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Compton scattering can be used to determine the electron densities of tissues for medical
applications and those of materials for industrial applications. Much work has been devoted in
solving the reconstruction problem. Norton proposed an analytic transform method for the
reconstruction of Compton scattering tomographyAppl. Phys76, 2007 (1994 ]. However, it is
difficult to relate the response function presented by Norton to the measurement quantity. The aim
of this article is to present an improved form of the detector response function which corresponds
to the actual measurement and to verify the validation of the transform method for this problem.
© 1999 American Institute of Physid$0021-89789)02215-X

I. INTRODUCTION is the availability of the detector with both good position and
energy sensitivity. Utilizing the energy spectral data, Hussein
The effect of Compton scattering is a kind of interac- et al. proposed to reconstruct the density image by iterafion
tions between the electrons and high enefmyer 100 keV  \hjle Norton proposed an analytic formula for the recon-
to compete against the photoelectric effgtotons. The first gy ction when attenuation is neglect@dt the attenuation is
introductiqn of _this effect to the elec_:tron density measure¢gnsidered, an iteration procedure was proposed by Norton
ment and imaging was done by Lale in 1958tom then on, beginning with a homogeneous initial guess. However, it

Compton scattering has been used in radiotherapy treatmegle g gifficult to relate the response functions presented by

plapnlng, 4 bogeh densny n:jeasur%nééﬁt_,:jung hfunctéqn | Norton to the actual measurement—the detector count rate in
estimatiori, and heart motion detectioresides the medica an energy increment at a series of energy levels. Hence, the

appllcatlons., Compton scatterlpg has_ also bfaen. used in thp()aarameters;vl andw, presented there are difficult to be used
nondestructive testingNDT) for industrial application§.

Comparing the Compton scattering imaging techni uefor the real reconstruction.
paring P g ging . As in the paper of Norton, we have studied the analytic

with the conventional transmission tomography, the scatter-

ing technique has some attractive superiorities. First, we Cahe_const_rucnlo ?h' of l.the ¢ den;:ty Clmagte for Z gua5|-two-
have more freedom in selecting the relative positions of a imensional thin siice from the L.omplon scatléring energy

radiation source and detectors and can arrange the source a%R]ECtral dat.a. Although the slice can be regan_jed asa ‘_4“35"
detectors on the same side of the examined sample, which {&0-dimensional one, the response function will be obtained
very important for a superficial testing or for objects embed-through a three-dimensional analysis due to the fact that the
ded under ground. Second, this technique has greater sen§impton scattering is a three-dimensional effect. Through
tivity in density variations for low density materidland for ~ accurate mathematical derivations, the detector response,
superficial measuremehiThe third merit is that we can ob- Which corresponds to the actual measurement, is obtained.
tain direct three-dimensiondBD) density images by using The derivations begin with a general discussion in the scat-
this techniqué. Furthermore, this technique can have largertering problem. From the final response function, it was dis-
relative contrast and is more dose efficient for thin objécts.covered that our response function has a similar form as that

Different methods have been developed correspondingf Norton and hence the analytic method proposed by Norton
to different experimental configurations for the Comptoncan be directly adopted except that the parameter
scattering imaging techniqd& A representative one of those w(r,0;p,®) should be evaluated using our formula. The
methods is to reconstruct the electron density image from thenain contribution of this article is that we have presented an
scattering energy spectral data, which was first proposed bynproved form of the response function and validated the
Farmer and CO”lnél A crucial requirement of this method transform method proposed by Norton for the Compton scat-
tering image reconstruction. Detailed derivations and discus-
dElectronic mail: enzheru@polyu.edu.hk sions are presented in the following sections.
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FIG. 1. Shematic diagram of general scattering.
Il. PHYSICAL MODEL where
A. General description of scattering problem (1) F(6) is the photon flux at anglé.

When a beam of particles incident on a target that id?) Pe(T6) is the electron number density at the pointe).

composed of another kind of particles with number density (3 dV is a small volume element.

