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A competitive growth model �CGM� describes the aggregation of a single type of particle under two
different growth rules with occurrence probabilities p and 1− p. We explain the origin of the scaling behavior
of the resulting surface roughness at small p for two CGM’s which describe random deposition �RD� compet-
ing with ballistic deposition and RD competing with the Edward-Wilkinson �EW� growth rule. Exact scaling
exponents are derived. The scaling behavior of the coefficients in the corresponding continuum equations are
also deduced. Furthermore, we suggest that, in some CGM’s, the p dependence on the coefficients of the
continuum equation that represents their universality class can be nontrivial. In some cases, the process cannot
be represented by a unique universality class. In order to show this, we introduce a CGM describing RD
competing with a constrained EW model. This CGM shows a transition in the scaling exponents from RD to
a Kardar-Parisi-Zhang behavior when p is close to 0 and to a Edward-Wilkinson one when p is close to 1 at
practical time and length scales. Our simulation results are in excellent agreement with the analytic predictions.
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I. INTRODUCTION

Evolving interfaces or surfaces are of great interest due to
their potential technological applications. These interfaces
can be found in many physical, chemical, and biological pro-
cesses. Examples include film growth either by vapor depo-
sition or chemical deposition �1�, bacterial colony growth
�2�, and propagation of forest fires �3�.

For a system exhibiting dynamical scaling, the rms rough-
ness W of an interface is characterized by the following scal-
ing with respect to time t and the lateral system size L:

W�L,t� � L�f�t/Lz� ,

where the scaling function f�u� behaves as f�u��u� with
�=z /� for u�1 and f�u��const for u�1. The exponent �
is the roughness exponent that describes the behavior of the
saturated surface roughness with L, while the growth expo-
nent � describes scaling at an early stage when finite-size
effects are negligible. The crossover time between the two
regimes is ts=Lz.

A widely studied phenomenological equation representing
the nonequilibrium growth of such interfaces is the Kardar-
Parisi-Zhang �KPZ� equation, which in 1+1 dimensions is
given by

�h�x,t�
�t

= �
�2h�x,t�

�2x
+ �� �h�x,t�

�x
�2

+ ��x,t� , �1�

where h�x , t� is the local surface height at the position x and
time t. The coefficients � and � represent the strength of the
linear and nonlinear terms, respectively. The noise ��x , t� is
Gaussian with zero variance and covariance

���x,t���x�,t��	 = 2D��x − x����t − t�� ,

where D is the strength of the noise. The exponents charac-
terizing the KPZ equation in a highly nonlinear strong cou-

pling are �=1/2 and �=1/3. In contrast, when �=0 the
linear Edward-Wilkinson �EW� equation is recovered, lead-
ing to the weak-coupling exponents �=1/2 and �=1/4.
When both � and � are zero the growth reduces to a simple
random deposition �RD� with �=1/2 but lacks a saturation
regime.

There has been a recent interest in the study of competi-
tive growth models �CGM’s� analyzing the interplay and
competition between two growth processes for a single sur-
face. These CGM’s are often more realistic in describing
growth in real materials �4�, in which more than one micro-
scopic growth mode usually exists. For example, two distinct
growth phases were observed in experiments on interfacial
roughening in Hele-Shaw flows �5,6� as well as in simula-
tions on electrophoretic deposition of polymer chains �7,8�.
The resulting universalities from these competing processes
are not well understood �9–13�. Recently Horowitz and Al-
bano �10� introduced a CGM called the BD-RD model in
which the microscopic growth rule follows either the ballis-
tic deposition �BD� model with probability p or the simple
RD with probability 1− p. This system exhibits a transition at
a characteristic time from RD to KPZ. For this particular
CGM, they found numerically that the scaling behavior of W
is giving by the empirical form

W �
L�

p� F� t

p−yLz� . �2�

Based on numerical estimates, exact values

� = 1/2 and y = 1 �3�

have been conjectured for the BD-RD model. Based on this
conjecture, the authors �10,11� concluded using scaling argu-
ments that the model follows Eq. �1� with �� p and �
� p3/2. Subsequently, a similar CGM—namely, the EW-RD
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model describing the competition between the EW and RD
models �9�—has been studied. The simulations showed that
Eq. �2� also holds with a different set of exponents which are
conjectured to be

� = 1 and y = 2. �4�

This model can also be described by Eq. �1� with �� p2 and
�=0 �9,12�. In these CGM’s, the choice of the growth rule is
independent of the lattice position. More recently, another
CGM that combines RD with KPZ-type growth has been
studied and gives different values of � and y due to the
spatial inhomogeneity in the choice of the growth rules. �14�

