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Modeling continuous processes from data
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Experimental and simulated time series are necessarily discretized in time. However, many real and artificial
systems are more naturally modeled as continuous-time systems. This paper reviews the major techniques
employed to estimate a continuous vector field from a finite discrete time series. We compare the performance
of various methods on experimental and artificial time series and explore the connection between continuous
(differentia) and discretddifference equationsystems. As part of this process we propose improvements to
existing techniques. Our results demonstrate that the continuous-time dynamics of many noisy data sets can be
simulated more accurately by modeling the one-step prediction map than by modeling the vector field. We also
show that radial basis models provide superior results to global polynomial models.
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I. INTRODUCTION mating the map(i) and(ii)] perform better than vector field
[(iii) and (iv)] modeling methods. Vector field methods re-
It is natural to choose to model many dynamical systemgjuire a large amount of clean, rapidly sampled data. How-
as flows, or as the vector fields that generate these flow§ver, even in these situations map models perform better.
However, observed data are necessarily discretized in timgverall, simulations from iterated one-step predictions made
and it may be more appropriate to model them using a mapc.)n_lt_mea rIPeayp(tI()) ?ﬁ:%?&%R/egf{htgimégflﬁggrg;ﬁ;ﬁé sis to
\e/ztrilr?]ﬁeﬂ:in%:n fl;l(t)trl]:lgaglgggg\r?es d ?Jlr;tz\iNIsdeEilyEes?rglzgt)i/oer? tteocﬁixtract an evolution operatoeither a map or a vector field
; ; P . " Ih the remainder of this introduction we review some math-
niques include neural networkd]; radial basis networks

) i ) ; i ematical techniques employed in this paper. In Sec. | A we
[2,3]; global polynomiald4—6]; local polynomialg1]; glo-  jnroquce the Adams integration technique to estimate a vec-

bal polynomials and standard functidis8]; local linear fits 1 field, Sec. | B describes the radial basis modeling tech-

[1]; triangulations and tesselation8]; and Volterra func-  pigues we use to estimate a map, and Sec. | C described the

tional expansion410,11]. Since the underlying dynamical minimum description lengtfMDL) model selection crite-

system is often continuous, the quantity of interest is not thegjon.

“one-step” prediction but rather the vector field. There are  Section Il describes various methods that we will use to

techniques for estimating the vector field directly from dataestimate vector fields. Section Il compares numerical results

and we shall consider these in more detail later. obtained by applying these techniques to artificial and ex-
The modeling methods that we examine @jeadial ba- perimental data from several dynamical systems.

sis models of the one-step predictignsap, (ii) estimates of

vector fields from radial basis map modéRuler derivative A. Adams integration

of the map, (iii) modeling of the vector field directly using  Modeling a vector field usually proceeds by fitting a func-
implicit Adams integration schemes and global polynomialtion of the data valueghe embedded time serje® an es-
models[12,13, and (iv) a technique that involves Adams timate of the vector derivative. This estimate will usually be
integration modeling with radial basis models. We do not teShased on the numerical Euler derivatiféx, . 1) = (X1

. . . n n
any other approaches in this paper. In particular, we only_, y,_ g ler integration utilizes this formula to numeri-

caﬂader;he LIJSU8.| pol_yno;mal apE)r:oacth agd gof nottpon3|d ally integrate ordinary differential equatiofts4,15. Brown
either ralional approximation or th€ standard tunction anty,q co.\orkers[12,13,16 propose an extension to this

global polynomial approach of Gouesbet and CO'Workerﬁ’nethod based on the implicit Adams integration scheme

[7.8]. 14]. The implicit Adams integration formula is given b
To compare models we examined root-mean-squame- (14} mpie niegrat wats gy Y

step prediction errors and qualitative features of the free run

dynamics. We found that modeling regimes based on esti- "

Xn+1=Xn+T_EO af(Xps1-i), (1)
<

*Formerly at Center for Applied Dynamics and Optimization, De- wherem is the order of the Adams integrator aadare the
partment of Mathematics and Statistics, University of Western AusAdams coefficient§see Ref[14]). For m=0 Adams inte-

tralia, Perth, Australia; electronic address: ensmall@polyu.edu.hk gration is equivalent to Euler integration, and the Adams/
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MDL technique proposed by Browet al. [13] is equivalent  data. The minimum description length criterion is a generali-

to fitting embedded data to the usual first difference. zation of both the Akaik¢20] and Schwar#21] information
Brown and co-workers have implemented this method tccriteria.

