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Small-shuffle surrogate data: Testing for dynamics in fluctuating data with trends
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We describe a method for identifying dynamics in irregular time series (short term variability). The method
we propose focuses attention on the flow of information in the data. We can apply the method even for irregular
fluctuations which exhibit long term trends (periodicities): situations in which previously proposed surrogate
methods would give erroneous results. The null hypothesis addressed by our algorithm is that irregular fluc-
tuations are independently distributed random variables (in other words, there is no short term dynamics). The
method is demonstrated for numerical data generated by known systems, and applied to several actual time

series.
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There are many natural phenomena that show irregular
fluctuations (short term variability). The question of whether
the fluctuations are random or not is an old one and ex-
tremely important. If the fluctuations are not random, then
they are due to some kind of dynamical structure and then it
might be possible to build deterministic models or model
systems from the time series. Clearly, such models are of
immense value for both understanding and predicting the
time series. To investigate whether the data can be fully de-
scribed by independent and identically distributed (IID) ran-
dom variables, the random-shuffle surrogate (RSS) method
has been proposed [1]. Although this method is effective for
time series with no trends (periodicities) like that shown in
Figs. 1(a) and 1(b), the algorithm is ineffective for data ex-
hibing slow trends or periodicities [see Figs. 1(c) and 1(d)].
Such cases are theoretically incompatible with the assump-
tion of the RSS method as well as other linear surrogate tests
[1,2]. There is currently no method which can tackle this
problem. In this Communication, to investigate whether
there is dynamics in data which also exhibits irregular fluc-
tuations, we introduce such a method.

The basic premise of this technique is that if irregular
fluctuations are not random, then there is some kind of un-
derlying dynamical system: whatever trending is contaminat-
ing the data. In such a case, the data index (order) itself has
important implications irrespective of whether time series are
linear or nonlinear. Hence, whenever the index changes, the
flow of information also changes and the resultant time series
no longer reflects the original dynamics. We focus our atten-
tion on this point and propose a surrogate method using this
idea. The purpose of our method is to distinguish between
irregular fluctuations with or without dynamics.

After describing our technique, we will present our choice
of discriminating statistic. Then, we will apply this algorithm
to two cases using simulated time series data. One case is
that data have no trend (this case can also be adequately
addressed with the standard surrogate methods). The other
case is that data have trends (this case is not consistent with
existing surrogate techniques). In each case, the data we use
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are both noise free and subsequently contaminated by 10%
Gaussian observational noise. Also, we apply the method to
three actual time series: cobalt data, nuclear magnetic reso-
nance (NMR) laser data, and daily sunspot numbers.

To investigate irregular fluctuations (especially when they
are with long term trends), we want to destroy local struc-
tures or correlations in irregular fluctuations (short term vari-
ability) and preserve the global behaviors (trends). To gener-
ate such surrogate data, we shuffle the data index on a
“small” scale: this is in contrast to the RSS method where the
data index is shuffled on a “large” scale and any structure of
the original data is destroyed. We generate surrogate data as
follows: Let the original data be x(z), let i(r) be the index of
x(¢) [that is, i(r)=t, and so x(i())=x(z)], let g(r) be the
Gaussian random number and s(7) will be the surrogate data.

(i) Obtain i’ (r)=i(t) +Ag(z), where A is an amplitude (add-
ing Gaussian random numbers to the index of the original
data). Note that the index i(z) will be a sequence of integers
whereas the perturbed sequences i’ (¢) will not.

(ii) Sort i'(r) by the rank order [9] and let the index of

i'(#) be i() (rank order the perturbed index, thereby generat-
ing a slightly perturbed index of the original data).

(iii) Obtain the surrogate data s(t):x(f(t)) (reorder the
original data with the perturbed index [10]).

When the amplitude A is selected appropriately, the index
is shuffled only on a small scale, where the generated surro-
gate data loses local structures or correlations, but preserve
the global behaviors as much as possible. We call the method
the small shuffle surrogate (SSS) method. The SSS data have
the same probability distribution as the original data. Hence,
the null hypothesis addressed by our algorithm is that irregu-
lar fluctuations (short term variability) are independently dis-
tributed (ID) random variables (in other words, there is no
short term dynamics or determinism). The major difference
between the RSS and SSS methods is that the SSS method
removes the requirement for identically distributed random
variates.

The SSS method changes the flow of information in data.
Hence, we choose to use the autocorrelation function (AC)
and the average mutual information (AMI) as discriminating
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statistics. The AC, an estimate of the linear correlation in
data, and the AMI, a general nonlinear version of the AC on
a time series, can answer the question: on average how much
does one learn about the future from the past [3]. After cal-
culation of these statistics, we need to inspect whether a null
hypothesis shall be rejected or not. We employ Monte Carlo
hypothesis testing and check whether estimated statistics of
the original data fall within or outside the statistics distribu-
tion of the surrogate data [4]. When the statistics fall within
the distribution of the surrogate data, we consider that the
original and the surrogate data may come from the same
population and then the surrogate null hypothesis may not be
rejected. We generate 39 SSS data and then the (two tailed)
significance level is 0.05.