In this paper, we explain the scaling form �2� for the
BD-RD and EW-RD models and derive rigorously the exact
exponents � and y for small p using simple arguments. In
addition, from the above examples of CGM’s, one might be
tempted to conclude that a CGM based on RD and a model
in the KPZ �EW� universality class should always lead to an
overall process in the KPZ �EW� class. We suggest that these
naive predictions of universality are not always correct.
Close examination of the microscopic details of the growth
models is indeed essential. This is illustrated by introducing
a constrained EW �CEW� model. Although this model essen-
tially belongs to the EW class, a CGM in the form of the
CEW-RD model at sufficiently small p results in an overall
process in the KPZ universality class. Our model also dem-
onstrates that a CGM can crossover from one universality
class to another by tuning p.

II. EXACT SCALINGS FOR CGM’s

In the RD model, a particle is dropped at a randomly
selected column. The local surface height is increased by 1.
For the BD-RD or EW-RD CGM’s described above, a par-
ticle is deposited on the surface following a RD process with
probability 1− p and by another process A �which is either
BD or EW� with probability p. Now, we derive analytically
the exact exponents � and y which characterize the p depen-
dence of the scaling behavior of W given in Eq. �2�. We
consider p→0 �small p�. At each unit time, L particles are
deposited. The average time interval between any two con-
secutive A events at any column i is 	=1/ p. During this
period, 	−1
	 atoms on average are directly stacked onto
the surface according to the simple RD rule. The local height
at column i hence increases by �i which is an independent
Gaussian variable with mean �̄=	 and standard deviation

�=�	 according to the central limit theorem. The mean,
however, only leads to an irrelevant rigid shift of the whole
surface. We can easily apply a vertical translation so that �̄
=0. After these 	 RD events at column i, one A event on
average is expected at the same column.

Now we consider A to be the BD process. The CGM is
then the BD-RD model. When a BD event occurs at column
i, its height is updated in the simulations according to hi
→max�hi−1 ,hi+1 ,hi+1. In the limit of small p�
��1� the
height of the atom is negligible compared with the incre-
ments due to the RD events. The growth rule hence reduces
to

hi → max�hi−1,hi+1,hi . �5�

We have now arrived at a limiting BD-RD model defined as
follows: At every coarsened time step 	=1/ p, the local
height hi at every column i first changes by an additive
Gaussian noise term �i with mean zero and standard devia-
tion 
�=�	. Then the limiting BD growth rule in Eq. �5� is
applied to every column i. A more careful analysis should
account for the fact that the BD events at various columns
indeed occur randomly and asynchronously during period 	.
But this does not affect our result. In this limiting model,
time and vertical length scales are determined completely by
	 and 
�, respectively. Therefore, time scales as t�	=1/ p
while roughness scales as W�
��1/ p1/2. This explains the
p dependence of the scaling form in Eq. �2�. In particular, we
obtain the exact exponents y=1 and �=1/2 in agreement
with values in Eq. �3� first conjectured in Ref. �10� but not
derived analytically before.

Next, we assume that A represents the EW growth rule
instead. For this growth rule, a particle is dropped at a ran-
dom column but when it reaches the surface it is allowed to
relax to the lower of the nearest-neighboring columns. If the
heights at both nearest neighbors are lower than the selected
one, the relaxation is directed to either of them with equal
probability. Our CGM now becomes a EW-RD model. The
corresponding derivation of the characteristic length and
time scales is similar to the BD-RD case. Assuming again
small p, the average time interval between any two consecu-
tive EW events at any given site is 	=1/ p. Consider a char-
acteristic time n	. On average n	 RD events occur at any
given site, leading to height increments with a standard de-
viation �n	. However, only n EW events take place. The
resulting smoothing dynamics is such that a big step, for
instance, will typically decrease the height by n. For scaling
to hold, there can only be one unique relevant length scale in
the vertical direction. The two length scales �n	 and n hence
have to be proportional to each other. Then we obtain 	�n.
The characteristic time scale considered is hence n	�1/ p2,
while a characteristic length scale for the surface height is
�n	�1/ p. We have hence derived y=2 and �=1 �see Eq.
�4�� previously conjectured in Ref. �9�. The extended scaling
form and scaling exponents derived are exact for p→0. At
finite p, we expect deviations from the exact scalings which
indeed were observed numerically �10�. Note that the devia-
tions cannot be caused by the finite lattice size according to
our analytic calculations above.

