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Modeling continuous processes from data
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Experimental and simulated time series are necessarily discretized in time. However, many real and artificial
systems are more naturally modeled as continuous-time systems. This paper reviews the major techniques
employed to estimate a continuous vector field from a finite discrete time series. We compare the performance
of various methods on experimental and artificial time series and explore the connection between continuous
~differential! and discrete~difference equation! systems. As part of this process we propose improvements to
existing techniques. Our results demonstrate that the continuous-time dynamics of many noisy data sets can be
simulated more accurately by modeling the one-step prediction map than by modeling the vector field. We also
show that radial basis models provide superior results to global polynomial models.
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I. INTRODUCTION

It is natural to choose to model many dynamical syste
as flows, or as the vector fields that generate these flo
However, observed data are necessarily discretized in
and it may be more appropriate to model them using a m
Various function fitting algorithms are widely employed
estimate a map from an observed data set. Estimation t
niques include neural networks@1#; radial basis networks
@2,3#; global polynomials@4–6#; local polynomials@1#; glo-
bal polynomials and standard functions@7,8#; local linear fits
@1#; triangulations and tesselations@9#; and Volterra func-
tional expansions@10,11#. Since the underlying dynamica
system is often continuous, the quantity of interest is not
‘‘one-step’’ prediction but rather the vector field. There a
techniques for estimating the vector field directly from da
and we shall consider these in more detail later.

The modeling methods that we examine are~i! radial ba-
sis models of the one-step predictions~map!, ~ii ! estimates of
vector fields from radial basis map models~Euler derivative
of the map!, ~iii ! modeling of the vector field directly usin
implicit Adams integration schemes and global polynom
models @12,13#, and ~iv! a technique that involves Adam
integration modeling with radial basis models. We do not t
any other approaches in this paper. In particular, we o
consider the usual polynomial approach and do not cons
either rational approximation or the standard function a
global polynomial approach of Gouesbet and co-work
@7,8#.

To compare models we examined root-mean-square~one-
step! prediction errors and qualitative features of the free
dynamics. We found that modeling regimes based on e
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mating the map@~i! and~ii !# perform better than vector field
@~iii ! and ~iv!# modeling methods. Vector field methods r
quire a large amount of clean, rapidly sampled data. Ho
ever, even in these situations map models perform be
Overall, simulations from iterated one-step predictions ma
on the map~i! performed better than the alternatives.

The key to the recovery of the underlying dynamics is
extract an evolution operator~either a map or a vector field!.
In the remainder of this introduction we review some ma
ematical techniques employed in this paper. In Sec. I A
introduce the Adams integration technique to estimate a v
tor field, Sec. I B describes the radial basis modeling te
niques we use to estimate a map, and Sec. I C described
minimum description length~MDL ! model selection crite-
rion.

Section II describes various methods that we will use
estimate vector fields. Section III compares numerical res
obtained by applying these techniques to artificial and
perimental data from several dynamical systems.

A. Adams integration

Modeling a vector field usually proceeds by fitting a fun
tion of the data values~the embedded time series! to an es-
timate of the vector derivative. This estimate will usually
based on the numerical Euler derivativeḟ (xn11)5(xn11
2xn)/t. Euler integration utilizes this formula to numer
cally integrate ordinary differential equations@14,15#. Brown
and co-workers@12,13,16# propose an extension to thi
method based on the implicit Adams integration sche
@14#. The implicit Adams integration formula is given by

xn115xn1t(
i 50

m

ai ḟ ~xn112 i !, ~1!

wherem is the order of the Adams integrator andai are the
Adams coefficients~see Ref.@14#!. For m50 Adams inte-
gration is equivalent to Euler integration, and the Adam
-
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MDL technique proposed by Brownet al. @13# is equivalent
to fitting embedded data to the usual first difference.

Brown and co-workers have implemented this method
build global polynomial models of vector fields from dat
They select the order of the global polynomial and the or
of Adams integration according to minimum descripti
length @17# ~see Sec. I C!. The global polynomial model is
built from an orthonormal~on the data/attractor! set of poly-
nomials and they recommend the selection of coefficie
~the weights of the orthonormal polynomials! not according
to least mean squares but by utilizing the orthonorma
@13,18#. They demonstrate these techniques with artific
noise-free data from the Lorenz system and from integra
of chemical passivation equations, and experimental d
from an electronic circuit@19#, a chemical reaction and a
experiment involving a vibrating string@16#.