(as shown in Fig. L the detector count rate can be expressed? @(T,0,Xq) is the scattering angle as shown in Fig. 2.
ad4 (5) da/dQ (Eg,a) is the Klein—Nishina differential scatter-

ing cross section for photons with enerBy at scatter-

__do ing anglea. This differential scattering cross section can
dN(a)—Fd—Q(a)pdVdQ, 1 be given by
where do .
) E(EO!Q'): E _ 2
(1) dN(a) is the count rate of the detector for the scattered [1+k(1—cosa)]
particles at the scattering angie 5 2
(2) F is the flux of the incident beam. |14+ co2 st M) 3
(3) da/dQ («) is the differential scattering cross section at 1+k(1-cosa)/|
scattering anglex. wherek= E,/mqc?, my is the rest mass of the electron,
(4) dQ is the solid angle subtended by the face of the de- cis the velocity of light in vacuum.
tector to the scattering point. (6) AQ is the solid angle subtended by the detector face to
(5) dV is volume of the target. the scattering point and can be expressed as
From the above equation, we can see that the differential
scattering cross section can be regarded as the surface area AAsing
perpendicular to the incident beam that each target particle - rs ' (4)
presents to the beam particle per-unit solid angle at scattering
anglea.'

whereAA is the area of one detector elemenkgt r g is

the distance between the detector and the scattering
B. Free attenuated detector response for Compton point, 3 is the angle between theaxis andr
back scattering ’ o d-
] From the geometry in Fig. 2, the volume elemditcan
Several physical processes can take place between phgg expressed as

tons and electrons. In thg-ray energy regime from 0.1 to

1.0 MeV and for materials with low to intermediate atomic dV=rdadraAz, (5)

numbers, Compton scattering will dominate all the interac-

tions between photons and electrons. Following the methoghere A7 s the thickness of the thin slice in direction

for describing the general scattering process depicted abovghich is determined from the width of the incident beam in

the detector response wheq the attenuauqn of both the INClpis direction(z axis is perpendicular to the paper plan@n

dent and scattered beams is neglected will be presented {Re other hand, if the source is confined to the plane of the

this section. , _ . thin slice and it can be described with a functi®y) [ S(6)
Suppose a beam of-ray photons with energi, inci-  giands for the emission rate distribution of the radiation

dent on a target as shown in Fig. 2. Neglecting the attenuas-oumé, we can have the following form for the flux at
tion of the incident and scattered beams and considering th§ng|e6

single scattering approximation, we can express the photon
count ratedN(r,#,x4) of an ideal point detector resulting S(0)do S(0)

from the point ¢, 6) in the polar system as F(8)= TdoAz " TAZ" (6)

do
dN(I’,H,Xd)ZF(ﬁ)E[Eo,a(r,0,Xd)]pe(l’,0)dVAQ, Substituting Eqs(5) and (6) into Eq. (2), the detector count
2 rate then can be written as
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FIG. 2. Shematic diagram of Compton scattering.

dN(r, 8,Xq) In order to obtain the photon count rate in an energy incre-
g mentAE for different scattered energi&s(that is the actual
g measurementwe should useK, 0,x,) instead of ¢, 6,Xy).
=S(0)d0 5 [Eo,a(r,0x9) pelr, 0ArAQ. (7 arementive shouid uset f.xq) | (. 0.%0)

After the variable transformation, we have the following ex-

If we choose &, 0,x4) as variables, Eq.7) becomes pression fordN(E, 6/, X).,

dN(a,B,Xd) do
dor dN(E,0,Xd)=S(G)dﬂd—Q[Eo,a(E,0,Xd)]dEpe
=S(0)d0d—Q(Eo,a)dape[r(a,0,Xd),0]AQ|J|, (8)

X[r(E, 8,xq),0]A0[J[|3'], (12

wherelJ is the Jacobiandeterminant which can be expressed

as wherel’ is also aJacobiandeterminant which has a similar
ar aIr or form as in Eq.(9). For the evaluation of the above determi-
Ja 90 (;_xd nant, the Compton equation is adopted. The Compton equa-
20 90 90 tion, which relates the enerdy of the scattered photons and

= M: - = = (9) the scattered angle, has the following form:
3(&’,0,Xd) Ja d0 &Xd '

Py My X . & -
da 90  dXg 1+k(1—cosa)’

Considering the geometry in Fig. 2, there exists the follow-

ing relation, From the Compton equation, thiacobian determinantJ’

sin(6+ ) can be given by
r=Xg——— (10
sina ,
. . . . +k(1-
Using the above relation, théacobiandeterminant can be J =— [1+k( ,Cosa)] (14)
given as Eok sina
J=—x4 sin g _ (12) Combining Eqgs(11), (12), and(14), we can obtain the final
sir? a form for dN(E, 8,x4)
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dN(E, 6,%q) The variable pairs X4,E) and (p,¢) are inter-related
through Egs.(13) and (18). Thereafter, we can also use

d i i ion:
_ H)dﬂé[Eo,a(E,0,Xd)]dEpe[r(E,G,Xd),H]AQ (p, ) instead of k4,E) and have the following expression:

l(p.d)= | do| drw(r,:p,0)pe(r,
sin[1+k(1—cosa)]? (p.¢) fo Gfo rw(r,6;p,¢)pe(r,0)