Clearly, the SSS data are influenced primarily by the am-
plitude A. If A is too small, the data are shuffled very little or
not at all, and then the SSS data are almost identical to the
original data. Conversely, if A is too large, data are shuffled
on a large scale, and the SSS data are almost random like the
RSS data. Hence, the smaller the value of A the better, if the
value can destroy local structures and preserve the long term
behaviors.

Figure 2 shows the relationship of the amplitude A and
the data index. Figure 2(a) shows that as A increases, the
number of data points which do not move decreases and the
ratio of maximum move distance increases. To show the in-
fluence of the amplitude visually, we directly compare the
original data and the SSS data at different amplitude A. Fig-
ure 2(b) shows that until A is about 2.0, the behavior of s(z)
is almost the same as the original data (A=0), as the A in-
creases, the behavior of s(¢) becomes more stochastic. This
result indicates that broadly speaking, we should use up to
A=2.0, if we want to generate SSS data which loses the local
structures or correlations of the original data and preserve the
global structures or behaviors. For data with no trend, larger
values of A are available. However, if data have some trends,
large values are not appropriate, because the global behav-
iors are lost and the influence of contaminated trends be-
comes larger than that of irregular fluctuations. In our calcu-
lations [11], we find that A=1.0 is most appropriate and more
than adequate for nearly all purposes, in this case about 50%
of the data points in the SSS data are in the same index as the

original data. Figure 3 shows the typical results of these cal-
culations. Figure 3(a) shows that AC of the original data fall
within the distributions of the SSS data. According to the
criterion mentioned previously, we cannot reject the hypoth-
esis. However, Fig. 3(b) shows that the base line of the SSS
data strays far from that of the original data. That is, AC of
the original data fall outside the distributions of the SSS data,
and then we reject the hypothesis. Therefore, we find that
smaller values of A are more appropriate and moreover
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FIG. 2. The relationship of the amplitude A of Gaussian random
numbers and the index. (a) illustrates (as a function of shift ampli-
tude A) the proportion of points that are unperturbed by the SSS
algorithm (@) and the maximum distance that any point in the
original data are perturbed in the surrogate (A, expressed as a frac-
tion of the data length). (b) illustrates the effect of different values
of A. The original data are generated by x(r)=t, 1<r=<100. If the
SSS and original data are identical, then the curve should be a
straight line. If the SSS data are equivalent to an ordinary RSS data
set, then the curve should be IID.

056216-2



SMALL-SHUFFLE SURROGATE DATA: TESTING FOR...

PHYSICAL REVIEW E 72, 056216 (2005)

0.75F i
Q
<< 0.7 i
0.65 E
0 5 10 _ 15 20 25 0 5 10 _ 15 20 25
(a) Time lag (b) Time lag

FIG. 3. (Color online) A plot of the AC for Gaussian random number with x component of the Rossler equations: (a) A=1.0 and (b)
A=5.0, where the number of SSS data is 39. The solid line is the original data and dotted lines are the SSS data.

A=1.0 is large enough. We note that although we expect this
value is appropriate in most cases, the value of A will depend
on features of data, and smaller or larger values may be
justified in some situations.

We now demonstrate the application of our algorithm, and
confirm our theoretical arguments with several cases. In each
case the number of data points used is 5000; the data used
are both noise free and contaminated by 10% Gaussian ob-
servational noise. The first application is to data with no
trend. We use Gaussian random numbers as data with no
dynamics. To study data with dynamics, we use the follow-
ing models.

(1) The linear autoregressive (AR) model given by x,
=a;x,_+agx,_¢+ 7, (Ref. [5]), where we use a;=0.3, a4
=0.2, and 7, is Gaussian dynamical noise with standard de-
viation (SD) 1.0.

(2) The Tkeda map given by
f(x,y) =1 + u(x cos -y sin 6), w(x sin O+ y cos 6)),

where f=a—b/(1+x*>+y?) with ©=0.83, a=0.4, and 56=6.0
(Ref. [6]). Also, to investigate when systems are contami-
nated stochastically, we add Gaussian dynamical noise
with SD 0.04 to both the x and y components.

(3) The logistic map given by x,=ax,_;(1.0-x,_;) where
a=4.0 (Ref. [7]).
In all cases, we use x, as the observational data. We plot
results for the cases of Gaussian random numbers, the Ikeda
map, and the Ikeda map perturbed by dynamical noise with
10% observational noise.