B. Radial basis modeling techniques

Utilizing a time-delay embedding one may construct
scalar function of a vector~embedded! variable, such that the
vector map in state space

xn115F~xn!1en , ~2!

@whereen are independent and identically distributed~i.i.d.!
random variates corresponding to model prediction error
system noise# is given by

F~xn!5„g~xn!,~xn!1 ,~xn!2 , . . . ,~xn!de21…,

where (xn) iPR is the i th component ofxnPRde and

g~xn!5l01(
i 51

a

l i~xn! l i
1(

j 51

b

l j 1a11fS ixn2cj i
r j

D .

~3!

Here l i , l j , and r j are scalar constants, 1<l i,l i 11
<det are integers andcj are arbitrary points inRd. The
integer parametersa andb are selected to minimize the de
scription length~to be described in Sec. I C!. The scalar
function f(•) represents the class of radial basis funct
from which the model will be built. We choose to use Gau
ian basis functions because they appear to be capab
modeling a wide variety of phenomena. In this case, the
sis functions are described by

f~x!5expF2x2

2 G .
C. Minimum description length

The minimum description length criterion is based on
formation theoretic ideas@17# and measures the compressi
achieved by describing the data in terms of a model and
model prediction error, compared to simply describing
04670
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data. The minimum description length criterion is a gener
zation of both the Akaike@20# and Schwarz@21# information
criteria.

Rissanen@17# shows that the description length of a p
rameterl i specified to some accuracyd i is ln(g/di) @2,17#.
The constantg is not critical and is related to the binar
representation of floating point numbers@2#. Therefore, the
description length ofk model parametersL5$l i% i 51

k is
given by

L~L!5(
i 51

k

lnS g

d i
D .

The description length of the data$xt% t51
N , and the model

with parametersL, is given by

L~x,L!5L~xuL!1L~L!, ~4!

where the description length of the data given the model~i.e.,
the description length of the model prediction errors! L(xuL)
is the negative logarithm of the likelihood of the data und
the assumed distribution,2 ln@P(xuL)#.

If a model provides a ‘‘good’’ description of the data the
the description length of the model parameters and mo
prediction error will be small. If a model provides a ‘‘poor
description, or is excessively large~i.e., overfits the data!
then the description length of the model parameters
model prediction error will be large. Detailed discussion
the minimum description length principle may be found
Ref. @17#, and application of this technique to radial bas
modeling is described in more detail in Ref.@2#.

D. Outline

The remainder of this paper describes our alterations
these techniques and compares the modeling results with
perimental and artificial data. Specifically, we compare~i!
radial basis models of the ‘‘one-step’’ map~Sec. I B!; ~ii ! an
Euler approximation to the derivative of the map estima
in ~i!; ~iii ! the implicit Adams integration/global polynomia
techniques described in Sec. I A; and~iv! radial basis tech-
niques utilizing the implicit Adams integration schemes.

When faced with the problem of reconstructing a vec
field from experimental~possibly scalar! data one may take
many different approaches. In general, we will assume
Takens’ embedding theorem@22#, or some equivalent tech
nique, has been applied, and we will consider only vec
time series, and the problem of vector prediction. Section
describes methods to estimate the vector field from exp
mental data and Sec. III presents the results of some num
cal work.

II. MODELING VECTOR FIELDS

In this section we explore alternative approaches to m
eling vector fields from data. In a separate paper we h
suggested deriving the vector field by examining the limiti
values (t0→0) of a map@23#. The methods in this section
4-2
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FIG. 1. Relative prediction error for the
Lorenz system ~1!. The relative prediction
error is given by xA5(1/N(n51

N ixn112[xn

1t( i 50
m aiF(xn112 i)] i2/ixn112nni21/2 for a set

of N embedded data points. The calculations
panel~a! and~b! are the same calculations for a
18 sec segment of the Lorenz system, w
a sampling interval of t50.001 sec (s),
0.002 659 sec (h), 0.007 071 sec (n),
0.01880 sec (L), and 0.05 sec (,). The value
of xA is calculated for each data set with th
given sampling rates for the Adams integratio
~m! of order 0 to 9. Panel~b! shows the results
when the Lorenz data is calculated to five de
mal figures, and panel~a! are the same calcula
tions for Lorenz data calculated using double pr
cision arithmetic. A similar calculation was
presented in Refs.@12,13#. One can see that in the
presence of minimal noise~one part in 216) and
small to medium step size, high order Adams i
tegration performs best. Note also, that the var
tion between panel~a! and panel ~b! may
be attributed to additional factors besides t
truncation at the fifth decimal place.
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attempt to determine the vector field directly, either by a
plying a variant of Adams/MDL techniques described
Brown and co-workers@12,13#, or by estimating the Eule
derivative from a map model of the form~2!. These methods
are based on finite approximations to the derivative a
therefore, require data sampled ‘‘sufficiently’’ often to b
able to approximate the vector field accurately.