build global polynomial models of vector fields from data. Rissaner{17] shows that the description length of a pa-

They select the order of the global polynomial and the orderameter); specified to some accuragy is In(y/8) [2,17].

of Adams integration according to minimum description The constanty is not critical and is related to the binary

length[17] (see Sec. | € The global polynomial model is representation of floating point numbdi. Therefore, the

built from an orthonormalon the data/attractpset of poly-  description length ofk model parameters\ ={\;}¥_, is

nomials and they recommend the selection of coefficientgiven by

(the weights of the orthonormal polynomiglsot according

to least mean squares but by utilizing the orthonormality K

[13,18. They demonstrate these techniques with artificial LA)= In

noise-free data from the Lorenz system and from integration =1

of chemical passivation equations, and experimental data

from an electronic circuif19], a chemical reaction and an The description length of the data;}}.,, and the model

experiment involving a vibrating strindL6]. with parameters\, is given by

Y
Oi

B. Radial basis modeling techniques L(x,A)=L(x|A)+L(A), (4

Utilizing a time-delay embedding one may construct a

scalar function of a vectdembeddegivariable, such that the Where the description length of the data given the méide|
vector map in state space the description length of the model prediction erydréx|A)

is the negative logarithm of the likelihood of the data under
the assumed distribution; In[P(x|A)].
Xn+1=F(Xn)ten, ) If a model provides a “good” description of the data then

the description length of the model parameters and model
[wheree, are independent and identically distributédld.)  prediction error will be small. If a model provides a “poor”
random variates corresponding to model prediction error andescription, or is excessively largee., overfits the daja
system noisgis given by then the description length of the model parameters and
model prediction error will be large. Detailed discussion of
the minimum description length principle may be found in
Ref. [17], and application of this technique to radial basis
modeling is described in more detail in REZ].

F(Xn):(g(xn)v(xn)l!(xn)Z! R !(Xn)de—l)y

where ,); € R is theith component ok, e R% and

D. Outline
. > [xn—cil The remainder of this paper describes our alterations to
g(xn)=)\0+i§1 )‘i(xn)/i“L;l Nj+ar1d o these techniques and compares the modeling results with ex-

3) perimental and artificial data. Specifically, we compéie
radial basis models of the “one-step” m&Bec. | B; (ii) an
Here \;, \;, andr; are scalar constants,<\/;</’,; Euler approximation to the derivative of the map estimated
<der are integers ang; are arbitrary points iRY. The in (|);_(|||) the |mp_I|C|t Adams mtegrat.lon/glqbal po!ynomlal
integer parametera andb are selected to minimize the de- techniques described in Sec. | A; afid) radial basis tech-
scription length(to be described in Sec. )\CThe scalar niques utilizing the implicit Adams integration schemes.
function ¢(-) represents the class of radial basis function When faced with the problem of reconstructing a vector
from which the model will be built. We choose to use Gauss-i€ld from experimentalpossibly scalardata one may take
ian basis functions because they appear to be capable B2y different approaches. In general, we will assume that

modeling a wide variety of phenomena. In this case, the balakens’ embedding theoref22], or some equivalent tech-
sis functions are described by nique, has been applied, and we will consider only vector

time series, and the problem of vector prediction. Section Il
describes methods to estimate the vector field from experi-
—x2 mental data and Sec. Ill presents the results of some numeri-
¢(x)=ex;{7}. cal work.

Il. MODELING VECTOR FIELDS
C. Minimum description length
The minimum description length criterion is based on in- In this section we explore alternative approaches to mod-
formation theoretic idedsl 7] and measures the compressioneling vector fields from data. In a separate paper we have
achieved by describing the data in terms of a model and theuggested deriving the vector field by examining the limiting
model prediction error, compared to simply describing thevalues (y,—0) of a map[23]. The methods in this section
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FIG. 1. Relative prediction error for the
Lorenz system (1). The relative prediction
error is given by xa=(INZN_,[xn:1—[Xn
+ 7S 6 F (X 1)1 [ X 41— N2V for a set
of N embedded data points. The calculations in
panel(a) and(b) are the same calculations for an
18 sec segment of the Lorenz system, with
a sampling interval of r=0.001 sec Q),
0.002659 sec [{), 0.007071 sec A),
0.01880 sec ¢ ), and 0.05 secV). The value
of x, is calculated for each data set with the
given sampling rates for the Adams integration
(m) of order 0 to 9. Panelb) shows the results
when the Lorenz data is calculated to five deci-
mal figures, and paneb) are the same calcula-
tions for Lorenz data calculated using double pre-
cision arithmetic. A similar calculation was
presented in Ref$12,13. One can see that in the
presence of minimal nois@ne part in 2% and
small to medium step size, high order Adams in-
tegration performs best. Note also, that the varia-
tion between panel(@ and panel (b) may
be attributed to additional factors besides the
truncation at the fifth decimal place.

