Investigation of Ge nanocrystals in a metal-insulator-semiconductor structure with a HfO2/SiO2 stack as the tunnel dielectric

Shiye Wang
The Research Center of Semiconductor Functional Film Engineering Technology, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China

Weili Liu
The Research Center of Semiconductor Functional Film Engineering Technology, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China and Department of Applied Physics, Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China

Qing Wan
The Research Center of Semiconductor Functional Film Engineering Technology, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, People’s Republic of China

J. Y. Dai and P. F. Lee
Department of Applied Physics, Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China

Qinwo Shen, Miao Zhang, Zhitang Song, and Chenglu Lin
The Research Center of Semiconductor Functional Film Engineering Technology, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China

(Received 2 June 2004; accepted 10 January 2005; published online 8 March 2005)

A metal-insulator-semiconductor (MIS) structure containing a HfO2 control gate, a Ge nanocrystal-embedded HfO2 dielectric and a HfO2/SiO2 stack layer as tunnel oxide, was fabricated by an electron-beam evaporation method. High-resolution transmission electron microscopy study revealed that the HfO2/SiO2 stack layer minimized Ge penetration, leading to the formation of Ge nanocrystals that are self-aligned between the tunnel oxide and the capping HfO2 layer. Influence of different annealing conditions on the formation and distribution of Ge nanocrystals was studied. Current–voltage (I–V) and capacitance–voltage (C–V) measurements revealed promising electrical characteristics of the MIS structure, and relatively high stored charge density of 10^{12} cm^{-2} was achieved. © 2005 American Institute of Physics. [DOI: 10.1063/1.1864254]

Recently, much efforts have been made to improve the device performance of nanocrystal memory by replacing the SiO2 with various dielectrics such as oxynitride,1 Al2O3,2,3 ZrO2,4 and SiN5,6 King et al.7 demonstrated that a Ge nanocrystal memory device can be programmed at a relatively low voltage and high speed. In our previous work, electric characteristics, and the negative photoconductivity of Ge nanoclusters embedded in Al2O3 or in ZrO2/Al2O3 gate dielectrics have been investigated.8,4 Considerable attention is now being paid to HfO2 as a gate dielectric due to its relatively high dielectric constant (high-k), large band-gap and proper band-offset. Results indicated that the use of high-k dielectric on Si as a tunnel layer offers a lower electron barrier height at the dielectric/Si interface and larger physical thickness, resulting in faster programming and longer retention than is found in a conventional SiO2 tunnel layer.9 Unfortunately, interfacial oxides, silicates and silicides were often observed during film deposition or subsequent annealing,10–13 and thus strongly affect the memory device’s performance and leads to unstable channel mobility and threshold voltage. Ng et al.14 reported earlier the penetration of Ge through the rapid thermal oxide layer into the silicon substrate and consequently the absence of hysteresis in the capacitance–voltage (C–V) curves. By implementing a silicon nitride/HfO2 stack as a tunnel dielectric, Ge penetration was suppressed and an excellent C–V hysteresis has been achieved. However, Ge nanocrystals were not uniform distributed and pronounced as illustrated by the transmission electron microscopy (TEM) images. In this letter, we report the implementation of the HfO2/SiO2 stack layer as a tunnel oxide and the formation of uniform Ge nanocrystals, thus improved charge-storage effects.

The HfO2/HfO2+Ge/HfO2/SiO2/Si structure was deposited by high vacuum electron-beam evaporation at room temperature on hydrofluoric acid treated p-type (100) silicon at room temperature. First, a SiO2 film with a thickness of 4 nm was deposited on silicon substrate, and a 3 nm-thick HfO2 film was deposited subsequently. The HfO2/SiO2 stack structure was used as tunneling oxide layer. A HfO2+Ge (HfO2:Ge=5:2) film with a thickness of 8 nm was codeposited on the HfO2 film as a floating gate layer. Finally, the capping HfO2 film with a thickness of 40 nm was deposited. After deposition, the samples were annealed at 600–800 °C for 30–45 min in N2 ambient. Metal electrodes were formed by the evaporation of aluminum. As a comparative experiment, a single layer of HfO2 was also used as tunnel oxide...
for the floating gate structure. Ge nanocrystals and interfacial structures were investigated by high-resolution transmission electron microscopy (HRTEM), and the charge storage effect of the MIS structure was characterized by capacitance–voltage (C–V) and leakage current measurements.

Figure 1(a) shows the HRTEM image of the HfO₂/HfO₂+Ge/HfO₂/SiO₂/Si stack structure, which was annealed at 600 °C for 30 min. It can be seen that the interfaces between the Si/SiO₂ and SiO₂/HfO₂ are fairly sharp. Ge nanocrystals can also be identified in the image, even though the layer is somewhat continuous. After being annealed at 800 °C for 45 min, it is apparent, as shown in Fig. 1(b), that the self-aligned Ge nanocrystals with diameters of around 10 nm are much more pronounced compared to Fig. 1(a). It is worthy noting that all of the Ge nanocrystals are located between the HfO₂ tunnel layer and the capping layer.

