
Approximability of Two-Machine No-Wait Flowshop

Scheduling with Availability Constraints

T.C. Edwin Cheng1,∗ and Zhaohui Liu1,2

1Department of Management, The Hong Kong Polytechnic University

Kowloon, Hong Kong, China

2Department of Mathematics, East China University of Science and Technology

Shanghai 200237, China

October 5, 2002

Abstract

We consider in this paper the two-machine no-wait flowshop scheduling problem in

which each machine may have an unavailable interval. We present a polynomial time

approximation scheme for the problem when the unavailable interval is imposed on

only one machine, or the unavailable intervals on the two machines overlap.

Keywords: scheduling, approximation scheme

∗Corresponding author.

1

1 Introduction

In the two-machine no-wait flowshop problem, each job has to be processed on each

machine for a period subject to the constraint that the processing on machine 2 fol-

lows the processing on machine 1 without waiting. In this paper, we consider the

two-machine no-wait flowshop scheduling problem in which each machine may have

an availability constraint, i.e., an interval during which the machine is unavailable for

processing. Due to the no-wait constraint, the processing of any job cannot be inter-

rupted by the unavailable intervals. Our objective is to minimize the makespan, i.e.,

the completion time of the last job.

Although the classical two-machine no-wait flowshop problem is polynomially solv-

able (see Gilmore and Gomory [2] and Hall and Sriskandarajah [3]), the problem with

an unavailable interval becomes NP-hard, and the problem with two separate un-

available intervals has no polynomial time approximation with constant performance

bound unless P = NP (see Espinouse et al. [1]). Wang and Cheng [5] provided 5/3-

approximation algorithms for the problem with an unavailable interval. In this paper,

we present a polynomial time approximation scheme (PTAS) for the problem in which

machine 1 and machine 2 have overlapping unavailable intervals or only one machine

has an unavailable interval.

2 Notation and preliminaries

We first introduce some notation to be used throughout this paper.

M1,M2 : machine 1 and machine 2;

J = {1, 2, . . . , n} : the set of jobs to be processed;

aj , bj : the processing time of job j on M1 and M2;

si, ti : Mi (i = 1, 2) is unavailable from si to ti, where 0 ≤ si ≤ ti;

σGG(I) : the schedule without availability constraints produced by Gilmore and Go-

mory’s algorithm for some job set I;

CGG(I) : the makespan of σGG(I);

σGG(I, k) : the schedule without availability constraints produced by Gilmore and

Gomory’s algorithm for some job set I, given k ∈ I is scheduled as the last job;

2

CGG(I, k) : the makespan of σGG(I, k);

σA : the schedule generated by our approximation scheme for J ;

C∗ : the optimal makespan for J with given availability constraints.

The makespan of a schedule (j1, j2, . . . , jn) for the classical two-machine no-wait

flowshop problem is

aj1 +
n−1∑
i=1

max{aji+1
− bji

, 0} +
n∑

i=1

bji
. (1)

If k is fixed as the last job, then jn = k and the problem of minimizing (1) reduces to

the traveling salesman problem with n nodes and the cost functions

ckj = aj ,

cij = max{aj − bi, 0} (i �= k) .

Let Aj = aj (j = 1, 2, . . . , n), Bi = bi (i �= k) and Bk = 0, and introduce functions

f(x) = 1 and g(x) = 0. Then,

cij =

∫ Aj

Bi
f(x)dx if Aj ≥ Bi ,∫ Bi

Aj
g(x)dx if Aj < Bi .

Gilmore and Gomory [2] gave an O(n logn) algorithm for the traveling salesman prob-

lem with such cost functions, i.e., an O(n logn) algorithm to generate σGG(J, k).

Instead of fixing a job as the last job, we introduce an auxiliary job with zero

processing time on both machines to act as the last job. So, σGG(J) can also be

obtained in O(n logn) time. Also, we note the following relation

1

2

n∑
j=1

(aj + bj) ≤ CGG(J) = min
k∈J

CGG(J, k) ≤ C∗.

3 An approximation scheme

In this section, we present an approximation scheme for the two-machine no-wait flow-

shop scheduling problem in which the unavailable intervals [s1, t1] and [s2, t2] satisfy

one of the following conditions: (1) s1 < t2 and s2 ≤ t1; (2) s1 = +∞; (3) s2 = +∞.