X Xg (15

Eo ksin® a ' X 8[r—2pcog 6— )], (21)

The photon count raté(E,x,) of the detector at energg ~ where
with an energy incrememE can then be obtained by inte- . 5
gratingdN(E, 6,x4) with respect tog, W(r.0:p ¢):d_U(EO ¢)AAS(6)r[1+k(1—sm¢)] AE_
W S dQ "' Eok sin6(2p cosg)?
I(E,xd):J dN(E, ,x¢) e (22)
0 The integral nucleusv(r,8;p,¢) can be decomposed into

w do two functions, one of(,#) and the other of 4, ). That is,
= fO dHS(G)m[EO,a(E,H,Xd)]AEpe W(I’,0;p,¢)=W1(r,0)W2(p,¢), where
AAS O)r
X[r(E,6,xq),0]AQ =— 7
[r(E,60.Xq),0] wy(r,0) = —=—2—,

H _ 2
><dem O[1+k(1—cosa)] . 16)

do (23)
Eok sin® Wa(p, )= 4 (Eord)

[1+k(1—sing)]?
Eok(2p cos¢)?
On the other hand, the photons scattered from the locationgence we can express the detector count rate function as

on each circle passing through both the source and the de-

tector will have the same scattering angle and hence have the _ f” f“

same scattering energy. Such a scattering circle can be given H(p,$)=w2(p, &) 0 do 0 drwy(r, 0)pe(r. 0)
in polar form by

X o[r—2pcog0—¢)]. (24
r=2pcog6—¢), 1 , :
pcoso—¢) (9 We have finally obtained the detector respoh(ge ¢) of the
wherep is the radius of the circle Compton scattering. This response stands for the photon
count rate of an ideal point detector positionedxglp, ¢)
Xd

p= (18) and measured at enerdy(¢) within a energy increment

2 cos¢ AE, whereAE is the energy discrimination of the point de-
tector. Different from that quantity obtained by Norton in
Ref. 13 to which it is difficult to relate any physical meaning,
our response function corresponds to the actual measurement
Iof the detector.

and ¢ is the angle between theaxis and the line from the
source(origin) to the center of the circle. It can be shown
that ¢ = 7/2— .*® Using the above relations, we can trans-
form the one-dimensional integration into a two-dimensional
one by introducing a Dira@ function in the integral func-

tion,
i . q C. Attenuated detector response of Compton back
|(E,Xd)=f daf drS(b’)% scattering

0 0 The detector response function obtained above is appli-
X[Ep,a(E,6,Xq) JAEpe(r,0)AQ cable only when the attenuation of both the incident and the
scattered beams is neglected. However, in the practical situ-
sing[1+k(1—cosa)]? ation, the attenuation is an important process and the mea-
X Xq Eok Sin® a surements are seriously affected by such attenuation. In gen-

eral, the attenuation factor can be described as
X 8[r—2pcog6—a¢)]. (19

Substituting Eq(4) into the above equation and noticing the f(Eo,E) =ex;{ —o(Ep) JLSPe(fﬁ)ms— a(E)
fact thatr 4= x4 (siné/sina) and sinB=r (sina/xy), we have

><J pe(r,0)dlp |, (25
Lp

™ % d
I(E,Xd):f daJ drs(g)%[E()!a(EaaaXd)]AEpe(rvg)
0 0
whereo(Ey) ando(E) are the total scattering cross sections

AAr[1+k(1—cosa)]? at energyEy andE, respectively. These total scattering cross
> olr—2pcog6—¢)]. sections can be obtained from the integrations of the Klein—
X3 sin 0Eok Nishina formula with respect to the solid angle at those en-

(20 ergies.
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In the case when the attenuation of both the incident and 1 [on P 1(p, &)
the scattered photons is accounted, the photon count rate of pe(r,6)= —zf d¢f pdpm
the ideal point detector can be obtained from &j) except w0 0 P
that w(r,Q;p,¢) shogld be multiplied byf(EO,E)._ How- Xh[r—2p cod 6— )], (28)
ever, owing to the introduction of the attenuation factor,
there are two new problems with(r, 8;p, #). First, it can Wwhere
no longer be degomposed intq two functions of4) and W(0;p,)=wW[2p cog 0— ¢),0,p,¢]. (29
(p, ). Secondw is now a function ofp(r,#) and thus the ) i o o
detector response depends nonlinearly on the electron delf} the above integration, the infinitive upper limit has been
sity. It has been shown by Norton that these problems precnanged t@pq. This means that we impose an upper limit

