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Compton scattering can be used to determine the electron densities of tissues for medical
applications and those of materials for industrial applications. Much work has been devoted in
solving the reconstruction problem. Norton proposed an analytic transform method for the
reconstruction of Compton scattering tomography@J. Appl. Phys.76, 2007~1994!#. However, it is
difficult to relate the response function presented by Norton to the measurement quantity. The aim
of this article is to present an improved form of the detector response function which corresponds
to the actual measurement and to verify the validation of the transform method for this problem.
© 1999 American Institute of Physics.@S0021-8979~99!02215-X#
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I. INTRODUCTION

The effect of Compton scattering is a kind of intera
tions between the electrons and high energy~over 100 keV
to compete against the photoelectric effect! photons. The first
introduction of this effect to the electron density measu
ment and imaging was done by Lale in 1959.1 From then on,
Compton scattering has been used in radiotherapy treatm
planning,2 bone density measurement,3 lung function
estimation,4 and heart motion detection.5 Besides the medica
applications, Compton scattering has also been used in
nondestructive testing~NDT! for industrial applications.6

Comparing the Compton scattering imaging techniq
with the conventional transmission tomography, the scat
ing technique has some attractive superiorities. First, we
have more freedom in selecting the relative positions o
radiation source and detectors and can arrange the sourc
detectors on the same side of the examined sample, whi
very important for a superficial testing or for objects embe
ded under ground. Second, this technique has greater s
tivity in density variations for low density materials7 and for
superficial measurement.8 The third merit is that we can ob
tain direct three-dimensional~3D! density images by using
this technique.9 Furthermore, this technique can have larg
relative contrast and is more dose efficient for thin objec7

Different methods have been developed correspond
to different experimental configurations for the Compt
scattering imaging technique.10 A representative one of thos
methods is to reconstruct the electron density image from
scattering energy spectral data, which was first proposed
Farmer and Collins.11 A crucial requirement of this metho

a!Electronic mail: enzheru@polyu.edu.hk
1690021-8979/99/86(3)/1693/6/$15.00
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is the availability of the detector with both good position a
energy sensitivity. Utilizing the energy spectral data, Huss
et al.proposed to reconstruct the density image by iteratio12

while Norton proposed an analytic formula for the reco
struction when attenuation is neglected.13 If the attenuation is
considered, an iteration procedure was proposed by No
beginning with a homogeneous initial guess. However
seems difficult to relate the response functions presente
Norton to the actual measurement—the detector count ra
an energy increment at a series of energy levels. Hence
parametersw1 andw2 presented there are difficult to be use
for the real reconstruction.

As in the paper of Norton, we have studied the analy
reconstruction of the density image for a quasi-tw
dimensional thin slice from the Compton scattering ene
spectral data. Although the slice can be regarded as a qu
two-dimensional one, the response function will be obtain
through a three-dimensional analysis due to the fact that
Compton scattering is a three-dimensional effect. Throu
accurate mathematical derivations, the detector respo
which corresponds to the actual measurement, is obtai
The derivations begin with a general discussion in the s
tering problem. From the final response function, it was d
covered that our response function has a similar form as
of Norton and hence the analytic method proposed by Nor
can be directly adopted except that the parame
w(r ,u;r,f) should be evaluated using our formula. Th
main contribution of this article is that we have presented
improved form of the response function and validated
transform method proposed by Norton for the Compton sc
tering image reconstruction. Detailed derivations and disc
sions are presented in the following sections.
3 © 1999 American Institute of Physics
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FIG. 1. Shematic diagram of general scattering.
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II. PHYSICAL MODEL

A. General description of scattering problem

When a beam of particles incident on a target tha
composed of another kind of particles with number densitr
~as shown in Fig. 1!, the detector count rate can be express
as14

dN~a!5F
ds

dV
~a!rdVdV, ~1!

where

~1! dN(a) is the count rate of the detector for the scatte
particles at the scattering anglea.

~2! F is the flux of the incident beam.
~3! ds/dV (a) is the differential scattering cross section

scattering anglea.
~4! dV is the solid angle subtended by the face of the

tector to the scattering point.
~5! dV is volume of the target.

From the above equation, we can see that the differen
scattering cross section can be regarded as the surface
perpendicular to the incident beam that each target par
presents to the beam particle per-unit solid angle at scatte
anglea.14

B. Free attenuated detector response for Compton
back scattering

Several physical processes can take place between
tons and electrons. In theg-ray energy regime from 0.1 to
1.0 MeV and for materials with low to intermediate atom
numbers, Compton scattering will dominate all the inter
tions between photons and electrons. Following the met
for describing the general scattering process depicted ab
the detector response when the attenuation of both the
dent and scattered beams is neglected will be presente
this section.