attempt to determine the vector field directly, either by ap-do) to five decimal places. Allowing for double precision
plying a variant of Adams/MDL techniques described byarithmetic we achieve substantially different results. Figure 1
Brown and co-worker$12,13, or by estimating the Euler demonstrates this comparison. These calculations support the
derivative from a map model of the for(@). These methods conclusions made by Brown and co-work¢t®] that these
are based on finite approximations to the derivative andmethods are suitable in the presence of only small amounts
therefore, require data sampled “sufficiently” often to be of noise and moderately highly sampled systems. For larger
able to approximate the vector field accurately. amounts of noisé.e., one part in 1%) there appears to be an

Estimation of the Euler derivative from a map is trivial. In optimal, intermediate, step size.
Secs. Il A and 11 B we consider methods based on the im- " o regyits of Fig. 1 are calculated from a second-order
plicit Adam Integration s_cheme and minimum deSC”'Ot'onglobal polynomial model, and the Lorenz system can be ad-
Ie_ngth. Section Il A describes 9'°b"’?' polynomial .bas_ed mOd'equately described by a second-order polynomial model.
eling methods, and Sec. Il B describes the application of ra, t that higher-order terms are required to
dial basis modeling techniques to the same scheme. OWever, We sugges 9 o € required t

adequately account for the approximation associated with fi-

nite sampling of a continuous system. To test this it is nec-
essary to modify the algorithm described by Ref2] and

In Sec. | A we described the application of an implicit apply the minimum description length criterion in a stricter
Adams integration scheme, minimum description length, angense.
global polynomial modeling as described in REE2]. We For a fixed maximum order polynomi&l, and fixed or-
have coded the algorithm suggested by Brown and coder of Adams integratiom, Brown and co-workers build a
workers[12] with consistent results. We have been able toglobal polynomial model of the vector field usirgl the
accurately reproduce the calculations of Fig. 3 of R&2].  polynomial basis functions and calculate the description
However, our results are only comparable to those in Reflength ofthat model. However, using a subset selection al-
[12] if the data of the Lorenz system are truncatad they gorithm described elsewhef2] we suggest an alteration to

A. Implicit Adams integration
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TABLE |. Global polynomial model of the Lorenz systefi). Model built from 5000 data points
(sampled every 0.05 sec) of the original Lorenz system using an Adams integration scheme and strict
minimum description length. The data was contaminated with observational noise on all three components
(normal with standard deviation 5% of the standard deviation of the data yallres model has polynomial
terms up to fourth order and was built using=0 Adams integratiorii.e., Euler integration In Fig. 1 we
demonstrated that high-order Adams integration works well for systems with no noise; for systems with more
noise, a much lower-order Adams integration scheme is selected. In this case Euler integration is selected as
optimal according to minimum description length. Note that, many more terms are selected in this model than
are present in the original Lorenz equations. The higher-order terms in this model are possibly related to the
higher-order terms in an evaluation of E§)—this expansion is necessary because of the finite set size and
finite sampling rate.

X component

y component

z component

Coefficient Term Coefficient Term Coefficient Term
0.0005189113 xy® —0.00075278227 xZ 0.31095388 y?
—14.809195 y 15.952365 y 0.0012658103 x%z?
37.857094 X —0.0074572455 x%yz —0.00038309294 2
0.63649195 x3 —0.0063938793 yz —1.6396998 1
0.01607577 x%yz 0.00079663814 y3z —0.00026448879 y4
—0.07983783 y® 0.00048246071 yzZ 0.052881899 Xyz
—7.412886X% 10 ° yZ —12.144337 X 0.0036643532 x3y
—2.3880938 Xz 0.0094646419 x3z —2.6404106 z
—4.253091% 10 ° xXyZ —0.35127338 x3 —0.0004175926 Vad
—0.0082001822 Xy?z —0.02775479 y® —0.0060493741 x4
—0.037756234 y? —0.03153251 X2 2.342107& 10 © yZ
1.0451196 yz 0.28592214 X2y —0.59313148 x2
—0.8351578 x2y 0.065101065 z —0.00024747432 y®
0.0015206632 y3z —4.340043% 10 © z* —0.00066517359  xyZ
—0.012620472 x3z 5.971644610 ° x%z?
0.092927835 x2 —0.0001289389 x3y
3.893560% 10 ° y?z° 0.97795022 Xz
—5.1375924 10 ° 2 3.274430% 10°° y4
0.42323624 xy? —0.69856633 yz
—3.327415%x10°° x2z?

