling

For the first time, the spin–orbit interaction at each point in the potential and the interaction between the low-lying \(\Omega\) states is calculated—this is in contrast to Ref. 24, where the spin–orbit coupling of O\(^-\) was used in a first-order model at a single point. In Fig. 2 are shown curves calculated for the \(^2\Pi\) and \(^2\Sigma^+\) states and the effect of including spin–orbit coupling employing the Breit-Pauli operator as implemented in MOLPRO.\(^{39}\) In the latter calculations, CASSCF calculations are carried out with basis E (uncontracted), with the oxygen \(1s\) and K \(1s, 2s, 2p\) electrons treated as core; the RCCSD(T)/basis B BSSE-corrected energies were used as the diagonal elements of the spin–orbit matrix.

If we look at \(R=2.1\) Å, the \(^2\Pi\) states splits into two components, with \(\Omega=1/2\) and 3/2. The \(\Omega=1/2\) lies above the \(^2\Pi\) state and is denoted \(A_{1/2}^\lambda\), and the \(\Omega=3/2\) lies below and is denoted \(A_{3/2}^\lambda\); the \(^2\Sigma^+\) state becomes another \(\Omega=1/2\) state, denoted \(X_{1/2}^\lambda\). There is now an avoided crossing between the \(X_{1/2}^\lambda\) and \(A_{1/2}^\lambda\) states, but the \(A_{3/2}^\lambda\) state remains parallel to the \(^2\Pi\) curve, but lying below. The interesting feature here is that although the \(X_{1/2}^\lambda\) state is essentially the \(^2\Sigma_{1/2}\) state at short \(R\), after the avoided crossing, it becomes the \(^2\Pi_{1/2}\) component of the \(^2\Pi\) state and develops a shelf, as the result of the avoidance. The \(A_{1/2}^\lambda\) state, which is essentially the \(^2\Pi_{1/2}\) component of the \(^2\Pi\) state at short \(R\), becomes the \(^2\Sigma^+_{1/2}\) state as the result of the avoided crossing: the avoidance also leads to a steepening of the potential at longer \(R\). It is possible to analyze all of these curves by making use of LEVEL,\(^{38}\) and the results are given in Table I. We summarize some of the main features for these states in the following paragraphs.

Looking first at the \(X_{1/2}^\lambda\) state, the \(R_e\) value is almost unaffected by the avoided crossing, which is as expected from the shape of the curves in Fig. 2. The \(v=0\) vibrational level is found to be at 194.5 cm\(^{-1}\) above the minimum, which places it almost isoenergetic with the minimum of the \(A_{1/2}^\lambda\) state. The \(v=0\) level lies just below the shelf, with the \(v=1\) level lying above it, and this feature is demonstrated in the calculated anomalous vibrational separations, which are 296.6, 281.4, 316.8, and 315.8 cm\(^{-1}\), starting from the 0-1 separation. The separations are smaller than those in the \(^2\Sigma^+\) state, as expected, since the avoided crossing leads to a flattening out of the \(X_{1/2}^\lambda\) state potential compared to the \(^2\Sigma^+\) state. The 0-1 value is somewhat smaller than that reported in a matrix isolation study, where 384 cm\(^{-1}\) was obtained.\(^{40}\)

Looking at the \(A_{1/2}^\lambda\) state, the \(R_e\) value is smaller than that of the \(^2\Pi\) state, as expected from Fig. 2: in addition, the zero-point vibrational energy (ZPVE) of 301.7 cm\(^{-1}\) and the 0-1 separation of 559.9 cm\(^{-1}\) are very much higher than that of the \(^2\Pi\) state, as expected from Fig. 2. Of interest is that the \(R_0\) value is smaller than the \(R_e\) value, contrary to the usual situation—the reason for this is the steepening of the long-\(R\) region, which leads to the \(v=0\) vibrational wave function being more localized to short \(R\), the opposite of the normal situation.

The \(A_{1/2}^\lambda\) state is essentially unaltered by the presence of the avoided crossing, with \(R_e\) and 0-1 separation values almost identical to those of the \(^2\Pi\) state.

TABLE I. Spectroscopic constants for the lowest \(\Omega\) states of KO.