III. CEW AND CEW-RD MODELS

We now introduce the CEW model which is a generaliza-
tion of the EW model. In 1+1 dimensions, particles are ag-
gregated by the following rules. We choose a site i at random
among the L possible sites. The surface height hi at the se-
lected column is increased by 1 if its height is lower than the
values hi±1 at the neighboring columns. Otherwise, either
hi−1 or hi+1, whichever smaller, is increased to

hi±1 = max�hi±1 + 1,hi − c . �6�

If hi−1=hi+1, either one will be updated with equal probabil-
ity. Here, c is a tuning parameter. Growth at i±1 physically
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represents the rollover of a newly dropped particle to a lower
site nearby under the influence of gravity, for example. In the
original EW model, there is no limit in the vertical distance
transversed during the rollover and the particle can in prin-
ciple slides down a very deep cliff if one exists next to col-
umn i. This is unphysical if there is a finite chance for the
sideway sticking of the particle to the cliff. In the CEW
growth rule defined in Eq. �6�, this vertical drop during roll-
over is limited to c by the process of sideway sticking. As
c→�, it is easy to see that CEW reduces to the standard EW
model. At c=0, sideway sticking of particles occurs fre-
quently and CEW behaves similarly to BD, although the pre-
cise growth rules are different. In the rest of this paper, we
use c=4.

To be demonstrated by the simulations presented later, the
CEW model at c=4 at practical length and time scales con-
sidered here �L�8192 and t�107� belongs to the EW uni-
versality class. Finally, we define the CEW-RD model which
is a CGM based on the RD and CEW models. Similar to the
definitions of other CGM’s defined above, at each time step,
the CEW growth rule is applied with probability p while a
RD event occurs with probability 1− p. Time t is then in-
creased by 1/L.

Now, we present the simulation results. In Figs. 1�a� and
1�b�, we show the log-log plot of W /L� as a function of t /Lz

for two limiting values of p. For small p, the behavior is
consistent with the KPZ universality class with �=1/2 and
z=3/2, while for p close to 1 the system behaves as pre-
dicted by the EW equation with �=1/2 and z=2. The initial
regime corresponding to the RD deposition, with �=1/2,
does not scale with the system size. In order to show that the
universality class depends on p, we compute � as a function
of t using successive slopes defined in Ref. �15�.

In Fig. 2 we plot � as a function of log t for different
values of p. At the beginning �=1/2 as expected for the
initial RD regime. After this early regime, the system evolves
either to the KPZ class with �=1/3 for small p or to the EW
class for large p with �=1/4. For intermediate p values �af-
ter the RD regime�, the system behaves as in the weak cou-
pling of Eq. �1�. It is easy to observe a transition from an EW
to a KPZ-class for p0.32 while for small p, the system
always belongs to the KPZ universality class.

IV. GENERALIZED CONTINUUM EQUATIONS
AND SCALING

As shown above the CEW-RD model has a transition
from a KPZ to a EW class as the tuning parameter p goes
from 0 to 1. Thus the nonlinear coefficient � of the KPZ
equation has to vanish as p→1. In order to understand the
functional form of ��p�, we perform a finite-size scaling
analysis of the growth velocity v used on Ref. �16�,

�v�L� � �L−� for t � ts, �7�

where �v�L , t�=v�L=1024, t�−v�L=10, t� and v�L , t�
= �dh /dt	. Here �¯	 denotes the average over L an over dif-
ferent configurations. The �v correction should go to zero
when the nonlinear term � vanishes.

Thus, using Eq. �7�, we can determine how � in the KPZ
equation depends on p. In Fig. 3 we plot �v as a function of
p for fixed L to show the p dependence of �. From the plot,
we can see that the functional form for the CEW-RD CGM is
totally different from the scaling form ��p�� p3/2 of the

FIG. 1. log-log plot of W /L� as a function of t /Lz for c=4 and
different L values: L=256 ���, L=512 ���, L=1024 ���. �a� The
scaling exponents used here are characteristic of the KPZ equation
�=1/2 and z=3/2. Here p=0.02. The dashed line with slope 1/2
and the dot-dashed line with slope 1/3 are used has a guide to show
the RD and KPZ regimes, respectively. �b� The same as �a� but for
p=0.64, with �=1/2 and z=2, characteristic of the EW behavior.
The dashed line with slope 1/2 and the dot-dashed line with slope
1/4 are used has a guide to show the RD and EW regimes,
respectively.