this algorithm. A strict application of the minimum descrip- X(t+ 7o) =X(t)+ 7of (X(1)), (5)

tion length principle would involve the following; for fixed

values of N, and m one buildsthe model with minimum  so define

description length by usingnly those basis functions that

are necessary. That is, only those terms that contribute an

overall decrease in the description length. One then selects F() =x+70f(X). ©

the values ofm andN,, which yield the minimum descrip- ) ) )
tion length model. For example, for a small step sizg the evolution over time

Our calculations indicate that an implementation of this7o Of the Lorenz system may lepproximately represented

algorithm will generally produce superior results to the

in this form. One may take theth iterateF"([x,y,z]") of
method described by Brown and co-workers. However, théhe map(6) as an approximation to the difference equations
difference is usually marginal. Using this strict application of

of the Lorenz system with step sizery. Alternatively, one
. L . may take the Taylor serigén powers ofrg) and using the
minimum desn_:rlptlon length we are able_z T[O determm_e t.heldentity provided by the Lorenz equations to obtain a similar
presence of higher-order terms in the minimum descriptio

pproximations. Calculations show that the remainder term
length best model of the Lorenz systésee Table)l These of the Taylor series expansion diminishes slowly, and there-

terms correspond to additional approximation associateg, may not provide a good approximation to the map.

with the finite sampling of a continuous system. Furthermore, an evaluation of E¢) yields substantially
The expected values of these additional terms may begifferent results to those shown in Table I. Calculations show
calculated analytically. Giver=f(x), then that the coefficients estimated in Table | are sensitive to noise
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TABLE Il. Global polynomial model of the Lorenz systefh). The same calculation as Table I, except
the data was sampled every 0.001 sec. For this higher sampling rate the improved MDL criteria described in
this paper has been able to accurately determine the exact equations of the underlying $gsiampart in

100,

X component y component z component
Coefficient Term Coefficient Term Coefficient Term
1.503452% 10 13 Xz -1 y —6.507787410 1 z?
4.367327610 13 yz 1.324849x 10 *? yz 2.339270% 10 *? x2
10 y -1 Xz 3.162009% 10 ! 1
—10 X 28 X 1 Xy
8.555793&% 1014 Xy 9.47420% 10 14 y? —6.229240K 10 2 y?

—1.482846X 10 12 y
9.596403% 10”4 yz
—2.6666667 z

level and the length of the time seri¢also see Table ]I  where

Improved results are also obtained by fitting the model to

many short transients in the neighborhood of the attractor

(instead of a single trajectoiyn the attractor. A large num- F(Xn) = (91(Xn),g2(Xn), - . . Ga (Xn))

ber of short transients in the neighborhood of the attractor

provide superior coverage of phase space compared t0 ghd eacly; is a function of the form

single trajectory. The improved modeling results obtained

with many transients provides further evidence of the nu-

merical sensitivity of global polynomial modeling tech- N nj [y~ il

niques. Similar observations have been expressed by other gi(X,)=Ag+ 21 )\i(xn)/i+21 )\j+n+1¢(—J)'
= =

authors[24,25. i

]
The model that minimizes description length is then selected
as the best. In this formulation we @t scalar functions and

It appears that global polynomial models are sufficient ifdo not utilize additional information available from a time-
the underlying system is known to be described by polynodelay reconstructionSee Sec. | B anfl2]). A weakness of
mial nonlinearities and the time step is sufficiently small. Inthis approach is that there is no guarantee that the predicted
fact, the Weiestrass convergence theorg26] guarantees valuesg;(x,) will be appropriately correlatef38].
that for an arbitrary continuous function there exist some For a set ofd candidate pseudolinear basis functionsXet
sequence of polynomials converging to it. However, for cerbe anNxd matrix such that théth column of X is the
tain functions this convergence can be very slow or the seevaluation of theth basis function over the data, and flike
quence of polynomials may be nonobvious. For examplegow of X is the evaluation of all the candidate basis functions
polynomials interpolated at equally spaced points to thex thejth (vecton datum. The subset selection algorithm dis-