Estimation of the Euler derivative from a map is trivial.
Secs. II A and II B we consider methods based on the
plicit Adam integration scheme and minimum descripti
length. Section II A describes global polynomial based m
eling methods, and Sec. II B describes the application of
dial basis modeling techniques to the same scheme.

A. Implicit Adams integration

In Sec. I A we described the application of an implic
Adams integration scheme, minimum description length,
global polynomial modeling as described in Ref.@12#. We
have coded the algorithm suggested by Brown and
workers @12# with consistent results. We have been able
accurately reproduce the calculations of Fig. 3 of Ref.@12#.
However, our results are only comparable to those in R
@12# if the data of the Lorenz system are truncated~as they
04670
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do! to five decimal places. Allowing for double precisio
arithmetic we achieve substantially different results. Figur
demonstrates this comparison. These calculations suppor
conclusions made by Brown and co-workers@12# that these
methods are suitable in the presence of only small amo
of noise and moderately highly sampled systems. For la
amounts of noise~i.e., one part in 105) there appears to be a
optimal, intermediate, step size.

The results of Fig. 1 are calculated from a second-or
global polynomial model, and the Lorenz system can be
equately described by a second-order polynomial mo
However, we suggest that higher-order terms are require
adequately account for the approximation associated with
nite sampling of a continuous system. To test this it is n
essary to modify the algorithm described by Ref.@12# and
apply the minimum description length criterion in a strict
sense.

For a fixed maximum order polynomialNp and fixed or-
der of Adams integrationm, Brown and co-workers build a
global polynomial model of the vector field usingall the
polynomial basis functions and calculate the descript
length of that model. However, using a subset selection
gorithm described elsewhere@2# we suggest an alteration t
4-3
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TABLE I. Global polynomial model of the Lorenz system~1!. Model built from 5000 data points
~sampled every 0.05 sec) of the original Lorenz system using an Adams integration scheme an
minimum description length. The data was contaminated with observational noise on all three comp
~normal with standard deviation 5% of the standard deviation of the data values!. This model has polynomia
terms up to fourth order and was built usingm50 Adams integration~i.e., Euler integration!. In Fig. 1 we
demonstrated that high-order Adams integration works well for systems with no noise; for systems with
noise, a much lower-order Adams integration scheme is selected. In this case Euler integration is sel
optimal according to minimum description length. Note that, many more terms are selected in this mod
are present in the original Lorenz equations. The higher-order terms in this model are possibly relate
higher-order terms in an evaluation of Eq.~6!—this expansion is necessary because of the finite set size
finite sampling rate.

x component y component z component

Coefficient Term Coefficient Term Coefficient Term

0.0005189113 xy3 20.00075278227 xz3 0.31095388 y2

214.809195 y 15.952365 y 0.0012658103 x2z2

37.857094 x 20.0074572455 x2yz 20.00038309294 z3

0.63649195 x3 20.0063938793 yz2 21.6396998 1
0.01607577 x2yz 0.00079663814 y3z 20.00026448879 y4

20.07983783 y3 0.00048246071 yz3 0.052881899 xyz
27.412886131025 yz3 212.144337 x 0.0036643532 x3y
22.3880938 xz 0.0094646419 x3z 22.6404106 z
24.253091331025 xyz2 20.35127338 x3 20.0004175926 y2z2

20.0082001822 xy2z 20.02775479 y3 20.0060493741 x4

20.037756234 y2 20.03153251 x2 2.342107831026 yz3

1.0451196 yz 0.28592214 x2y 20.59313148 x2

20.8351578 x2y 0.065101065 z 20.00024747432 y3

0.0015206632 y3z 24.340043331026 z4 20.00066517359 xyz2

20.012620472 x3z 5.971644631025 x2z2

0.092927835 x2 20.0001289389 x3y
3.893560731025 y2z2 0.97795022 xz
25.137592431025 z3 3.274430931025 y4

0.42323624 xy2 20.69856633 yz
23.327415231025 x2z2
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this algorithm. A strict application of the minimum descri
tion length principle would involve the following; for fixed
values ofNp and m one buildsthe model with minimum
description length by usingonly those basis functions tha
are necessary. That is, only those terms that contribute
overall decrease in the description length. One then sel
the values ofm andNp , which yield the minimum descrip
tion length model.