This result is similar to that of Si nanocrystals embedded in SiO₂ reported earlier by Ho and co-workers. We believe that the formation of Ge nanocrystals is a physical process containing nucleation and growth, so that an optimized annealing condition is essential for the formation of Ge nanocrystals with the proper size and density. We also believe that the size of nanocrystals can be controlled by varying the thickness of the HfO₂+Ge mixed layer.

Figure 1(c) is a HRTEM image showing the stack structure using a single 6-nm-thick HfO₂ tunnel layer, which was annealed at 800 °C for 45 min. Uniformly distributed and pronounced Ge nanocrystals with an average size of 6 nm can be clearly seen. However, during the high temperature annealing, a SiO₂ interfacial layer was also formed.

Figure 2 exhibits the I–V characteristics of different samples. As shown Fig. 2(a), the sample with the stack tunnel layer and annealed at 600 °C for 30 min shows the lowest leakage of current. However, the sample annealed at 800 °C for 45 min possesses a larger leakage of current, as shown in Fig. 2(b). The well-crystallized HfO₂ film, as illustrated in Fig. 1(b), may provide channels for the leakage of current. Nevertheless, the amorphous SiO₂ layer ensures the low leakage current. The leakage current of the sample with single HfO₂ tunnel oxide is relatively large, even with the presence of an amorphous layer of SiO₂ post-annealing formed. This may be due to the lack of oxygen in the formed SiO₂ layer (in fact it is SiO₂−ₓ), that results in a higher leakage of current.

The charge-storage characteristic of the Ge nanocrystals was characterized by means of a high-frequency (1 MHz) C–V measurement of the MIS structure. It revealed that all of the samples possess counterclockwise hysteresis C–V loops. As a rough estimation, the width of the C–V hysteresis can be determined by the number of charges stored in the Ge nanocrystals. In Fig. 3(a), the maximum hysteresis width is obtained in the sample annealed at 600 °C for 30 min, suggesting maximum nanocrystal density. As the annealing temperature increases further to 800 °C, the hysteresis width (ΔVFB) decreases, suggesting a decrease of nanocrystals density due to the agglomeration of Ge nanocrystals. This result is similar to that of the Ge nanocrystals embedded in SiO₂ as reported earlier by Kim et al. Another reason for the reduction of ΔVFB may be attributed to the trapping of electrons or holes in the gate dielectrics and interfaces.
caused by high temperature annealing. The samples annealed at 600 °C for 30 min ($\Delta V_{FB}=0.98$ V and $C_{ox}=46.28$ pF) and at 800 °C for 45 min ($\Delta V_{FB}=0.34$ V and $C_{ox}=81.34$ pF) possess the stored charge densities of 2.3 and 3.3×10^{12} cm$^{-2}$, respectively, as calculated using the formula:

$$N = C_{ox} \Delta V_{FB} / q \text{ratio},$$

(1)

where C_{ox} is the oxide capacitance and ΔV_{FB} is the flat-band voltage shift. The factor, r_{ratio}, is the thickness ratio of $(t_{\text{gateox}}+0.5D_n)/t_{\text{total}}$. t_{gateox}, D_n, and t_{total} are the thickness of the cap gate oxide, the nanocrystal diameter and the total thickness of the MIS structure, respectively. Though the sample annealed at 600 °C for 30 min has the largest ΔV_{FB}, its small slope may be attributed to a significant amount of discharging that occurred concurrently with either the charging of holes or electrons, suggesting that it may have a poorer charge retention capability than the other samples. In fact, the continuous nature of the Ge nanocrystals in the sample annealed at 600 °C for 30 min should be responsible for charge loss through lateral paths.

The $C-V$ characteristics of the sample with only a HfO$_2$ tunnel oxide layer is shown in Fig. 3(b). Though we can still observe the hysteresis in $C-V$ curves ($\Delta V_{FB}=0.28$ V and $C_{ox}=67$ pF), there is an unexpected distortion in the curve due to the poor quality of the SiO$_2$ tunnel oxide mentioned before. By formula (1), we can also approximately calculate the stored charge density in the sample, i.e., 1.48×10^{12} cm$^{-2}$, which revealed that the sample with a HfO$_2$/SiO$_2$ stack layer as tunnel oxide has a better capability to store charges.

In conclusion, we have fabricated the HfO$_2$/HfO$_2$ + Ge/HfO$_2$/SiO$_2$/Si structure through high vacuum electron-beam evaporation at room temperature. It has been revealed that the HfO$_2$/SiO$_2$ stack tunnel layer minimizes the Ge penetration into the Si substrate and therefore, uniform and self-aligned Ge nanocrystals can be formed between the tunnel oxide and the capping HfO$_2$ layer, leading to an excellent charge storage capability and an extremely low leakage current. We have also shown that it is possible to control the size and the distribution of the Ge nanocrystals through proper annealing conditions.

This work described was supported by the National Natural Science Foundation of China (60201004), by Grants from the Shanghai Nanotechnology Promotion Center (0252nm084 and 0359nm004) and by an Internal Research Grant No. (G-YD55) from the Hong Kong Polytechnic University.