B. AdamgMDL /radial basis methods

function|-| (defined in a symmetric interval about zgmwn-  cussed in Ref[2] will select columnsZ={i,,i,, ... i} of
verge only at zero and the interval end poir§]. It has also  the matrix X and a weight vectoh=(\1,A5, ... ,\,) SO
been noted that like other unbounded basis functions, exhat the description length G[an}”:l is minimized by de-
trapolation using polynomials can be hazardpis|. scribing the model prediction error and the model itself,

We have found that better results are obtained by the usgamely,
of radial basis function network§3], and in particular,
Gaussian basis functiori®] or variants[27]. In a method
directly analogous to that described in Sec. Il Awe can apply n
strict minimum description length to implicit Adams integra- E MXiy ) - (8)
tion modeling(1) of a vector field. We apply radial basis k=1
modeling techniques to fit E4l) as a sum of Gaussian basis

functions. HereXg, denotes the,th column ofX. That is, this algo-
That is, we fit the functiorF(x,,) to expressions of the rithm selects a set of basis functions from a larger group of
form candidates, based on the evaluation of these functions over
the data. However, if we are to build a functiénto mini-
m mize the description length of the modeling errors of &q.

7y Wwe must generalize Eq8) and the associated subset selec-

Xnt1=Xpt+ 72, aiF(Xn41-1),
e Z’o P10 tion algorithm. Let
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a). free run predictions
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b). scalar derivatives
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FIG. 2. Simulated behavior from recon-
structed vector field of circuit equatiori8). Re-
construction of the vector field from a time-delay
embedding of one coordinate of the circuit
equation described by Ref[19] in the
presence of additive noisdN(0,6?), o2
~0.05(standard deviation daja)rhe data shown
in this figure is different from that used to build
these modelg“honest” predictions. Panel (a)
shows trajectories integrated on the reconstructed
vector field, and pandb) shows estimates of the
(scalaj derivatives of the original trajectory from
the vector fields. The data are shown as diamonds
(<©), radial basis map predictions as stag,(
radial basis flow(Euler derivative of the map and
integrated as a dotted line (- -), the Adams
integration/global polynomial scheme as a dashed
line (——), and Adams integration/radial basis
model as a dot-dashed line-( —). Note that the
Adams/global polynomial approach is quickly di-
vergent, and the other simulations tend to peri-
odic orbits or stable foci. The original system is
chaaotic.

IIl. RESULTS

Numerical experiments were conducted with data from
the following four simulated and three experimental systems:
’ (1) The ubiquitous Lorenz systef(x,y,z) coordinates,
7=0.05, N=4000Q] in the chaotic regimeq=10,r=28, b
=8/3). The Lorenz equations are

X=s(y—Xx),

Y=IX—Yy—XZ

izxy—bz.

(2) Reconstructed chaotic€ 10, r =28, b=8/3) Lorenz

. .8y, are themth order Adams

system & component, =0.05, N=4000, d.=3.4,
lag=7)with and without observational noig&(0,0?), o?
~0.05(standard deviation dafa)

may now be obtained by applying the subset selection algo- (3) Circuit equations described by Rulkov and Volkovskii
rithm of Ref.[2] to the matrixA X to fit y. Because the basis [19] (y component,y=0.1, N=4000, d.=4, lag=9) with
function weights appear only linearly this is identical to fit- and

ting a function of the form2).

046704-6
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a). free run predictions

FIG. 3. Simulated behavior from recon-
structed vector field of Resler equationé4). Re-
construction of the vector field from a time-delay
embedding of one coordinate of the $3ter equa-
tions in the presence of dynamjiiN(0,6?), o2
~0.025(standard deviation dgtadynamic noise
on each component of the systtm
and observationdIN(0,6?), 0>~0.05 (standard
deviation datg noise. The data shown in these
figures is different from that used to build these
models. Panegla) shows trajectories integrated on
. ” 4'0 s " o PP 1"10 o 1;30 the recon_structed vector fleld,_ an_d pang)

data (diamonds); rad. bas. map (stars); rad. bas. flow (); Adams/poly. (--); Adams/rad. bas. (-.) shows estimates of thigcalay derivatives of the
original trajectory from the vector fields. The data
are shown as diamondsdY(), radial basis map
predictions as starsx(), radial basis flow(Euler
derivative of the mapas a dotted line (- -), the
Adams integration/global polynomial scheme as
a dashed line £ —), and Adams integration/
radial basis model as a dot-dashed line-().
Note that the Adams/global polynomial approach
quickly becomes singulafat about the 18th da-
tum with a value of approximately 1,7 the
Adams/radial basis model slowly converges to a
stable foci. The other models exhibit periodic or-
bits. The original system exhibits a noise driven
periodic orbit.

