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Magnons and factons in diluted antlferromagnets (Invited) 
R. Orbach 
Department of Physics, University of California, Los Angeles, California 90024 

Kin-Wah Yu 
Department of Applied Physics, Hong Kong Polytechnic, Hung Hom. Kowloon, Hong Kong 

Site-diluted antiferromagnets with short-range interactions can serve as a model magnetic 
percolation system. A length scale 5 exists such that for length scales (1/ q) > 5 the structure is 
continuous (hydrodynamic limit), and the magnetic excitations are antiferromagnetic 
magnons, with a stiffness constant which depends critically upon the magnetic concentration. 
For length scales (l/q) <5, the structure is fractal, and the magnetic excitations are fractons, 
with a characteristic dispersion law. The fracton excitations are (strongly) spatially localized. 
The magnons are expected to be extended in the very long length scale limit, with the 
possibility of Anderson (weak) localization for length scales longer than s. The magnetic 
excitations cross over from magnon to fracton at an energy We cr:. t - fl + (0/2 l; , where (j is the 
anomalous diffusion exponent. We have calculated the scattering form factor J(q,w) for 
magnetic excitations of a d = 3 simple cubic antiferromagnet within the effective medium 
approximation (EMA), as a function energy transfer wand momentum transfer q. We find 
that at small fixed q (within the magnon regime), p > P", l(q,w) is sharply peaked at the 
magnon frequency. Near to Pc, a second (but sman) peak at (;)c is visible on the asymmetric 
high-energy tail of l(q,w). For larger fixed q (within the fracton regime), J(q,w) is centered 
about the fracton frequency, although it is quite broad, reflecti.ng the strong spatial scattering 
of fractons. 

I. INTRODUCTION 

The percolation network is the prime example of a ran
dom fractal geometry.! Site percolation is constructed from 
a fully occupied lattice by withdrawing sites at random until 
a fraction P remain occupied, Sites are said to be "connect
ed" for short-range interactions if two occupied sites are 
near neighbors. A critical concentration Pc exists such that, 
for p > Pc, a connected "infinite cluster" spans the entire 
structure.2 

A model example of a percolation network is the site
diluted antiferromagnet. Nonmagnetic ions are substituted 
at random for the magnetic ions. For p > Pc, the existence of 
an infinite cluster al10ws for long-range order in the antifer
romagnetic state.3 The density of states for magnetic excita
tions in what we now refer to as the fracton regime (see Sec. 
II) was first obtained by Shender for both dilute ferromag
nets and dilute antiferromagnets.4 The dynamical properties 
of the band-diluted antiferromagnet were first formulated 
within the effective medium approximation (EMA) by Ta
hir-KhelV and later by the present authors with explicit 
reference to the fracton density of states and dispersion re!a
tion.6 Very recent neutron scattering experiments by Ue
mura and Birgeneau 7 on the site-diluted antiferromagnet 
(Muo.5 Zno.s )Fz have investigated the magnetic excitations 
throughout the Brillouin zone for concentrations p (here, 
p = 0.5) somewhat near tOPe (-0.25). 

The purpose of this paper is to calculate the scattering 
form factor I (q,w) for magnetic excitations of a diluted anti
ferromagnet. We shall have to resort to the EMA for a full 
calculation, although a more general formulationS is now 
available which appears capable of predicting nearly all the 

important experimentally observable features. The experi
mental results ofUemura and Birgeneau7 appear quite simi
lar to the EMA result for I(q,(;)) contained in this paper, 
even with regard to some initially unexpected structure. The 
similarity between the experimental and theoretical deter
mination of I(q,w) lends credance to a "fracton." interpreta
tion for short length scale excitations on a percolating 
networkY 

Section II presents a review of what is expected for exci
tations on a fractal network. Section III briefly outlines the 
EMA calculation of J (q,w ), and Sec. IV presents the results 
and a comparison with experiment. 