Our calculations indicate that an implementation of t
algorithm will generally produce superior results to t
method described by Brown and co-workers. However,
difference is usually marginal. Using this strict application
minimum description length we are able to determine
presence of higher-order terms in the minimum descript
length best model of the Lorenz system~see Table I!. These
terms correspond to additional approximation associa
with the finite sampling of a continuous system.

The expected values of these additional terms may

calculated analytically. Givenẋ5 f (x), then
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x~ t1t0!'x~ t !1t0f „x~ t !…, ~5!

so define

F~x!5x1t0f ~x!. ~6!

For example, for a small step sizet0 the evolution over time
t0 of the Lorenz system may be~approximately! represented
in this form. One may take thenth iterateFn(@x,y,z#T) of
the map~6! as an approximation to the difference equatio
of the Lorenz system with step sizent0. Alternatively, one
may take the Taylor series~in powers oft0) and using the
identity provided by the Lorenz equations to obtain a simi
approximations. Calculations show that the remainder te
of the Taylor series expansion diminishes slowly, and the
fore, may not provide a good approximation to the map.

Furthermore, an evaluation of Eq.~6! yields substantially
different results to those shown in Table I. Calculations sh
that the coefficients estimated in Table I are sensitive to no
4-4
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TABLE II. Global polynomial model of the Lorenz system~1!. The same calculation as Table I, exce
the data was sampled every 0.001 sec. For this higher sampling rate the improved MDL criteria desc
this paper has been able to accurately determine the exact equations of the underlying systems~to one part in
1010).

x component y component z component

Coefficient Term Coefficient Term Coefficient Term

1.5034525310213 xz 21 y 26.5077874310214 z2

4.3673276310213 yz 1.3248492310212 yz 2.3392705310212 x2

10 y 21 xz 3.1620093310211 1
210 x 28 x 1 xy
8.5557938310214 xy 9.474207310214 y2 26.2292401310213 y2

21.4828462310212 y
9.5964037310214 yz

22.6666667 z
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level and the length of the time series~also see Table II!.
Improved results are also obtained by fitting the model
many short transients in the neighborhood of the attra
~instead of a single trajectoryon the attractor!. A large num-
ber of short transients in the neighborhood of the attrac
provide superior coverage of phase space compared
single trajectory. The improved modeling results obtain
with many transients provides further evidence of the
merical sensitivity of global polynomial modeling tech
niques. Similar observations have been expressed by o
authors@24,25#.

B. AdamsÕMDL Õradial basis methods

It appears that global polynomial models are sufficien
the underlying system is known to be described by poly
mial nonlinearities and the time step is sufficiently small.
fact, the Weiestrass convergence theorem@26# guarantees
that for an arbitrary continuous function there exist so
sequence of polynomials converging to it. However, for c
tain functions this convergence can be very slow or the
quence of polynomials may be nonobvious. For exam
polynomials interpolated at equally spaced points to
function u•u ~defined in a symmetric interval about zero! con-
verge only at zero and the interval end points@26#. It has also
been noted that like other unbounded basis functions,
trapolation using polynomials can be hazardous@15#.

We have found that better results are obtained by the
of radial basis function networks@3#, and in particular,
Gaussian basis functions@2# or variants@27#. In a method
directly analogous to that described in Sec. II A we can ap
strict minimum description length to implicit Adams integr
tion modeling ~1! of a vector field. We apply radial basi
modeling techniques to fit Eq.~1! as a sum of Gaussian bas
functions.

That is, we fit the functionF(xn) to expressions of the
form

xn115xn1t(
i 50

m

aiF~xn112 i !, ~7!
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where

F~xn!5„g1~xn!,g2~xn!, . . . ,gde
~xn!…

and eachgi is a function of the form

gi~xn!5l01(
i 51

ni

l i~xn! l i
1(

j 51

nj

l j 1n11fS ixn2cj i
r j

D .