b). scalar derivatives

150 200 250 300 350
Euler deriv. (diamonds); rad. bas. flow (:); Adams/poly. (--); Adams/rad. bas. (-.)
equations in Ref[19] are rameter values the attractor is vaguely “Lorenz-like"—it has

two separate “wings” and a central separatrix.
_ (4) Reconstruction of Resler equations with period 3 be-
X=Y, havior (@=0.411, b=2, c=4, y component,7=0.1, N
=4000,d.=4, lag=9) with and without noisénormal dy-
_ namic and/or observational noise with a standard deviation
y=—X—98y+z, of 2.5% and 5% of the standard deviation of the data, respec-
tively), see Fig. 3. The Rssler equations are

z=9[h(x)—z]— oY,

x=-y-z,
0.528, x<—1.2, _
h(x)=1{ X(1-x*)a, —1.2<x<1.2, y=x-+ay,
0.528&, x=1.2,
z=b+z(x—c).
a=223, o=r \/CTZ Y= LG, o= G2 (5) Experimental data from an apparently chaotic laser
3, L’ RC,’ Cy’ [28] (=800 ns,N=1150,d.,=5, lag=5), see Fig. 4.

(6) Experimental data from a vibrating string6,29 (=
For the simulations described in this paper we used the fol=3.73 ms,N=3200,d.=4, lag=12).
lowing  parameter  values: C;=C,=375 nF, L (7) Experimental data from Japanese vowel sounds
=233.7 mH,r=0.407 K), andR=6 k. With these pa- [30] (7=104.167 us, N=3200,d.=4, lag=10).
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free run predictions
250 T T T T T T T T T

FIG. 4. Simulated behavior from recon-
structed vector field of experimental laser data
(5). Reconstruction of the vector field from a
time-delay embedding of one coordinate of ex-
perimental laser data described by R&8]. The
data shown in these figures is different from that
used to build these mode(the model was built
on 1150 data points and tested on the next)350
Panel(a) shows trajectories integrated on the re-

L ' L i ' L L i ' constructed vector field, and pan@®@) shows es-
0 10 20 30 40 50 80 70 80 90 100

50

data (diamonds); rad. bas. map (stars); rad. bas. flow (:); Adams/poly. (——); Adams/rad. bas. (-.) timates of the(scalai derivatives of the original
o trajectory from the vector fields. The data are
PR . . _soalar dervatves . . . shown as diamonds< ), radial basis map pre-
; ; . . ; ; dictions as starsx(), radial basis flow(Euler de-
3l ......... .......... .......... .......... P e .......... ,,,,,,,,,, ........ _ rivative of the map) as a dotted line ( .), the

Adams integration/global polynomial scheme as
a dashed line £ —), and Adams integration/
radial basis model as a dot-dashed line-().
Note that the Adams/global polynomial approach
is quickly divergent, and the other vector field
based methods exhibit stable foci. The data is
(apparently chaotic[28], and so is the radial ba-
sis model map.

-4 1 Il 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Euler deriv. (diamonds); rad. bas. flow (:); Adams/poly. (—); Adams/rad. bas. (-.)

Root-mean-square one-step prediction error and minimurtechniques suggested by Rdf31]. To adopt these ap-
description length of all models of each system were roughlyroaches one would apply some significant mea&ueh as
comparablgsee Table Il]. We tested the performance of the correlation dimensionto the data and model simulations and
various modeling schemes described in Secs. Il A and |l Bompare the deviatiof%,31]. A good model would produce
by comparing the trajectories of numerical integration ofsimulations that are typical of the dataith respect to the
these models to the original data. By comparing the behaviochosen measuyeA poor model would be obviously distinct
of the numerical integration on the reconstructed vectofrom the data. However, for the data and models presented
fields we found that the global polynomial implementation ofhere this is unnecessary. In each case a valid comparison can
an Adams integration scheme did not produce adequate r&e made based on the asymptotic dynamics of the systems.
sults for any of these data sets. In each case, this methdégure 5 compares the attractor reconstructed from the laser
produced a vector field that soon became singular whedata(5), and the attractor provided by a simulation from a
tested with a variety of integration schenj&9]. That is, the radial basis map model.
required precision for numerical integration along a trajec- In each data set and every trial, the vector field estimated
tory exceeded the available machine precision. The implewith global polynomials was either rapidly divergent or be-
mentation of Adams integration using radial basis modelingcame singular. Vector fields estimated from radial basis mod-
produced superior results. However, for noisy or recon-<ling and fitted using the implicit Adams integration formula
structed systems the vector field generally exhibited a stablproduce superior results. The vector field produced by this
focus. In all cases the radial basis modeling method demethod was more stablé could be integrated numerically
scribed in Refs[2,27] and applied to model the map per- and the results were more consistent with the data. Long
formed best. For a typical example of the results of theseéerm behavior was generally still poor. For the data consid-
calculations see Figs. 2, 3, and 4. ered here only one of these methods accurately and consis-