<table>
<thead>
<tr>
<th>State</th>
<th>(R_e) (Å)</th>
<th>(R_0) (Å)</th>
<th>ZPVE (cm(^{-1}))</th>
<th>0-1 separation (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_{1/2}^\lambda)</td>
<td>2.170</td>
<td>2.261</td>
<td>194.5</td>
<td>296.6</td>
</tr>
<tr>
<td>(A_{1/2}^\lambda)</td>
<td>2.325</td>
<td>2.330</td>
<td>195.3</td>
<td>387.2</td>
</tr>
<tr>
<td>(A_{3/2}^\lambda)</td>
<td>2.277</td>
<td>2.275</td>
<td>301.4</td>
<td>559.9</td>
</tr>
</tbody>
</table>
C. \(T_e \) value for KO

From the above, we can estimate our best value for \(T_e \) for the \(^3\Pi \rightarrow ^2\Sigma^+ \) separation in the absence of spin–orbit coupling. From the RCCSD(T)/basis D results, the value of 253 cm\(^{-1} \) is lowered to 237 cm\(^{-1} \) after correction for the BSSE. The mass-velocity and Darwin terms combine to raise the separation by \(\sim 15 \) cm\(^{-1} \), and the core-valence effect is to raise it by \(\sim 10 \) cm\(^{-1} \). Thus a \(T_e \) value of 250±25 cm\(^{-1} \) is our best value, where the error is an estimate based upon the change in the separation upon application of the CP correction and basis set extension and further core-valence effects.

Once spin–orbit coupling has been included, then the \(T_e \) values obtained from LEVEL become \(A \frac{1}{2} \rightarrow X \frac{1}{2} \) (178 cm\(^{-1} \)) and \(A \frac{3}{2} \rightarrow X \frac{3}{2} \) (434 cm\(^{-1} \)).

D. Heat of formation

It is a straightforward matter to derive a heat of formation at 0 K for KO from the calculated energetics for the reaction

\[
\text{KO}(X \frac{1}{2} \rightarrow K^+ + O^-)
\]

and employing the well-established \(\Delta H_f \) (0 K) values for K\(^+ \) (121.6 kcal mol\(^{-1} \)) and O\(^- \) (25.3 kcal mol\(^{-1} \)) from the JANAF Tables.\(^{31} \) We employ the RCCSD(T)/basis D//RCCSD(T)/basis B energetics, as we have shown that the effects on \(R_e \) of the spin–orbit coupling are negligible. We obtain \(\Delta H \) for reaction (1) as 132.1 kcal mol\(^{-1} \), which is simply the change in the electronic energy modified by the ZPVE of KO. This converts into a \(\Delta H_f \) value of 13.6 kcal mol\(^{-1} \) for KO. The error on this value, from the results given above, is very much less than 1 kcal mol\(^{-1} \); in particular, we note that the corresponding RCCSD energetics yield a \(\Delta H \) value only 0.2 kcal mol\(^{-1} \) lower. We cite a final value of \(\Delta H_f \) (KO) = 13.6±1 kcal mol\(^{-1} \). This value is a large improvement on the estimated JANAF value of 17±10 kcal mol\(^{-1} \).

It is also straightforward to calculate the dissociation energy of KO by employment of the ionization energy of K (3.430 066±0.000 01 eV), the electron affinity of O (1.461 eV),\(^{42} \) and the calculated energetics of reaction (1). This yields values of \(D_e \) for 166.3 kcal mol\(^{-1} \) and \(D_0 \) for 65.7 kcal mol\(^{-1} \), and we cite \(D_0(KO) \) for 66±1 kcal mol\(^{-1} \). These values are in almost perfect agreement with the CI value of \(D_e \) for 66.0 kcal mol\(^{-1} \) obtained in Ref. 22. Experimentally, values of the dissociation energy of KO have been reported as 71±6 kcal mol\(^{-1} \) (Ref. 43) and 66±3 kcal mol\(^{-1} \) (Ref. 44, also recommended in Ref. 45); a more recent value\(^{6} \) is 62±1 kcal mol\(^{-1} \), which seems slightly on the low side.