The model that minimizes description length is then selec
as the best. In this formulation we fitde scalar functions and
do not utilize additional information available from a time
delay reconstruction.~See Sec. I B and@2#!. A weakness of
this approach is that there is no guarantee that the predi
valuesgi(xn) will be appropriately correlated@38#.

For a set ofd candidate pseudolinear basis functions, leX
be an N3d matrix such that thei th column of X is the
evaluation of thei th basis function over the data, and thej th
row of X is the evaluation of all the candidate basis functio
at thej th ~vector! datum. The subset selection algorithm d
cussed in Ref.@2# will select columnsI5$ i 1 ,i 2 , . . . ,i n% of
the matrix X and a weight vectorl5(l1 ,l2 , . . . ,ln) so
that the description length of$xn%n51

N is minimized by de-
scribing the model prediction error and the model itse
namely,

(
k51

n

lkX( i k ,:) . ~8!

HereX( i k ,:) denotes thei kth column ofX. That is, this algo-
rithm selects a set of basis functions from a larger group
candidates, based on the evaluation of these functions
the data. However, if we are to build a functionF to mini-
mize the description length of the modeling errors of Eq.~7!
we must generalize Eq.~8! and the associated subset sele
tion algorithm. Let
4-5
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FIG. 2. Simulated behavior from recon
structed vector field of circuit equations~3!. Re-
construction of the vector field from a time-dela
embedding of one coordinate of the circu
equation described by Ref.@19# in the
presence of additive noise@N(0,s2), s2

'0.05(standard deviation data)#. The data shown
in this figure is different from that used to buil
these models~‘‘honest’’ predictions!. Panel ~a!
shows trajectories integrated on the reconstruc
vector field, and panel~b! shows estimates of the
~scalar! derivatives of the original trajectory from
the vector fields. The data are shown as diamon
(L), radial basis map predictions as stars (!),
radial basis flow~Euler derivative of the map and
integrated! as a dotted line (•••), the Adams
integration/global polynomial scheme as a dash
line (22), and Adams integration/radial bas
model as a dot-dashed line (2•2). Note that the
Adams/global polynomial approach is quickly d
vergent, and the other simulations tend to pe
odic orbits or stable foci. The original system
chaotic.
lg
s
t-

m
s:

ii
Am5F am am21 ••• a0 0 0 ••• 0

0 am am21 ••• a0 0 ••• 0

0 0 am ••• a1 a0 ••• 0

A A � � A A � A

0 0 ••• 0 am am21 ••• a0

G ,

~9!

y5
1

t F x22x1

x32x2

A

xN2xN21

G . ~10!

The parametersa0 ,a1 ,a2 , . . . ,am are themth order Adams
integration coefficients as in Eq.~1!.

The minimum description length best model of Eq.~7!
may now be obtained by applying the subset selection a
rithm of Ref.@2# to the matrixAmX to fit y. Because the basi
function weights appear only linearly this is identical to fi
ting a function of the form~2!.
04670
o-

III. RESULTS

Numerical experiments were conducted with data fro
the following four simulated and three experimental system

~1! The ubiquitous Lorenz system@(x,y,z) coordinates,
t50.05, N54000# in the chaotic regime (s510, r 528, b
58/3). The Lorenz equations are

ẋ5s~y2x!,

ẏ5rx2y2xz,

ż5xy2bz.

~2! Reconstructed chaotic (s510, r 528, b58/3) Lorenz
system (x component, t50.05, N54000, de53,4,
lag57)with and without observational noise@N(0,s2), s2

'0.05(standard deviation data)#.
~3! Circuit equations described by Rulkov and Volkovsk

@19# (y component,t50.1, N54000, de54, lag59) with
and without observational noise @N(0,s2), s2

'0.05(standard deviation data)#, see Fig. 2. The circuit
4-6
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MODELING CONTINUOUS PROCESSES FROM DATA PHYSICAL REVIEW E65 046704
FIG. 3. Simulated behavior from recon
structed vector field of Ro¨ssler equations~4!. Re-
construction of the vector field from a time-dela
embedding of one coordinate of the Ro¨ssler equa-
tions in the presence of dynamic@N(0,s2), s2