We have assessed the performance of each of these magntly modeled the long term dynamics—the radial basis
els using purely qualitative comparisons. In situations wherenodel of the magsee Fig. 5. Methods aimed at modeling
this is insufficient it would be necessary to seek qualitativethe vector field from data appear to perform poorly when
techniques such as those utilized in REf] or statistical faced with small to moderate noise level, reconstructed sys-
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TABLE Ill. Prediction error and description length. This table summarizes representative results of the modeling algorithms discussed in
this paper. These algorithms were applied repeatedly to these and other data sets. The table columns, from left t@ ridjtet system/time
series studiedjii) observational noisdjii) dynamic noise(iv) sampling rate in secondéy) reconstruction embedding dimension, dmd
reconstruction embedding lag expressed as a number of data points. Observational and dynamic noise levels are standard deviations of
Gaussian random processes, both given as a fraction of the standard deviation of the data and as an absolyire parabéreses The
remaining columns of the table give values for root-mean-square modeling prediction error and minimum description length for radial basis
map model, Adams integration/global polynomial model, and Adams integration/radial basis model. For the map radial basis model, these
values are calculated in terms of the prediction efsqr, ; — .||, while for the Adams integration scheme methods the error is in terms of
[Xn+1— (Xa+ 7F(X,))|l. An approximate comparison may be made between the modeling error calculated in eith@tovegver, they are
not identical) An equivalence between values of description length is not as straightforward because of the difficulty in comparing different
model types in an unbiased way. The other map model prediction errors are for scalar fufmialisting the first component

System Observational  Dynamic T d. Lag Modeling error Minimum description length
noise noise (seg Map Polynomial Radial basis Map Polynomial Radial basis

(1) Lorenz  0.1(1.606 @ 0 0.05 NA NA 2.0766° 2.0450 2.1859 24051 59941 59644

(2) Lorenz 0 0 0.05 3 7 0.56 1.05 1.01 4261 54710 54405

(2) Lorenz  0.05(0.40 0 0.05 3 7 1.015 1.22 1.155 6331 75202 75127

(3) circuit 0 0 0.1 4 9 0.01 0.01144 0.01035 -1231 —1151 —988

(3) circuit  0.05(0.03 0 0.1 4 9 0.0556 0.04592 0.04662 —5843 10623 10900

(4) Rossler 0 0.0250.055 0.2 4 9 0.0687 0.07084 0.06448 —4582 6621 6057

(4) Rossler  0.050.11) 0.025(0.055 0.2 4 9 0.188 0.1737 0.17504 —995 21238 21187

(5) Laser NA NA 8x107 5 5 1.619 1.3426 1.6374 4304 127440 129150

(6) String NA NA 3.73x10°% 4 12 108 30.929 28.556 20869 136247 138085

(7) Vowel NA NA 1.04x10°% 4 10 581 474.683 478.671 25028 215098 215228

&The root-mean-square prediction errors are vector predictions of the vector vdtiablsystem is in the original coordinates, not a time
delay-reconstruction

