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Abstract 

Co-electrolysis of CO2 and H2O in a solid oxide electrolyzer cell (SOEC) offers a promising way 

for syngas production.  In this study, an electrochemical model is developed to simulate the 

performance of an SOEC used for CO2/H2O co-electrolysis, considering the reversible water gas 

shift reaction (WGSR) in the cathode.  The dusty gas model (DGM) is used to characterize the 

multi-component mass transport in the electrodes.  The modeling results are compared with 

experimental data from the literature and good agreement is observed.  Parametric simulations 

are performed to analyze the distributions of WGSR and gas composition in the electrode.  A 

new method is proposed to quantify the contribution of WGSR to CO production by comparing 

the CO fluxes at the cathode-electrolyte interface and at the cathode surface.  It is found that the 

reversible WGSR could contribute to CO production at a low operating potential but consume 

CO at a high operating potential.  In addition, the contribution of WGSR to CO production also 

depends on the operating temperature and inlet gas composition.   
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1. Introduction 

Hydrogen can be produced in a sustainable manner, such as by photocatalytic water 

splitting [1], gasification of biomass [2], solar thermochemical water-splitting [3], or water 

electrolysis driven by solar cells or wind turbines [4].  Among all the above technologies, water 

electrolysis is a practical and efficient method for large-scale hydrogen production.  Alkaline 

electrolyzers and proton exchange membrane (PEM) electrolyzers usually work at room 

temperature.  Solid oxide electrolyzer cells (SOECs) use the same materials with solid oxide fuel 

cells (SOFCs) but work in a reversed mode at a high temperature (i.e. 1073K).  Compared with 

alkaline and PEM electrolyzers, SOECs consume less electricity as part of the energy needed for 

water splitting is in the form of heat [5].  Because of their great potential, SOECs have received 

increasing interest in recent years [6-20].  Various materials have been developed to fabricate 

SOEC for hydrogen production by steam electrolysis [21-23].  Several mathematical models 

have been developed to predict the SOEC performance at various levels [24-32].   

In addition to steam electrolysis, SOECs can be used to electrolyze CO2 for CO and O2
 

production [33-39].  Co-electrolysis of CO2 and H2O has also been demonstrated to be feasible 

for simultaneous production of H2 and CO [33-44], which can be subsequently processed for 

synthetic fuel production.  In an SOEC used for H2O/CO2 co-electrolysis, 3 reactions take place 

simultaneously, namely H2O electrolysis, CO2 electrolysis, and reversible water gas shift 

reaction (WGSR).  A common understanding on co-electrolysis is that the reversible WGSR 

should always contribute to CO production [38,40].  However, it is still not clear to which degree 

the reversible WGSR is responsible for CO production in the SOEC [45].  In addition, the 

existing studies on H2O/CO2 co-electrolysis are all experimental in nature, with aims to 

demonstrate the feasibility of this technology or to develop new materials for performance 
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improvement.  The present literature is lacking detailed mathematical modeling of the SOEC 

used for H2O/CO2 co-electrolysis.   

In this study, an isothermal electrochemical model is developed to characterize the 

performance of an SOEC used for CO2/H2O co-electrolysis.  It is an extension of the previous 

models for CO2 electrolysis and H2O electrolysis, respectively [29, 46].  Both the co-electrolysis 

and the reversible WGSR inside the SOEC cathode are considered.  The model is validated by 

comparing the simulation results with data from the literature.  A new method is proposed to 

quantify the contribution of the reversible WGSR to CO production by comparing the fluxes of 

CO at the cathode-electrolyte interface and at the cathode surface.  The results show that the 

reversible WGSR can produce or consume CO, depending on the average rate of WGSR in the 

cathode.  This is different from the common understanding on H2O/CO2 co-electrolysis.  The 

electrochemical model will be extended to 2D/3D model in a subsequent study.   

 

2. Model development 

2.1. Working principles 

The working mechanisms of an SOEC for co-electrolysis of H2O and CO2 are shown in 

Figure 1.  In the SOEC, the gas mixture of H2O, CO2, H2, and CO flows in the cathode channel 

while air flows in the anode channel.  In the porous cathode, both H2O and CO2 molecules 

diffuse through the porous electrode to the triple-phase-boundary (TPB) at the cathode-

electrolyte interface, where they are reduced to H2 and CO via reactions (1) and (2), respectively.   

2

2 22H O e H O
− −+ → +      (1) 

2

2 2CO e CO O
− −+ → +      (2) 
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The oxygen ions (O
2-

) transport through the dense electrolyte to TPB at the electrolyte-

anode interface, where they lose electrons to form oxygen molecules (Eq. 3).  The produced 

oxygen molecules subsequently diffuse through the porous anode to the anode surface and get 

collected.   

2

22 4O O e
− −→ +       (3) 

The overall reactions for H2O electrolysis and CO2 electrolysis can be written as,  

2 2 20.5H O H O→ +       (4) 

2 20.5CO CO O→ +        (5) 

In addition to the above mentioned electrochemical reactions, reversible WGSR also 

occur in the cathode (Eq. 6).   