Suppose a beam ofg-ray photons with energyE0 inci-
dent on a target as shown in Fig. 2. Neglecting the atten
tion of the incident and scattered beams and considering
single scattering approximation, we can express the pho
count ratedN(r ,u,xd) of an ideal point detector resultin
from the point (r ,u) in the polar system as

dN~r ,u,xd!5F~u!
ds

dV
@E0 ,a~r ,u,xd!#re~r ,u!dVDV,

~2!
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where

~1! F(u) is the photon flux at angleu.
~2! re(r ,u) is the electron number density at the point (r ,u).
~3! dV is a small volume element.
~4! a(r ,u,xd) is the scattering angle as shown in Fig. 2.
~5! ds/dV (E0 ,a) is the Klein–Nishina differential scatter

ing cross section for photons with energyE0 at scatter-
ing anglea. This differential scattering cross section ca
be given by

ds

dV
~E0,a!5

re
2

2 F 1

@11k~12cosa!#2

3S11cos2 a1
k2~12cosa!2

11k~12cosa!DG, ~3!

wherek5 E0 /m0c2 , m0 is the rest mass of the electron
c is the velocity of light in vacuum.

~6! DV is the solid angle subtended by the detector face
the scattering point and can be expressed as

DV5
DA sinb

r d
2

, ~4!

whereDA is the area of one detector element atxd , r d is
the distance between the detector and the scatte
point, b is the angle between thex axis andr d .

From the geometry in Fig. 2, the volume elementdV can
be expressed as

dV5rdudrDz, ~5!

where Dz is the thickness of the thin slice inz direction
which is determined from the width of the incident beam
this direction~z axis is perpendicular to the paper plane!. On
the other hand, if the source is confined to the plane of
thin slice and it can be described with a functionS(u) @S(u)
stands for the emission rate distribution of the radiat
source#, we can have the following form for the flux a
angleu

F~u!5
S~u!du

rduDz
5

S~u!

rDz
. ~6!

Substituting Eqs.~5! and~6! into Eq. ~2!, the detector count
rate then can be written as
cense or copyright; see http://jap.aip.org/about/rights_and_permissions
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FIG. 2. Shematic diagram of Compton scattering.
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dN~r ,u,xd!

5S~u!du
ds

dV
@E0 ,a~r ,u,xd!#re~r ,u!drDV. ~7!

If we choose (a,u,xd) as variables, Eq.~7! becomes

dN~a,u,xd!

5S~u!du
ds

dV
~E0 ,a!dare@r ~a,u,xd!,u#DVuJu, ~8!

whereJ is theJacobiandeterminant which can be express
as

J5
]~r ,u,xd!

]~a,u,xd!
5U ]r

]a

]r

]u

]r

]xd

]u

]a

]u

]u

]u

]xd

]xd

]a

]xd

]u

]xd

]xd

U . ~9!

Considering the geometry in Fig. 2, there exists the follo
ing relation,

r 5xd

sin~u1a!

sina
. ~10!

Using the above relation, theJacobiandeterminant can be
given as

J52xd

sinu

sin2 a
. ~11!
Downloaded 06 Nov 2011 to 158.132.161.9. Redistribution subject to AIP li
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In order to obtain the photon count rate in an energy inc
mentDE for different scattered energiesE ~that is the actual
measurement!, we should use (E,u,xd) instead of (a,u,xd).
After the variable transformation, we have the following e
pression fordN(E,u,xd),

dN~E,u,xd!5S~u!du
ds

dV
@E0 ,a~E,u,xd!#dEre

3@r ~E,u,xd!,u#DVuJuuJ8u, ~12!

whereJ8 is also aJacobiandeterminant which has a simila
form as in Eq.~9!. For the evaluation of the above determ
nant, the Compton equation is adopted. The Compton eq
tion, which relates the energyE of the scattered photons an
the scattered angle, has the following form:

E5
E0

11k~12cosa!
. ~13!

From the Compton equation, theJacobiandeterminantJ8
can be given by

J852
@11k~12cosa!#2

E0k sina
. ~14!

Combining Eqs.~11!, ~12!, and~14!, we can obtain the fina
form for dN(E,u,xd)
cense or copyright; see http://jap.aip.org/about/rights_and_permissions
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dN~E,u,xd!