Condition (1) states thatM1 andM2 have overlapping unavailable intervals and implies

there is no job having its first operation processed before [s1, t1] on M1 and its second

3

operation processed after [s2, t2] on M2. Conditions (2) and (3) respectively imply that

M1 and M2 have no availability constraint.

In the approximation scheme, we first try to find an optimal schedule in which all

jobs are completed before the unavailable intervals. Failing this, borrowing an idea from

Sevastianov and Woeginger [4], we partition the job set J into three subsets: L, S and

T , which consist of large jobs, small jobs and tiny jobs, respectively, and then schedule

each subset in one or two consecutive segments without availability constraints. The

following is the approximation scheme.

Step 1. Construct σGG(J, k) for each k ∈ J . If there exist some σGG(J, k) with

CGG(J, k) ≤ min{s1 + bk, s2, t1}, then let σA be the shortest one of such schedules

and stop.

Step 2. Let ε > 0, and

S(k) =
{
j ∈ J | εkCGG(J) > aj + bj > ε

k+1CGG(J)
}
,

for k = 1, 2, . . . , �2/ε�. Determine k∗ such that

∑
j∈S(k∗)

(aj + bj) ≤ εCGG(J) . (2)

Let

L =
{
j ∈ J | aj + bj ≥ εk∗

CGG(J)
}
,

S = S(k∗) ,

T =
{
j ∈ J | aj + bj ≤ εk∗+1CGG(J)

}
.

Step 3. Construct σGG(S) and σGG(T).

Step 4. For each pair (L1, k) with k ∈ L1 ⊆ L, do

(i) Construct σGG(L1, k). If CGG(L1, k) ≤ min{s1 + bk, s2}, then go to (ii), else turn

to another (L1, k).

(ii) Divide σGG(T) into two segments σ1 and σ2 such that the front segment σ1 can

be placed into the gap at the beginning of σGG(L1, k) and has the most jobs (push the

jobs in L1 backward to reduce the gap before the unavailable intervals when necessary).

Put σ1 at the beginning of σGG(L1, k).

(iii) Schedule the jobs in L \ L1 to follow σGG(L1, k) and the unavailable intervals

according to Gilmore and Gomory’s algorithm. This can be done by reversing time,

exchanging machine names, and creating an auxiliary job that simulates the end of

σGG(L1, k) and the unavailable intervals and is scheduled as the last job.

4

(iv) Put σ2 after L \ L1.

(v) Put σGG(S) after σ2. Let σL1, k denote the resulting schedule.

Step 5. Let σA be the shortest one of all σL1, k obtained in Step 4.

4 Analysis of the approximation scheme

σA obtained in Step 1 is optimal since it has the minimum makespan among all sched-

ules in which all jobs are completed before the unavailable intervals. If the algorithm

enters Step 2, there must be some jobs completed after the unavailable intervals in

an optimal schedule, i.e., C∗ > t, where t = max{t1, t2} if both t1 and t2 are limited,

t = min{t1, t2} otherwise.

Since
∑n

j=1(aj + bj) ≤ 2CGG(J) and all S(k) are disjoint, k∗ satisfying (2) exists;

otherwise, it holds that

�2/ε�∑
k=1

∑
j∈S(k)

(aj + bj) >
⌈
2

ε

⌉
· εCGG(J) ≥ 2CGG(J) ,

a contradiction. It follows from (2) that CGG(S) ≤ εC∗. Since C∗ > t, append-

ing σGG(S) to the end of a 1 + O(ε)-approximation for L ∪ T leads to a 1 + O(ε)-

approximation for J .

Since

|L|εk∗
CGG(J) ≤ ∑

j∈L

(aj + bj) ≤ 2CGG(J) ,

it holds that |L| ≤ 2/εk
∗ ≤ 2ε−�2/ε�. We next prove a lemma.

Lemma 1 The problem of scheduling L ∪ T with the unavailable intervals [s1, t1] and

[s2, t2] has an approximation solution such that the tiny jobs in T are processed first or

last and the makespan is at most (1 + 4ε)C∗.

Proof Consider an optimal schedule σ for L∪T with the unavailable intervals [s1, t1]

and [s2, t2]. Let the tiny jobs in T be partitioned into m segments by the large jobs in

L and the unavailable intervals in σ, and the jobs in the first l (0 ≤ l ≤ m) segments be

started before the unavailable intervals. For i = 1, 2, . . . , m, let ji be the first job and

j′i the last job in the ith segment. Note that it is possible that ji = j′i. We transform

σ by two steps:

5

(1) shift the tiny jobs started before the unavailable intervals to the beginning and

the tiny jobs started after the unavailable intervals to the end (without changing

their relative order), and then push all jobs toward the unavailable intervals to

compress the machine idleness (at this stage, it is allowable that some tiny jobs

are scheduled before time zero);

(2) shift the tiny jobs started before time zero to the end.