2 2 2H O CO H CO+ +�       (6) 

In operation, the required potential (V) applied to SOEC can be expressed as, 

, ,act a act c ohmicV E η η η= + + +       (7) 

where E is the equilibrium potential (Nernst potential); ηohmic is the ohmic overpotential; ηact,a 

and ηact,c are the activation overpotentials at the anode and cathode, respectively.   

 

2.2. Equilibrium potentials including concentration overpotentials 

The concentration overpotentials are not explicitly expressed in Eq. (7) as they are 

implicitly included in the Nernst potentials (Eqs. 8 and 9) for reactions (4) and (5), respectively 

[29,46], 

( )
2 2

2 2
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     (8) 
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     (9) 

where 0E  is the voltage under standard conditions; 
2

I

HP , 
2

I

H OP , 
2

I

COP , I

COP  and 
2

I

OP  are the partial 

pressures of H2, H2O, CO2, CO and O2 at the electrolyte-electrode interface, respectively.  T is 

temperature (K).  R is the universal gas constant (8.3145 J.mol
-1

K
-1

); and F is the Faraday 

constant (96485 C.mol
-1

).  The 0E  can be calculated from thermodynamics ( ( )/ 2G F∆ ).  At 

600K and 1200K, the values of 
2

0

HE  are 1.109017V and 0.940172V, respectively [47].  

Similarly, the values of 0

COE  are 1.195502V and 0.923869V, respectively.  Assuming linear 

variation of 0E  between 600K and 1200K, the Nernst potentials (including concentration 

overpotentials) for Eqs. (4) and (5) can be written as,  

( )
2 2

2

2
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1.253 0.00024516 ln
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E T
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   (11) 

 

2.3. Multi-component mass transfer in porous electrodes 

In order to determine the gas partial pressures at the electrolyte-electrode interface, the 

multi-component reactive-transport processes in the porous electrodes must be solved (Eq. 12).  

For modeling of multi-component reactive-transport in porous media, the Fick’s Model (FM), 

Stefan-Maxwell Model (SMM), and the Dusty-Gas Model (DGM) have been widely used in the 

literature [48].  The DGM is used in the present study due to its better accuracy for multi-
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component gas transport [49].  As the reversible WGSR does not change the total molar number 

of gas species, the pressure effect on mass transfer can be safely neglected [48, 50].  According 

to DGM, the reactive-transport of gas species i can be expressed as [49],  

( )i

i i

y P
N R

RT t

ε ∂
= −∇ +

∂
      (12) 

1,,

n
j i i ji i

eff eff
j j ii k ij

y N y NN dyP

D D RT dx= ≠

−
+ = −∑      (13) 

where yi is the molar fraction of species i; ε  is electrode porosity, Ri is the reaction rate    

(mol.m
-3

.s
-1

); 
,

eff

i kD  is the effective Knudsen diffusion coefficient (m
2
.s

-1
) of species i; eff

ijD  is the 

effective binary diffusion coefficient (m
2
.s

-1
) of species i and j; P is the pressure (Pa).  Ni is the 

flux of species i (mol.m
-2

.s
-1

).  dc and da are thicknesses of cathode and anode, respectively.  x is 

the depth inside the electrode, measured from the electrode surface, as can be seen from the 

computational domain shown in Fig. 1.   

The effective binary diffusion coefficient ( eff

ijD ) can be evaluated as,  

1.5

2

, ,

0.0026
ij

eff

i j i j D

T
D

p M

ε

ξ σ
=

Ω
      (14) 

2

1 1ij

i j

M

M M

=

+

       (15) 

where /ε ξ  is the ratio of porosity to tortuosity of porous electrodes; σi,j is the mean 

characteristic length of species i and j; ΩD is a dimensionless diffusion collision integral, which 

can be calculated as,  

,
2

i j

i j

σ σ
σ

+
=         (16) 
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( ) ( ) ττττ 89411.3

76474.1

52996.1exp

03587.1

47635.0exp

193.006036.1
1561.0

+++=ΩD   (17) 

,

b

i j

k T
τ

ε
=          (18) 

Here ( )23 1
1.38066 10 J.Kbk

− −= ×  is the Boltzmann’s constant.  The values of 
iσ  and 

,i jε  

can be used in the present study are summarized in Table 1 [51].   

The Knudsen diffusion coefficient can be calculated as,  

,

2 8

3i k

peff

i

r RT
D

M

ε

ξ π
=        (19) 

where rp is the radius of pores.   