'0.025~standard deviation data!, dynamic noise
on each component of the system#
and observational@N(0,s2), s2'0.05 ~standard
deviation data!# noise. The data shown in thes
figures is different from that used to build thes
models. Panel~a! shows trajectories integrated o
the reconstructed vector field, and panel~b!
shows estimates of the~scalar! derivatives of the
original trajectory from the vector fields. The da
are shown as diamonds (L), radial basis map
predictions as stars (!), radial basis flow~Euler
derivative of the map! as a dotted line (•••), the
Adams integration/global polynomial scheme
a dashed line (22), and Adams integration/
radial basis model as a dot-dashed line (2•2).
Note that the Adams/global polynomial approa
quickly becomes singular~at about the 18th da-
tum with a value of approximately 1.7!, the
Adams/radial basis model slowly converges to
stable foci. The other models exhibit periodic o
bits. The original system exhibits a noise drive
periodic orbit.
fo
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equations in Ref.@19# are

ẋ5y,

ẏ52x2dy1z,

ż5g@h~x!2z#2sy,

h~x!5H 0.528a, x,21.2,

x~12x2!a, 21.2<x,1.2,

0.528a, x>1.2,

a522.3, d5rAC2

L
, g5

ALC2

RC1
, s5

C2

C1
.

For the simulations described in this paper we used the
lowing parameter values: C15C25375 nF, L
5233.7 mH,r 50.407 kV, andR56 kV. With these pa-
04670
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rameter values the attractor is vaguely ‘‘Lorenz-like’’—it ha
two separate ‘‘wings’’ and a central separatrix.

~4! Reconstruction of Ro¨ssler equations with period 3 be
havior (a50.411, b52, c54, y component,t50.1, N
54000, de54, lag59) with and without noise~normal dy-
namic and/or observational noise with a standard devia
of 2.5% and 5% of the standard deviation of the data, resp
tively!, see Fig. 3. The Ro¨ssler equations are

ẋ52y2z,

ẏ5x1ay,

ż5b1z~x2c!.

~5! Experimental data from an apparently chaotic la
@28# (t5800 ns,N51150, de55, lag55), see Fig. 4.

~6! Experimental data from a vibrating string@16,29# (t
53.73 ms,N53200, de54, lag512).

~7! Experimental data from Japanese vowel~u! sounds
@30# (t5104.167 ms, N53200, de54, lag510).
4-7
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FIG. 4. Simulated behavior from recon
structed vector field of experimental laser da
~5!. Reconstruction of the vector field from
time-delay embedding of one coordinate of e
perimental laser data described by Ref.@28#. The
data shown in these figures is different from th
used to build these models~the model was built
on 1150 data points and tested on the next 35!.
Panel~a! shows trajectories integrated on the r
constructed vector field, and panel~b! shows es-
timates of the~scalar! derivatives of the original
trajectory from the vector fields. The data a
shown as diamonds (L), radial basis map pre-
dictions as stars (!), radial basis flow~Euler de-
rivative of the map! as a dotted line (•••), the
Adams integration/global polynomial scheme
a dashed line (22), and Adams integration/
radial basis model as a dot-dashed line (2•2).
Note that the Adams/global polynomial approa
is quickly divergent, and the other vector fiel
based methods exhibit stable foci. The data
~apparently! chaotic@28#, and so is the radial ba
sis model map.
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Root-mean-square one-step prediction error and minim
description length of all models of each system were roug
comparable~see Table III!. We tested the performance of th
various modeling schemes described in Secs. II A and
by comparing the trajectories of numerical integration
these models to the original data. By comparing the beha
of the numerical integration on the reconstructed vec
fields we found that the global polynomial implementation
an Adams integration scheme did not produce adequate
sults for any of these data sets. In each case, this me
produced a vector field that soon became singular w
tested with a variety of integration schemes@39#. That is, the
required precision for numerical integration along a traj
tory exceeded the available machine precision. The im
mentation of Adams integration using radial basis model
produced superior results. However, for noisy or rec
structed systems the vector field generally exhibited a st
focus. In all cases the radial basis modeling method
scribed in Refs.@2,27# and applied to model the map pe
formed best. For a typical example of the results of th
calculations see Figs. 2, 3, and 4.

We have assessed the performance of each of these
els using purely qualitative comparisons. In situations wh
this is insufficient it would be necessary to seek qualitat
techniques such as those utilized in Ref.@4# or statistical
04670
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techniques suggested by Ref.@31#. To adopt these ap
proaches one would apply some significant measure~such as
correlation dimension! to the data and model simulations an
compare the deviation@4,31#. A good model would produce
simulations that are typical of the data~with respect to the
chosen measure!. A poor model would be obviously distinc
from the data. However, for the data and models presen
here this is unnecessary. In each case a valid comparison
be made based on the asymptotic dynamics of the syste
Figure 5 compares the attractor reconstructed from the l
data ~5!, and the attractor provided by a simulation from
radial basis map model.