vent us from using an accurate transform method for th@n the radii of the scattering circles over which data are
reconstruction. collected. If nonuniform attenuation is considered, the detec-

tor response is a nonlinear function of the electron density. It
was proposed by Norton that the reconstruction can be ac-
complished by iteration. The whole process starts with a con-
IIl. TRANSFORMATION RECONSTRUCTION OF stant density distribution and the image is reconstructed us-
COMPTON SCATTERING TOMOGRAPHY ing Eq. (28) in which w(r,;p,¢) is evaluated from Egs.
In the above section, we have studied the detector re(2? and(25). The reconstructed values pf(r, 6) are used
sponse resulting from Compton scattering, which is called® determinen(r, #;p, ) for the next iteration.
the forward problem. The inverse problem is to reconstruct
the electron density image from the measured detector rdV. DISCUSSION
sponse. Norton has proposed an analytic transform method
for such a reconstruction. However, his method is based o

the response 1_‘unct|o_n to Wh'c_h we cannot relat_e a physwe} ansform method for Compton scattering image reconstruc-
meaning. In this section, we will study the analytic transformti n has been done based on the response function we ob-

method based on our response fun(_:tlon. It has be_en POINt§Cined. Different from Norton’s procedure, we start with an
out that the crucial point for validating the analytic recon- initial analysis of the process of Compton scattering and ob-

struction (|js _trlattf:l]e ]:ntegg.ral nucleu\gfr,e;p "Z) tﬁan ?r? de} tain the detector response function by accurate mathematical
composed into two functions, one af,¢) and the other o derivations. The target studied here is a thin slice and the

(p,¢). It has been shown in the previous section that OU ariations in the direction perpendicular to this slice are ne-

fresgo?ﬁt;:hfunct!gn ct:an (l;)e de;tcomcﬁ)ct;sed When thle ittﬁn:flat\"% cted, hence the problem can be regarded as a quasi-two-
orbo € Incident and scatiered beams IS Negiected. HoVimensional problem. However, since the Compton scatter-

ever, we ca_nnot decomp_ose_ 't_ if the attenuation is ConSIdi'ng takes place in three dimensions, the process can only be
ered. This circumstance is similar to that of Norton. There

¢ the t P ructi thod develobed in R }understood in three dimensions. Our response function di-
ore, the transiorm reconstruction method developed in erectIy corresponds to the actual measurement—the photon

13 can still be used for Compton scattering image recon- : . :
. . . . - ount rate in an ener ap determined by the detector dis-
struction. The detailed discussion of this transform methoc(f: gy 9ap y

be found in th K of Norton. We brief it rimination at different energy levels. From the response
Ezpe € found in the work of Norton. We briet some resultSe ., tion presented in Ed21), we can see that the quantity

o . I(p,¢) has a dimension of ]! which is in accordance
If the attenuation is neglec_:ted, the. integral r"JCleu%Nith the definition of the count ratghe count per unit time
w(r,6;p,¢) can be decomposed into functions, one i}

. . There are two problems in the response function pre-
and the other of 4,¢). In this case the electron density sen P b P

. / ted by Norton. First, the response functlgp, ) ob-
image can be analytically reconstructed from the deteCto{ained there has a dimension[df] X[ T]~* which is not in
response through the following formula

accordance with the definition. Second, it is difficult to as-

We have presented a detector response function for the
ompton backscattering in this article. The validation of the

1 (2= o l(p,d) sign any physical meaning tdp,¢) and it does not corre-
pe(r,0)= —Zf d¢J pdpm spond to the actual measurement.

™o 0 P In conclusion, the transform method proposed by

X h[r—2pcog 6— )], (26) Norton'® is suitable for the image reconstruction from the

Compton scattering energy spectral data, although it was

based on a problematic detector response function. We solve

, the problems of Norton’s response function based on the
h(x)= _wef'gx|§|d§- (27)  physical and mathematical analysis and derivations. The re-

construction formulas presented by Norton can be directly

In the case when the attenuation cannot be neglected, thged here except that the integral nuclaushould be evalu-

integral nucleusn(r, 6;p,¢) can no longer be decomposed ated with the formulas derived by us.

and the reconstruction of Eq26) cannot be obtained. If

ur)iform attenuatipn is considered, the Fietector response i$p. Lale, Phys. Med. Biok, 159 (1959,

still a linear function of the electron density. An approximate 2;_j gattista, L. W. Santon, and M. J. Bronskill, Phys. Med. E28].220

reconstruction formula can then be developed (1977.
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