II. EXCITATIONS ON A FRACTAl.. NETWORK 

There are two independent parameters which are neces
sary to describe fully excitation dynamics on a fractal 
network. The first is the fractal dimension D, which allows 
for the distribution of occupied sites in space. In particular, 
the number of occupied sites within a sphere of radius r is 
proportional to1 

NCr) cc,». (1) 

The choice of the second independent parameter is some
what a matter of taste. Here, we select e, the exponent which 
determines the range dependence of the diffusion constant 
on a fractal network 10: 

(2) 

With these definitions, one is led9 to the definition of the 
fracton dimension, 

a = 2DI(2 + 8). (3) 
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An alternative would be to define a as an independent pa
rameter, and thence to obtain (J using Eq. (3). The fracton 
dimension controls the energy density of states and the frac
ton "dispersion" law.9 

The percolating network serves as a very rich model for 
materials which can exhibit fractal geometry. A characteris
tic length scale 5 exists which distinguishes between the con
ventional ("Euclidean") mass distribution and excitation 
spectrum, and the fractal equivalents. For the percolating 
network, SO:: (p - Pe ) -- v. We refer to such behavior as 
"critical. " 

The Euclidean dimension d describes the embedding di
mension in which the fractal network is constructed Cd = 3 
for three-dimensional solids). Then, the mass distribution 
for the infinite cluster on a percolating network behaves as 

M(r) <X {~ r>$ 
r, a<r<s, (4) 

where a is the size of the atomic cell. 
In general, D<,d, with D=2.; for a percolating network 

in d = 3. The short length scales are governed by fractal 
geometry, while the long length scales are governed by Eu
clidean geometry. Similarly, the fracton dimension a = 2D / 
(2 + (J)fora <r<5, while a = d for r> 5 (D = dand (J = 0 
for Euclidean space). 

The fracton dimensionality was originally introduced 
for vibrational excitations on a fractal network,9 but it can be 
immediately generalized to magnetic excitations as wel1.6

,11 

For long length scales (Euclidean space), the excitation 
spectrum behaves as usual, but with a stiffness coefficient 
which is critical (i.e., depend on the difference p - Pc ). This 
has been worked out in detail for phonons,12 and was devel
oped for antiferromagnetic magnons first by Harris and 
Kirkpatrick13 and later by Kumar and Harris. 14 Thus one 
expects a magnon dispersion law W = J(p - Pc )qa, where 
J -->0 as (p - Pc)7" (Ref. 14). Apart from weak localization 
effects brought about by Anderson localization,15 the mag
nons can be thought of as extended states, with a scattering 
lifetime primarily due to Raylei.gh scattering off the fluctu
ations in site occupancy. 

The new insights provided by fractal geometry apply to 
the short length scale regime. Here, the fundamental nature 
of the excitation spectrum is altered. The spin-wave states 
are strongly localized, in the Ioffe-Regel sense. 16,17 In addi
tion, there exists a known relationship between the localiza
tion length 1 and the spin-wave excitation e~ergy9: 

w<xI-J)la, (5) 

This enables us to define a crossover frequency We by the 
relationship 

(V
e 

rx 5-Dla=s - [t -j (1112)) • (6) 

Hence, as a function of excitation energy, one crosses over 
from magnon to fracton excitations at the crossover frequen
cy We' This will play an essential role in the interpretation of 
the neutron scattering data ofUemura and Birgeneau.7 

1If. EFFECTIVE MEDIUM APPROXIMATION 
CALCULATION OF I(q,m) 

Most scattering experiments measure the structure fac
tor l(q,w). For neutron scattering from antiferromagnetic 
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spin waves, 

I(q,w) = (n + l)x" (q,w) , (7) 

where (n) is the thermal average of the Bose function at 
frequency w, and X" is the imaginary part of the spin-devi
ation operator Green's function, 18 

X"(q,ill) = 1m G af3(q,w) 

= Im(Talt(t)a~ (0) q.«> 

= Im( ( - 1)1 t-
u /2( SIS!,) 112] 

X (TS;'t(t)S~ (0) )q,W , (8) 

where the superscripts a,/3 label the two interpenetrating 
antiferromagnetic sublattices ( + 1 for up spins, - 1 for 
down spins), 1, l' the position of the I, I! spins, T the time
ordering operator, and the subscripts q,w denote the spatial 
and time Fourier transform, respectively. 