It is worth noting that in the absence of spin–orbit coupling, the \(^2\Sigma^+ \) state correlates to the excited \(^2\Pi \) asymptote, with \(^2\Pi \) state correlating to the ground state \(^2\Sigma^+ \) asymptote, which lies \(\sim 13 \) 000 cm\(^{-1} \) (37 kcal mol\(^{-1} \)) higher in energy.\(^{46} \) The presence of the avoided crossing means that the (essentially ionic) \(X \frac{1}{2} \) state will dissociate to the ground-state atomic products, initially as a result of the first avoided crossing with the \(A \frac{1}{2} \) state, and then at longer \(R \) as a result of the avoided crossing with a covalent state (\textit{vide supra}). (Note that we have ignored the spin–orbit splitting in the O\(^(3)P \) in the above. In fact the lowest spin–orbit state is \(^3P_{\Omega} \) with \(^3P \) lying 158 cm\(^{-1} \) above, with the O\(^(3)P_{\Omega} \) splitting being 227 cm\(^{-1} \)—the largest splitting is still only 0.6 kcal mol\(^{-1} \), which scarcely affects the above numbers.\(^{47} \)

IV. FURTHER DISCUSSION

The conclusion in the present work that the \(^2\Sigma^+ \) state is the lowest electronic state of KO is in agreement with the previous detailed study by Bauschlicher \textit{et al.}\(^{24} \) The two studies complement each other and reinforce each other’s conclusions. Also in agreement with that work, but now after a far more detailed study, neither relativistic effects (including spin–orbit) nor basis set extension are going to change this ordering—our largest basis set (basis D) consisted of 397 basis functions, in contrast to the “big basis set” of 225 functions, used in Ref. 24. In addition, we find that the effect of the triple excitations, in all cases examined herein, is to lead to an increase in the \(T_e \) value for the \(^3\Pi \rightarrow ^2\Sigma^+ \) separation—a conclusion also made in Ref. 24, but only as the result of a single-point calculation. The conclusions of the earlier \textit{ab initio} studies\(^{19} \) and of Ref. 28 are incorrect in concluding that the \(^2\Pi \) state is lower in energy, probably as a result of too small a basis set and too low a level of theory. The magnitude of our BSSE is similar to that of the “big basis set” of Ref. 24, even though our basis set is larger: This is probably because of the larger number of polarization and diffuse functions used herein. The differential BSSE between the electronic states is, however, similar to that of Ref. 24 (note that the BSSE was only calculated at the MCPF level in that work).

The important conclusion from the present work is that the spectroscopy of the low-lying states of KO is affected by the spin–orbit coupling that leads to an avoided crossing between the \(^2\Sigma^+_{1/2} \) state and the \(^2\Pi_{1/2} \) component. It is thus more correct to label the states in terms of their \(\Omega \) values rather than the standard Russell-Saunders term symbols. We conclude, therefore, that the ground electronic state of KO is the \(X \frac{1}{2} \) state, which is essentially \(^2\Sigma^+ \) at short \(R \), but \(^2\Pi_{1/2} \) at long \(R \): in between, the character is mixed. For the \(A \frac{1}{2} \) state the situation is essentially reversed.

This mixed character of the \(X \frac{1}{2} \) state could explain the conclusions of the microwave study.\(^{13} \) As noted above, Hirota and co-workers concluded that the ground state was \(^2\Pi \), with the \(^2\Sigma^+ \) state lying \(\sim 200 \) cm\(^{-1} \) higher. However, it was noted in that work that the fit of the rotational structure for the \(^2\Sigma^+ \) state was far from satisfactory. We hypothesize that the mixed nature of the \(X \frac{1}{2} \) state and its interaction with the \(A \frac{1}{2} \) state lead to perturbation of the rotational levels. The perturbation of a \(^2\Pi \) state by a \(^2\Sigma^+ \) state is well understood and is explained in detail in Ref. 48. However, the situation is a little more complicated than that treated therein, owing to the presence of the avoided crossing. In addition, the \(^2\Pi \) state is expected to be close to a Hund’s case (a) limit in the absence of spin–orbit coupling, and the \(^2\Sigma^+ \) state is, of
course, Hund’s case (b) in the absence of spin–orbit coupling; clearly, in the presence of spin–orbit coupling, Hund’s case (c) will have to be considered.