tems, and/or moderately sparsely sampled systems. These therefore better equipped to fit the dynamics observed in
sults indicate that estimating the dynamics as a map produgaany mapg32)].
superior results to estimating the vector field. Furthermore, Sec. Il A demonstrated that global polyno-
mial models are sensitive to noise, sampling rate, and the
“coverage” of phase space provided by the détese mod-
els do not extrapolate wellThe issue of “coverage” of the
Our calculations corroborate the results presented bwttractor, and some concerns on applications of global poly-
Brown and co-worker§l3]. Adams integration based meth- nomial methods are discussed in RE33]. Furthermore,
ods applied to estimate vector fields outperform Euler inteAguirre and Billings have observed that global polynomial
gration technigues. When applying these methods with @anodels are particularly prone to the problem of over param-
strict minimum description length model selection criterion it eterization 24,34]. Simulations from models built from sev-
is clear that this must be the case. The difference between tregal transient trajectories, gave better simulations compared
results obtained with strict MDL and those described byto models built from a single long trajectory. The recent
Brown and co-workers appear to be minimal. However, wework of Bezruchko and co-worker35] corroborates this
contend that global polynomial modeling may not be theobservation. Conversely, Letellier and co-workg3g] have
most appropriate method, in general. While this class othown that polynomial nonlinearities may be reconstructed
functions may be well suited to some situatidivs particu-  with a polynomial model using a single unstable periodic
lar, polynomial nonlinear ordinary differential equations with orbit, or the laminar phase of intermittent chaos. Of course,
a small integration time step and minimal ngiskey may for nonpolynomial nonlinearities the effectiveness of ex-
not work so well in general. As we have noted, thetrapolating in this way may be le$&5]. Among the current
Weiestrass convergence theorem guarantees the existencepolynomial methods to estimate vector fields from data it
a good polynomial model of a smooth functif®6]. How-  appears that global polynomial modeling with an Adams in-
ever, it is often observed that polynomials may performtegration scheme is one of the more effective model. Of
poorly in practice, especially when extrapolatiigp]. In this  course, these results do not necessarily extend to rational
paper we have considered polynomial functions, but not rafunctions. From the results presented here it is unclear
tional functions. Menard and co-workdi®2] have observed whether rational function approximations would outperform
that for map models, a better choice is rational approximaradial basis models—especially for modeling maps.
tion. Whereas ordinary polynomials do not have poles, a ra- We compared numerical results for several modeling tech-
tio of two polynomials allows for a finite number and is niques for many data sets. Statistics such as minimum de-

IV. CONCLUSIONS
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(@ Leser data mates of the vector field than by differencing successive
(embedded data values directly. We contend that a more
appropriate test of the “goodness” of a model is the
asymptotic dynamics. For these data this proved to be true.
In all cases, simulation from global polynomial models of
experimental and artificial data produced equations that,
when integrated, were either divergent or singular. This pro-
vides further support for our argument that global polyno-
mial models do not extrapolate well. In some further calcu-
lations we built global polynomial models from many
transientgas opposed to a single trajectpgnd have found
the dynamic behavior to improve. These simulations exhibit
stable foci.

Adams integration/radial basis modeling techniques per-
(b) Model simultion formed slightly better. Generally these systems also exhib-
ited stable foci; in all cases the data was either chdwtith
some pseudoperigpr a noisy periodic orbit. Simulations
produced from radial basis models of the dynamics as a map
produced simulations that appeared most like the data and
were most stable. Estimating the vector field by differencing
this map gave simulations that appeared to be more similar
to the data than Adams integration based methods.

A more rigorous comparison of the results of these differ-
ent modeling techniques may be obtained by applying non-
linear surrogates data techniqUéd] as described in Refs.
[27,37. However, in the cases we considered this proved to
be unnecessary. The Adams integration techniques produced
simulations that consistently exhibited divergent or singular
simulations(in the case of global polynomial methgdsnd
stable foci(in the case of radial basis model methpdkhis
behavior is clearly distinct from the data, and clearly inferior
to the results of models based on estimating the map.

FIG. 5. Attractor reconstructed from experimental data and
model simulations for experimental laser dé&. Panel(a) is the
time-delay reconstructed attractor ({a§) from the experimental

laser data(2000 point$ and panel(b) shows the attractor recon- . . .
structed (lag=5) from a simulation(2000 points, initial transient of The main result of this paper is that a map model pro-

2000 points removecf a radial basis map model of that data. The dUces superior results to models of the vector field in sys-
deterministic trajectorgpanel(b)] is clearly bounded and nonperi- {€ms With moderate noise, time-delay reconstructions or me-
odic. One can also observe that both attractors occupy the sanfum to slow sampling rates. Thus, if one intends to estimate
region of phase space and that the attractor showh)iappears to ~ Vector fields it may be best to calculate them from a map
be smoother than that it@). The model used to compute the trajec- model of the dynamics. It may be more practical to examine
tory for (b) was built from only 1150 observations ¢8). During ~ the equivalence between a continuous system and the dis-
this 1150 observations the laser underwent only one “collapse’trete model of data sampled from it, than to attempt to re-
[trajectory moving radially from the outside to the center of the construct the vector field directly.

attractor in(a)] and this feature is not modeled well. Models built

from longer time series capture this feature exactly.
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