The equations of motion for Ga f3 (q,w) are given in Refs. 
5 and 6 for a bond-percolation model. The EMA procedures 
are detailed, and the complex algebraic equations for both 
the spin-wave density of states and dispersion law are exhib
ited therein. A magnon regime is found for ill < wand a e' 
fracton regime for w > We' The density of states for the two 
regions joins on continuously, as opposed to the "steplike" 
structure found for the percolating ferromagnet. 11 This is 
undoubtably due to the fact that antiferromagnetic excita
tions belong to a different universality class than do ferro
magnetic excitations (and lattice vibrations). 13, 14 Within 
EMA, one finds D = 2 and a = 1 for d = 3. 

Neutron scattering experiments measure the structure 
fractor I(q,w) directly. Using the Green's functions ob
tained from Refs. 5 and 6, and carrying out the operations of 
Eqs. (.8) and (9), we are able to computeI(q,ill) for fixed q 
at varIOUS values of (t), and vice versa. For simplicity, the 
former is exhibited in Figs, 1 and 2, for different bond con
centrationsp. Within EMA,pc = lid, so that Fig. 1 is for 
P - Pc = 0.17, while Fig. 2 is for P - Pc = 0.057. The for
mer is not too far from the relative concentration used in the 
experiments ofUemura and Birgeneau7 (p - Pc ~O.25). 

IVo DISCUSSION AND COMPARISON WITH 
EXPERIMENT 

The shapes of the I (q,w) curves are very instructive. For 
each p, there exists a crossover wave vector q e' correspond
ing to the crossover frequency We' At fixed q<qc> a sharp 
peak is observed at the corresponding magnon frequency. 
The peak is broadened on the high energy side, with struc
ture at We' This structure takes the form of a peak for P close 
to P e (see Fig. 1) and a shoulder for p further away (see Fig. 
2). The relative amplitude of this feature to the magnon peak 
height increases with increasing q. 

This somewhat surprising result has actually been an
ticipated. 19 Entin-Wohlman et ai. calculated the asymptotic 
form for the structure factor for lattice vibrations on a fractal 
network and found a decreasing amplitUde for w > ill . In 

• • c 
combmatmn with the delta function at the phonon frequen-
cy (no damping was contained within that calculation), it 
suggests structure at We' Physically, this is caused by the 
"softening" of the vibrational spectrum as one crosses over 
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FIG. 1. A plot of the structure factor l(q,w), for fixed q as a function of w, 
for a simple cubic bond-percolation antiferromagnet calculated within the 
effective medium approximation (EMA). The concentration p = 0.50 
(Pc = 1/3), leading to We = 0.306 and qc = 0.391T. The reduced wave vec
tor labeled on the figure, h = q/1T, so that he = 0.39. The sharp peak for 
h <he corresponds to the magnon dispersion law. Within EMA, the spin
wave stiffness coefficient C, defined from (j) = eq, is proportional to p - p,. 
This is consistent with the EMA values for the critical exponents: t = I and 
f3 = O. The smaller peak at higher energies lies at We for all q < qc. 

into the fracton regime. A more general treatment, which 
obtains analytic forms for most of the features of I ( q ,W ), has 
recently been developed. 8 

As q crosses over into the fracton regime, q> qc> the 
shape of the curve changes completely. I(q,w) becomes a 
broad maximum with no structure at We' This is as it should 
be, since in the fracton regime scaling arguments9

,12 require 
that the states are not critical. They do not "know" that a 
crossover length S exists, and hence cannot depend upon We' 

These calculations for I(q,w) have been performed for a 
simple cubic lattice, and for bond percolation. Nevertheless, 
the general shapes appear quite consistent with those ofUe
mura and Birgeneau,7 even to the extent of the feature at We' 

We believe this is the strongest evidence yet for the supposi
tion that fracton dynamics, both in the magnon and fracton 
regimes, are essential to the description of dilute antiferro
magnets. It also suggests an immediate test for the validity of 
the conjecture20 that vibrational excitations of amorphous 
solids can be described above a crossover frequency by frac
ton excitations: does I (q,(;) (q in the phonon regime] con
tain structure at (;) c' the latter being determined by the onset 
of the Ioffe-Regel i6limit as determined from an analysis21 of 
the thermal conductivity? 
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FIG. 2. Same as for Fig. j, but with p = 0.39 (Pe = 1/3), leading to 
(Ue = 0.104 and q, = 0.22711" (so that he = 0.227). 
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