Figures 4(a) and 4(b) show that when there is no dynam-
ics (that is, data are Gaussian random numbers), the AC and
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FIG. 4. (Color online) A plot of the AC and the AMI: (a) and (b) Gaussian random number, (c) and (d) the Tkeda map, and (e) and (f)
the Ikeda map with dynamical and 10% observational noise, where we use A=1.0 and 39 SSS data. The solid line is the original data and

dotted lines are the SSS data.
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FIG. 5. (Color online) A plot of the AC and AMI: (a) and (b) Gaussian random number, (c) and (d) the Tkeda map, and (e) and (f) the
Ikeda map with dynamical and 10% observational noise, with x component of the Rossler equations, where we use A=1.0 and 39 SSS data.
The solid line is the original data and the dotted lines are the SSS data.

the AMI of the original data fall within the distributions of
the SSS data. However, in other cases, that is, when there is
dynamics, even if systems and data are contaminated sto-
chastically, AC or AMI, or both, are distinct. Here, we note
that some differences clearly appear when the time lag is
relatively small, because the information in the systems is
not retained for longer periods of time. When the data are
contaminated by 10% observational noise, and also when the
amplitude A is larger than 1.0, the results obtained are essen-
tially the same.

The second application is to data with trends, where the
Rossler equations are used to generate a slow trend. The
equations are given by

x=—(y+z), y=x+ay, Z=b+zlx-c),

where @¢=0.3909, b=2.0, ¢=4.0, when calculated using the
fourth order Runge-Kutta method with sampling interval
0.02. The equations when using these parameters exhibits
period 6 behavior [8]. Data generated using the same models
as above are added to the x component of the equations,
where both the systems are independent, and the level of
additional data to the data are equivalent to 56.2% (5 dB)
observational noise at each case. See the behaviors in Fig.
1(d).

Figure 5 shows the results for these data. Figures 5(a) and
5(b) again show that when there is no dynamics in the ir-
regular fluctuations, AC and AMI of the original data fall

within the distributions of the SSS data, however, AC, or
AMI, or both are distinct when there is dynamics. In all
cases, especially when the time lag is larger, behaviors of AC
and AMI of the SSS data are very similar to that of the
original data. This indicates that the local structures are de-
stroyed and the global structures are preserved in the SSS
data. When the data are contaminated by 10% observational
noise, the results are essentially the same.

Figures 4 and 5 show that when irregular fluctuations are
Gaussian random numbers (that is, there is no dynamics),
both the AC and the AMI of the original data fall within the
distributions of the SSS data, but when there is dynamics, the
AC or AMI or both fall outside, even if systems and data are
contaminated stochastically. Therefore, applying the SSS
method can detect whether there is dynamics or not using
AC and AML

Based on the result of these computational studies, we
apply the proposed method to three experimental systems:
(1) time intervals of y-ray emissions of cobalt, which has
been recognized as random; (2) a NMR laser data, which has
been known to be nonlinear [2]; and (3) daily sunspot num-
bers from 1 January 1849 to 31 December 2004, which seem
to have trends. See Figs. 1(a)-1(c), respectively. We use
10 000 data points for the former two examples, and 56 978
data points for the daily sunspot numbers.

Figure 6 shows segments of the SSS data and the results.
Figures 6(a), 6(c), and 6(e) show segments of the SSS data.
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FIG. 6. (Color online) Segments of the SSS data and a plot of the AMI: (a) and (b) cobalt data, (c) and (d) the NMR laser data, and (e)
and (f) daily sunspot numbers, where we use A=1.0 and 39 SSS data. The solid line is the original data and the dotted lines are the SSS data

in (b), (d), and (f). The ordinate axis in (a), (c), and (e) is arbitrary.

Figure 6 do not show significant difference between the
original data and the SSS data. Although we do not show the
results of the AC in Fig. 6, the results are essentially the
same as those of the AMI in all case. Figure 6(b) shows that
the AMI of the cobalt data fall within the distributions of the
SSS data. Hence, we consider that the cobalt data have no
dynamics. Figure 6(d) shows that the AMI of the NMR laser
data fall outside the distributions of the SSS data. Hence, we
consider that the NMR laser data have dynamics. These re-
sults are in agreement with the previously obtained under-
standing of these data. Figure 6(f) also shows that the AMI
of the daily sunspot numbers fall outside the distributions of

the SSS data. Hence, we conclude that irregular fluctuations
in the daily sunspot numbers have some kind of short term
(interday) dynamics.

We have described an algorithm for investigating whether
there is dynamics in irregular fluctuations. This method may
be applied (and indeed should be applied) even if systems
and data are contaminated stochastically and data have long
term trends.
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comes (-1.3,0.1,2.7,3.2,4.5) and hence i(f) is (2,1,5,3.4). find that A=1.0 is sufficient. When A <1.0, AC and AMI can-
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(12,13,15,14,11). SSS data even if there is dynamics. When A=1.0, AC and
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