After the first step, the increase in the length of the part started after the unavailable

intervals is bounded by

ajl+1
+

m−1∑
i=l+1

max
{
bj′i , aji+1

}
+ bj′m ≤ (m− l)εk∗+1CGG(J) ,

and the length of the part before time zero is bounded by

aj1 +
l−1∑
i=1

max
{
bj′i , aji+1

}
+ bj′

l
≤ lεk∗+1CGG(J) .

Then, the makespan of the resulting schedule after the second step exceeds t or the

original makspan of σ by at most

mεk
∗+1CGG(J) ≤ (|L| + 2)εk

∗+1CGG(J) ≤ 4εC∗ .

This completes the proof. ✷

Let L′
1 ⊆ L be the set of large jobs started before the unavailable intervals in an

approximation solution σ′ for L ∪ T satisfying the requirement in Lemma 1 and k′ be

the last job in L′
1. Let σ′′ be the schedule obtained in (i)-(iv) of Step 4 for L ∪ T

when (L1, k) = (L′
1, k

′). Note that the length of the part consisting of the large jobs

in σ′′ does not exceed the length of the corresponding part in σ′. The makespan of

σ′′ exceeds t or the makespan of σ′ by the length of at most three tiny jobs. Then, it

is at most (1 + O(ε))C∗, where the constant in the O-notation does not depend on ε.

Consequently, σL′
1, k′ is a 1 +O(ε)-approximation for the job set J .

The complexity of the approximation scheme is dominated by Step 4, which needs

to call Gilmore and Gomory’s algorithm O(2|L|n) times, so it is O(2|L|n2 log n). Since

|L| ≤ 2ε−�2/ε�, the approximation scheme is a PTAS. We have thus established the

following theorem.

Theorem 1 The two-machine no-wait flowshop scheduling problem with the unavail-

able intervals [s1, t1] and [s2, t2] has a PTAS if s1 < t2 and s2 ≤ t1, or s1 = +∞, or

s2 = +∞.

6

As a corollary of Theorem 1, we can also prove the following theorem.

Theorem 2 The two-machine no-wait flowshop scheduling problem with the unavail-

able intervals [s1, t1] and [s2, t2] has a PTAS if s1 = t2.

Proof Suppose that no jobs have zero processing time on both machines; otherwise,

they can be scheduled at the beginning with no cost. In the case of s1 = t2, it is

possible that some job i or some two jobs j and k with bj = ak = 0 are processed

before [s1, t1] on M1 and processed after [s2, t2] on M2. We apply the approximation

scheme in Section 3 to the job set J with the unavailable intervals [s1, t1] and [s2, t2], all

J \ {i} with the unavailable intervals [s1 − ai, t1] and [s2, t2 + bi], and all J \ {j, k} with

the unavailable intervals [s1 − aj , t1] and [s2, t2 + bk]. The shortest one of the resulting

schedules is a 1 +O(ε)-approximation for the problem. ✷

Acknowledgment

This research was supported in part by The Hong Kong Polytechnic University under

grant number G-YW59. The second author was also supported by the National Natural

Science Foundation of China under grant number 10101007.

References

[1] M.L. Espinouse, P. Formanowicz, B. Penz, Minimizing the makespan in the two-

machine no-wait flow-shop with limited machine availability, Computers & Indus-

trial Engineering 37 (1999) 497–500.

[2] P.C. Gilmore, R.E. Gomory, Sequencing a one-state variable machine: a solvable

case of the traveling salesman problem, Operations Research 12 (1964) 655–679.

[3] N.G. Hall, C. Sriskandarajah, A survey of machine scheduling problems with block-

ing and no-wait in process, Operations Research 44 (1996) 510–525.

[4] S.V. Sevastianov, G.J. Woeginger, Makespan minimization in open shop: a polyno-

mial time approximation scheme, Mathematical Programming 82 (1998) 191–198.

[5] G. Wang, T.C.E. Cheng, Heuristics for two-machine no-wait flowshop scheduling

with an availability constraint, Information Processing Letters 80 (2001) 305–309.

7