In each data set and every trial, the vector field estima
with global polynomials was either rapidly divergent or b
came singular. Vector fields estimated from radial basis m
eling and fitted using the implicit Adams integration formu
produce superior results. The vector field produced by
method was more stable~it could be integrated numerically!,
and the results were more consistent with the data. L
term behavior was generally still poor. For the data cons
ered here only one of these methods accurately and co
tently modeled the long term dynamics—the radial ba
model of the map~see Fig. 5!. Methods aimed at modeling
the vector field from data appear to perform poorly wh
faced with small to moderate noise level, reconstructed s
4-8
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TABLE III. Prediction error and description length. This table summarizes representative results of the modeling algorithms disc
this paper. These algorithms were applied repeatedly to these and other data sets. The table columns, from left to right, are~i! the system/time
series studied,~ii ! observational noise,~iii ! dynamic noise,~iv! sampling rate in seconds,~v! reconstruction embedding dimension, and~vi!
reconstruction embedding lag expressed as a number of data points. Observational and dynamic noise levels are standard de
Gaussian random processes, both given as a fraction of the standard deviation of the data and as an absolute number~in parentheses!. The
remaining columns of the table give values for root-mean-square modeling prediction error and minimum description length for rad
map model, Adams integration/global polynomial model, and Adams integration/radial basis model. For the map radial basis mod
values are calculated in terms of the prediction errorixn112xni , while for the Adams integration scheme methods the error is in term
ixn112(xn1tF(xn))i . An approximate comparison may be made between the modeling error calculated in either way.~However, they are
not identical.! An equivalence between values of description length is not as straightforward because of the difficulty in comparing d
model types in an unbiased way. The other map model prediction errors are for scalar functions~predicting the first component!.

System Observational Dynamic t de Lag Modeling error Minimum description length

noise noise ~sec! Map Polynomial Radial basis Map Polynomial Radial ba

~1! Lorenz 0.1~1.606! a 0 0.05 NA NA 2.0766a 2.0450 2.1859 24051 59 941 59644
~2! Lorenz 0 0 0.05 3 7 0.56 1.05 1.01 4261 54710 54405
~2! Lorenz 0.05~0.40! 0 0.05 3 7 1.015 1.22 1.155 6331 75202 75127
~3! circuit 0 0 0.1 4 9 0.01 0.01144 0.01035 21231 21151 2988
~3! circuit 0.05~0.03! 0 0.1 4 9 0.0556 0.04592 0.04662 25843 10623 10900
~4! Rössler 0 0.025~0.055! 0.2 4 9 0.0687 0.07084 0.06448 24582 6621 6057
~4! Rössler 0.05~0.11! 0.025~0.055! 0.2 4 9 0.188 0.1737 0.17504 2995 21238 21187
~5! Laser NA NA 831027 5 5 1.619 1.3426 1.6374 4304 127440 129150
~6! String NA NA 3.7331023 4 12 108 30.929 28.556 20869 136247 138085
~7! Vowel NA NA 1.0431024 4 10 581 474.683 478.671 25028 215098 215228

aThe root-mean-square prediction errors are vector predictions of the vector variable~this system is in the original coordinates, not a tim
delay-reconstruction!.
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tems, and/or moderately sparsely sampled systems. Thes
sults indicate that estimating the dynamics as a map prod
superior results to estimating the vector field.

IV. CONCLUSIONS

Our calculations corroborate the results presented
Brown and co-workers@13#. Adams integration based meth
ods applied to estimate vector fields outperform Euler in
gration techniques. When applying these methods wit
strict minimum description length model selection criterion
is clear that this must be the case. The difference between
results obtained with strict MDL and those described
Brown and co-workers appear to be minimal. However,
contend that global polynomial modeling may not be t
most appropriate method, in general. While this class
functions may be well suited to some situations~in particu-
lar, polynomial nonlinear ordinary differential equations wi
a small integration time step and minimal noise! they may
not work so well in general. As we have noted, t
Weiestrass convergence theorem guarantees the existen
a good polynomial model of a smooth function@26#. How-
ever, it is often observed that polynomials may perfo
poorly in practice, especially when extrapolating@15#. In this
paper we have considered polynomial functions, but not
tional functions. Menard and co-workers@32# have observed
that for map models, a better choice is rational approxim
tion. Whereas ordinary polynomials do not have poles, a
tio of two polynomials allows for a finite number and
04670
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therefore better equipped to fit the dynamics observed
many maps@32#.