We also noted in the above that photoelectron studies concluded that the ground state of KO was $^2\Pi$ on the basis that both it and the $^2\Sigma^+$ state were observed in the photoelectron spectra. This conclusion relies heavily on the fact that the product of the $\text{K} + \text{N}_2\text{O}$ reaction would be $^2\Sigma^+$ and not $^2\Pi$. The present work has shown that these two states are mixed by the spin–orbit interaction, and consequently that the correlation rules (based on Russell-Saunders coupling) are not applicable to KO.

V. CONCLUDING REMARKS

In the absence of spin–orbit coupling the ground state of KO is $^2\Sigma^+$: this conclusion is unlikely to be changed by relativistic effects, higher correlation effects, or basis set extension. The $^2\Pi$ state is, however, close in energy (~250 cm$^{-1}$) and the $^2\Sigma^+$ curve crosses it close to the minimum.

When spin–orbit coupling is turned on, the aforementioned crossing now becomes avoided between the two $\Omega = 1/2$ states. This has significant implications for the ground state, as it can now not be described as $^2\Sigma^+$ as it changes its character at long R, and we designate the ground state by $^1\Sigma^+$. The effect of the avoided crossing is to flatten out the $^1\Sigma^+$ state and to lead to a shelf at long R, both of which cause perturbations in the vibrational energy levels. The $^3\Pi_{1/2}$ state, which starts off at short R as the $^2\Pi_{1/2}$ state and evolves into the $^2\Sigma^+$ state at long R, is also affected significantly by the avoided crossing, becoming steeper on the long-R side. In contrast, the $^1\Sigma^+$ state remains closely identified with the $^2\Pi_{1/2}$ state throughout.

The previous ambiguity in the identification of the ground electronic state can be traced to the complicated electronic structure. Ab initio calculations need to be of a very high quality to obtain the correct ordering. The interpretation of the microwave spectrum and the implications of the photoelectron study may both be affected by the avoided crossing in the spin–orbit curves and the consequent mixed identity of the states involved. In studies, there is also the complication that KO has to be produced for study, and the distribution of the molecules between these the $^1\Sigma^+$, $^3\Pi_{1/2}$, and $^3\Pi_{3/2}$ states is far from clear.

This study has concentrated on the region of the curves close to the minima of the $^2\Sigma^+$ and $^2\Pi$ states. It is well known that the ionic nature of the alkali-metal monoxides leads to an avoided crossing at longer R than considered herein, in order to access the neutral dissociation products—the presence of this avoided crossing invalidates the single-reference RCCSD(T) procedure used herein. In order to gain a complete picture of the electronic states of KO, it will be necessary to perform a multireference study and also to include spin–orbit coupling.

Finally, the heat of formation of KO has been established to a high degree of accuracy as $13.6 \pm 1 \text{ kcal mol}^{-1}$ at 0 K and $D_0(\text{KO}) = 66 \pm 1 \text{ kcal mol}^{-1}$.

ACKNOWLEDGMENTS

The authors are grateful to the EPSRC for the award of computer time at the Rutherford Appleton Laboratories under the auspices of the United Kingdom Computational Chemistry Working Party (UKCCWP), which enabled these calculations to be performed. E.P.F.L. is grateful to the Research Grant Council (RGC) of the Hong Kong Special Administration Region (HK SAR) and the Research Committee of the Hong Kong Polytechnic University for support. P.S. would like to thank the EPSRC for his present funding at Durham (Senior Research Assistantship). T.G.W. is grateful to the EPSRC for the award of an Advanced Fellowship. Useful e-mail correspondence with Dr. C. M. Western (Bristol) and Professor T. A. Miller (Columbus) is gratefully acknowledged.

33 EMSL Basis Set Library. (Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 1/29/
01, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, USA, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multiprogram laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for further information.

35 MOLPRO is a package of ab initio programs written by H.-J. Werner, P. J. Knowles, with contributions from J. Almlöf, R. D. Amos, A. Berning et al.