5S~u!du
ds

dV
@E0 ,a~E,u,xd!#dEre@r ~E,u,xd!,u#DV

3xd

sinu@11k~12cosa!#2

E0 ksin3 a
. ~15!

The photon count rateI (E,xd) of the detector at energyE
with an energy incrementDE can then be obtained by inte
gratingdN(E,u,xd) with respect tou,

I ~E,xd!5E
0

p

dN~E,u,xd!uE

5E
0

p

duS~u!
ds

dV
@E0 ,a~E,u,xd!#DEre

3@r ~E,u,xd!,u#DV

3xd

sinu@11k~12cosa!#2

E0k sin3 a
. ~16!

On the other hand, the photons scattered from the locat
on each circle passing through both the source and the
tector will have the same scattering angle and hence have
same scattering energy. Such a scattering circle can be g
in polar form by

r 52r cos~u2f!, ~17!

wherer is the radius of the circle

r5
xd

2 cosf
~18!

andf is the angle between thex axis and the line from the
source~origin! to the center of the circle. It can be show
that f5p/22a.13 Using the above relations, we can tran
form the one-dimensional integration into a two-dimensio
one by introducing a Diracd function in the integral func-
tion,

I ~E,xd!5E
0

p

duE
0

`

drS~u!
ds

dV

3@E0 ,a~E,u,xd!#DEre~r ,u!DV

3xd

sinu@11k~12cosa!#2

E0k sin3 a

3d@r 22r cos~u2f!#. ~19!

Substituting Eq.~4! into the above equation and noticing th
fact thatr d5xd (sinu/sina) and sinb5r (sina/xd ), we have

I ~E,xd!5E
0

p

duE
0

`

drS~u!
ds

dV
@E0 ,a~E,u,xd!#DEre~r ,u!

3
DAr@11k~12cosa!#2

xd
2 sinuE0k

d@r 22r cos~u2f!#.

~20!
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The variable pairs (xd ,E) and (r,f) are inter-related
through Eqs.~13! and ~18!. Thereafter, we can also us
(r,f) instead of (xd ,E) and have the following expression

I ~r,f!5E
0

p

duE
0

`

drw~r ,u;r,f!re~r ,u!

3d@r 22r cos~u2f!#, ~21!

where

w~r ,u;r,f!5
ds

dV
~E0 ,f!

DAS~u!r @11k~12sinf!#2DE

E0k sinu~2r cosf!2
.

~22!

The integral nucleusw(r ,u;r,f) can be decomposed int
two functions, one of (r ,u) and the other of (r,f). That is,
w(r ,u;r,f)5w1(r ,u)w2(r,f), where

w1~r ,u!5
DAS~u!r

sinu
,

~23!

w2~r,f!5
ds

dV
~E0 ,f!

@11k~12sinf!#2

E0k~2r cosf!2
DE.

Hence, we can express the detector count rate function

I ~r,f!5w2~r,f!E
0

p

duE
0

`

drw1~r ,u!re~r ,u!

3d@r 22r cos~u2f!#. ~24!

We have finally obtained the detector responseI (r,f) of the
Compton scattering. This response stands for the pho
count rate of an ideal point detector positioned atxd(r,f)
and measured at energyE(f) within a energy incremen
DE, whereDE is the energy discrimination of the point de
tector. Different from that quantity obtained by Norton
Ref. 13 to which it is difficult to relate any physical meanin
our response function corresponds to the actual measure
of the detector.

C. Attenuated detector response of Compton back
scattering

The detector response function obtained above is ap
cable only when the attenuation of both the incident and
scattered beams is neglected. However, in the practical
ation, the attenuation is an important process and the m
surements are seriously affected by such attenuation. In
eral, the attenuation factor can be described as

f ~E0 ,E!5expF2s~E0!E
LS

re~r ,u!dlS2s~E!

3E
LD

re~r ,u!dlDG , ~25!

wheres(E0) ands(E) are the total scattering cross sectio
at energyE0 andE, respectively. These total scattering cro
sections can be obtained from the integrations of the Kle
Nishina formula with respect to the solid angle at those
ergies.
cense or copyright; see http://jap.aip.org/about/rights_and_permissions
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In the case when the attenuation of both the incident
the scattered photons is accounted, the photon count ra
the ideal point detector can be obtained from Eq.~21! except
that w(r ,u;r,f) should be multiplied byf (E0 ,E). How-
ever, owing to the introduction of the attenuation fact
there are two new problems withw(r ,u;r,f). First, it can
no longer be decomposed into two functions of (r ,u) and
(r,f). Second,w is now a function ofre(r ,u) and thus the
detector response depends nonlinearly on the electron
sity. It has been shown by Norton that these problems p
vent us from using an accurate transform method for
reconstruction.