FIG. 2. Plot of the growth exponent � as a function of log t for
L=8192 and different p values: p=0.02 ���, p=0.04 ���, p=0.08
���, p=0.16 ���, p=0.32 ���, p=0.64 ���, and p=1.0 ��� show-
ing the change in the behavior of � with time. The � values where
computed over 100 realizations. The arrows are used as guides to
show the asymptotic exponents.
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BD-RD model �10�. For small p values, � has a power-law
dependence with p, while for large p, ��p�→0 with a fast
decay. Now we proceed to generalize Eq. �1� for a CGM
applying the following transformation: h�=hf�p�b�, x�=bx,
and t�=g�p�tbz, where b is the lateral length transformation.
As the interface evolution of these CGM’s is independent of
b, they can be described, after applying the transformations
defined above, by the generalized continuum equation

�h�x,t�
�t

= ��p�
�2h�x,t�

�2x
+ ��p�� �h�x,t�

�x
�2

+ D�p���x,t� ,

�8�

with

��p� = �0g�p� , �9�

��p� = �0f�p�g�p� , �10�

D�p� =
g�p�
f�p�2 , �11�

where g�p� is related to the characteristic time scale when the
correlations begins to dominate the dynamic of the interface
and f�p� is related to the saturation length scale. Notice that
for the EW universality class �0=0. Using the exact results
from Sec. II we obtain

f�p� � �p1/2, for the BD-RD and CEW-RD models when p is small,

p , for the CEW-RD model when p is large,
� �12�

and

g�p� � � p , for the BD-RD and CEW-RD models when p is small,

p2, for the CEW-RD model when p is large,
� �13�

Thus Eqs. �9�–�11�, can be replaced by

��p� � � �0p , for the BD-RD and CEW-RD models when p is small,

�0p2, for the CEW-RD model when p is large,
� �14�

��p� � ��0p3/2, for the BD-RD model when p is small,

0, for the CEW-RD model when p is large,
� �15�

and D�p��D0 for the BD-RD and CEW-RD models independent of p.

FIG. 4. log-log plot of Wf�p� as a function of tg�p� for L
=8192 and different p values. In �a� p=0.02 ���, p=0.04 ���, and
p=0.08 ���, g�p�= p and f�p�= p1/2. In �b� p=0.32 ���, p=0.64
���, and p=1.0 ���, g�p�= p2 and f�p�= p. Notice the departure
from the EW scaling behavior for p=0.32.

FIG. 3. Linear plot of �v�� as a function of p, where
�v�L , t�=v�L=1024, t�−v�L=10, t�. The averages where taken over
typically 500 realizations. The errors bars where computed using 5
independent sets of 500 realizations each.
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Thus, for the CGM belonging to the KPZ �EW� universality class the evolution of the interface is given by

�h

�t
= ��0p

�2h�x,t�
�2x

+ �0p3/2� �h�x,t�
�x

�2

+ ��x,t� , for the BD-RD and CEW-RD models when p is small,

�0p2�2h�x,t�
�2x

+ ��x,t� , for the CEW-RD model when p is large,

� �16�

The scaling behavior of W �12� is then

Wf�p�/L� ��F�g�p��0�D0

�0

t

Lz� , for the KPZ model,

F�g�p��0
t

Lz� , for the EW model, �
�17�

which after replacing f�p� and g�p� given by Eqs. �12� and
�13� leads to the exact scaling of W predicted by Eq. �2� with
the exact values of � and y derived in Sec. II. In Fig. 4 we
show the log-log plot of Wf�p� as a function of tg�p� in the
two limiting p values for a fixed value of L. The results are in
agreement with our exact results �see Sec. II� and our scaling
ansatz �Eq. �17��.

V. CONCLUSIONS

We derive analytically the p dependence in the scaling
behavior in two CGM’s named the BD-RD and EW-RD

models. Exact scaling exponents are derived and are in
agreement with previously conjectured values �9,10�. To our
knowledge, these exact scaling behaviors were not analyti-
cally derived before. This derivation allows us to compute
the scaling behaviors of the coefficients of the continuum
equations that describe their universality classes. We intro-
duce the CEW-RD model to show that not all CGM’s can be
represented by a unique universality class. The CEW-RD
model is an EW model in the limit of large p at practical
length and time scales, while in the other limit �small p�, it
follows the strong-coupling behavior of the KPZ equation.
Our simulation results are in excellent agreement with the
analytic predictions.
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