Furthermore, Sec. II A demonstrated that global polyn
mial models are sensitive to noise, sampling rate, and
‘‘coverage’’ of phase space provided by the data~these mod-
els do not extrapolate well!. The issue of ‘‘coverage’’ of the
attractor, and some concerns on applications of global p
nomial methods are discussed in Ref.@33#. Furthermore,
Aguirre and Billings have observed that global polynom
models are particularly prone to the problem of over para
eterization@24,34#. Simulations from models built from sev
eral transient trajectories, gave better simulations compa
to models built from a single long trajectory. The rece
work of Bezruchko and co-workers@35# corroborates this
observation. Conversely, Letellier and co-workers@36# have
shown that polynomial nonlinearities may be reconstruc
with a polynomial model using a single unstable period
orbit, or the laminar phase of intermittent chaos. Of cour
for nonpolynomial nonlinearities the effectiveness of e
trapolating in this way may be less@15#. Among the current
polynomial methods to estimate vector fields from data
appears that global polynomial modeling with an Adams
tegration scheme is one of the more effective model.
course, these results do not necessarily extend to rati
functions. From the results presented here it is uncl
whether rational function approximations would outperfo
radial basis models—especially for modeling maps.

We compared numerical results for several modeling te
niques for many data sets. Statistics such as minimum
4-9
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scription length and model fit~root-mean-square predictio
error! of all methods proved to be comparable. Even for ve
small amounts of noise all methods provided smoother e

FIG. 5. Attractor reconstructed from experimental data a
model simulations for experimental laser data~5!. Panel~a! is the
time-delay reconstructed attractor (lag55) from the experimenta
laser data~2000 points! and panel~b! shows the attractor recon
structed (lag55) from a simulation~2000 points, initial transient of
2000 points removed! of a radial basis map model of that data. T
deterministic trajectory@panel~b!# is clearly bounded and nonper
odic. One can also observe that both attractors occupy the s
region of phase space and that the attractor shown in~b! appears to
be smoother than that in~a!. The model used to compute the traje
tory for ~b! was built from only 1150 observations of~5!. During
this 1150 observations the laser underwent only one ‘‘collap
@trajectory moving radially from the outside to the center of t
attractor in~a!# and this feature is not modeled well. Models bu
from longer time series capture this feature exactly.
d

04670
y
ti-

mates of the vector field than by differencing success
~embedded! data values directly. We contend that a mo
appropriate test of the ‘‘goodness’’ of a model is th
asymptotic dynamics. For these data this proved to be t
In all cases, simulation from global polynomial models
experimental and artificial data produced equations th
when integrated, were either divergent or singular. This p
vides further support for our argument that global polyn
mial models do not extrapolate well. In some further calc
lations we built global polynomial models from man
transients~as opposed to a single trajectory! and have found
the dynamic behavior to improve. These simulations exh
stable foci.

Adams integration/radial basis modeling techniques p
formed slightly better. Generally these systems also exh
ited stable foci; in all cases the data was either chaotic~with
some pseudoperiod! or a noisy periodic orbit. Simulations
produced from radial basis models of the dynamics as a m
produced simulations that appeared most like the data
were most stable. Estimating the vector field by differenc
this map gave simulations that appeared to be more sim
to the data than Adams integration based methods.

A more rigorous comparison of the results of these diff
ent modeling techniques may be obtained by applying n
linear surrogates data techniques@31# as described in Refs
@27,37#. However, in the cases we considered this proved
be unnecessary. The Adams integration techniques prod
simulations that consistently exhibited divergent or singu
simulations~in the case of global polynomial methods! and
stable foci~in the case of radial basis model methods!. This
behavior is clearly distinct from the data, and clearly infer
to the results of models based on estimating the map.

The main result of this paper is that a map model p
duces superior results to models of the vector field in s
tems with moderate noise, time-delay reconstructions or
dium to slow sampling rates. Thus, if one intends to estim
vector fields it may be best to calculate them from a m
model of the dynamics. It may be more practical to exam
the equivalence between a continuous system and the
crete model of data sampled from it, than to attempt to
construct the vector field directly.
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