III. TRANSFORMATION RECONSTRUCTION OF
COMPTON SCATTERING TOMOGRAPHY

In the above section, we have studied the detector
sponse resulting from Compton scattering, which is cal
the forward problem. The inverse problem is to reconstr
the electron density image from the measured detector
sponse. Norton has proposed an analytic transform me
for such a reconstruction. However, his method is based
the response function to which we cannot relate a phys
meaning. In this section, we will study the analytic transfo
method based on our response function. It has been poi
out that the crucial point for validating the analytic reco
struction is that the integral nucleusw(r ,u;r,f) can be de-
composed into two functions, one of (r ,u) and the other of
(r,f). It has been shown in the previous section that
response function can be decomposed when the attenu
for both the incident and scattered beams is neglected. H
ever, we cannot decompose it if the attenuation is con
ered. This circumstance is similar to that of Norton. The
fore, the transform reconstruction method developed in R
13 can still be used for Compton scattering image rec
struction. The detailed discussion of this transform meth
can be found in the work of Norton. We brief some resu
here.

If the attenuation is neglected, the integral nucle
w(r ,u;r,f) can be decomposed into functions, one of (r ,u)
and the other of (r,f). In this case the electron densi
image can be analytically reconstructed from the dete
response through the following formula

re~r ,u!5
1

p2E0

2p

dfE
0

`

rdr
I ~r,f!

w~r ,u;r,f!

3h@r 22rcos~u2f!#, ~26!

where

h~x!5E
2`

`

e2 i jxujudj. ~27!

In the case when the attenuation cannot be neglected
integral nucleusw(r ,u;r,f) can no longer be decompose
and the reconstruction of Eq.~26! cannot be obtained. I
uniform attenuation is considered, the detector respons
still a linear function of the electron density. An approxima
reconstruction formula can then be developed
Downloaded 06 Nov 2011 to 158.132.161.9. Redistribution subject to AIP li
d
of

,

n-
e-
e

e-
d
t
e-
od
n

al

ed

r
ion
w-
d-
-
f.
-
d
s

s

r

he

is

re~r ,u!5
1

p2E0

2p

dfE
0

rmax
rdr

I ~r,f!

W~u;r,f!

3h@r 22r cos~u2f!#, ~28!

where

W~u;r,f!5w@2r cos~u2f!,u;r,f#. ~29!

In the above integration, the infinitive upper limit has be
changed tormax. This means that we impose an upper lim
on the radii of the scattering circles over which data a
collected. If nonuniform attenuation is considered, the det
tor response is a nonlinear function of the electron density
was proposed by Norton that the reconstruction can be
complished by iteration. The whole process starts with a c
stant density distribution and the image is reconstructed
ing Eq. ~28! in which w(r ,u;r,f) is evaluated from Eqs
~22! and ~25!. The reconstructed values ofre(r ,u) are used
to determinew(r ,u;r,f) for the next iteration.

IV. DISCUSSION

We have presented a detector response function for
Compton backscattering in this article. The validation of t
transform method for Compton scattering image reconstr
tion has been done based on the response function we
tained. Different from Norton’s procedure, we start with
initial analysis of the process of Compton scattering and
tain the detector response function by accurate mathema
derivations. The target studied here is a thin slice and
variations in the direction perpendicular to this slice are
glected, hence the problem can be regarded as a quasi-
dimensional problem. However, since the Compton scat
ing takes place in three dimensions, the process can onl
understood in three dimensions. Our response function
rectly corresponds to the actual measurement—the ph
count rate in an energy gap determined by the detector
crimination at different energy levels. From the respon
function presented in Eq.~21!, we can see that the quantit
I (r,f) has a dimension of@T#21 which is in accordance
with the definition of the count rate~the count per unit time!.

There are two problems in the response function p
sented by Norton. First, the response functionI (r,f) ob-
tained there has a dimension of@L#21@T#21 which is not in
accordance with the definition. Second, it is difficult to a
sign any physical meaning toI (r,f) and it does not corre-
spond to the actual measurement.

In conclusion, the transform method proposed
Norton13 is suitable for the image reconstruction from th
Compton scattering energy spectral data, although it w
based on a problematic detector response function. We s
the problems of Norton’s response function based on
physical and mathematical analysis and derivations. The
construction formulas presented by Norton can be dire
used here except that the integral nucleusw should be evalu-
ated with the formulas derived by us.
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