In the porous cathode, the transport of gas species is related to the rate of reversible 

WGSR and the rate of electrolysis reaction (current density).  The rate (
WGSRR , 3 1

. .mol m s
− − ) of 

reversible WGSR can be determined by a widely used formula as [52-59],  

2 2

2

H CO

WGSR sf H O CO

ps

p p
R k p p

K

 
= −  

 
     (20) 

103191
0.0171exp

sf
k

RT

− 
=  

 
   ( 3 2 1

. . .mol m Pa s
− − − )  (21) 

( )3 2exp 0.2935 0.6351 4.1788 0.3169
ps

K Z Z Z= − + + +    (22) 

1000
1

( )
Z

T K
= −          (23) 

The local mass conservation can be applied as,  

2H

WGSR

dN
R

dx
=  ;  2H O

WGSR

dN
R

dx
= −     (24) 

2CO

WGSR

dN
R

dx
= ;  CO

WGSR

dN
R

dx
= −     (25) 
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At the cathode-electrolyte interface, electrochemical reactions take place and thus the 

flux of H2 and CO can be related to the current densities as, 

2

2 2c

H

H
x d

J
N

F=
= − ; 2

2 2c

H

H O
x d

J
N

F=
=     (26) 

2c

CO
CO x d

J
N

F=
= − ; 

2 2c

CO
CO

x d

J
N

F=
=     (27) 

At the anode side, air is usually used as a sweep gas.  The oxygen molecules produced at 

the TPB of anode transport to the anode surface and get collected.  The flux of O2 is related to 

the current density as, 

2

2 4a

CO H

O
x d

J J
N

F=

+
= −       (28) 

The above governing equations for describing the multi-component mass transfer are 

inter-related differential equations and can be solved by numerical method.  The fourth order 

Runge-Kutta method is adopted for solving the DGM equations.  After obtaining the partial 

pressure of gas species at the TPB (electrolyte-electrode interface), the Nernst potentials 

(including concentration overpotentials) can be calculated using Eqs. (10) and (11).   

 

2.4. Activation overpotential 

The activation overpotentials reflect the electrochemical activity of the electrodes.  In the 

literature, the Butler-Volmer (BV) equation is the most widely adopted formula for describing 

the activation overpotentials of SOEC/SOFC.  However, experimental works suggest that the 

activation overpotentials of SOEC/SOFC almost linearly vary with the current density [60].  In 

the present study, the linear formula is used [61].   

2

2

2 2

, , 0

,

H

act H i

H H i

RTJ

n FJ
η =        (29) 
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, , 0

,

CO
act CO i

CO CO i

RTJ

n FJ
η =        (30) 

where 
2

0

,H iJ  and 0

,CO iJ  are the exchange current density for H2O electrolysis and CO2 electrolysis, 

respectively.  The subscript i (i = a and c) represents the anode and cathode, respectively.   

The exchange current densities (
2

0

,H iJ  and 0

,CO iJ ) represent the readiness of the electrode 

to proceed with the electrochemical reaction and depend on the operating temperature as [62,63],  

2 2

,0

, ,
exp

act c

H c H c

E
J k

RT

 
= − 

 
;  

,0 exp
act a

a a

E
J k

RT

 
= − 

 
  (31) 

Here 
2 ,H ck  and 

ak  are the pre-exponential factors for the cathode (for H2O electrolysis) 

and anode, respectively.  The values of 
,act cE  and 

,act aE  are 5 1
1.0 10 .J mol

−×  and 

5 11.2 10 .J mol
−× , respectively [62,63].  Chan et al. [64] recommend the values of 

2

0

,H cJ  and 0

aJ  at 

1073K to be 5300 Am-2 and 2000 Am-2, respectively.  Using these values, the pre-exponential 

factors can be calculated.  From experiments, the rate of electrochemical oxidation of H2 is found 

about 2.5 times that of CO [65,66].  Thus, the exchange current density of the cathode for CO2 

electrolysis is calculated as 
2

0 0

, ,0.4CO c H cJ J= .   

 

2.5. Ohmic overpotential 

As the interconnector and the electrodes have much higher electrical conductivity than 

the electrolyte, only the ohmic overpotential of SOEC electrolyte is considered in the present 

study.  According to Ohm’s law, the ohmic overpotential of the electrolyte can be calculated as 

[67],  

5 10300
2.99 10 exp

ohmic
JL

T
η −  

= ×  
 

    (32) 
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where L is the thickness of the electrolyte (m).   

 

3. Results and Discussion 

3.1. Model evaluation 

In this section, the modeling results are compared with experimental data for model 

validation.  In the literature, Zhan et al’s work [36] on syngas production by co-electrolysis 

provides detailed experimental setup and operating conditions, such as the gas composition at the 

inlet and outlet, the thickness of the SOEC components, porosity of the electrodes, etc.  In their 

study, the current density – voltage (J-V) characteristics of CO2/H2O co-electrolysis by a 

cathode-supported planar SOEC are measured.  The thickness of Ni-YSZ (yttria-stabilized 

zirconia) cathode, LSCF-GDC (GDC: Ce0.9Gd0.1O1.95; LSCF: La0.6Sr0.4Co0.2Fe0.8O3) anode, and 

YSZ electrolyte are 600 mµ , 20-30 mµ , and 10 mµ , respectively.  The porosities of the cathode 

and anode are about 40% and 30%, respectively.  At an operating temperature of 1073K, the 

molar fractions at the inlet of the cathode are: 50% H2O, 25% H2, and 25% CO2. The current 

density and exhaust gas composition are measured at operating potentials from 0.95V to 1.3V.  

These operating conditions and structural parameters from the experiments [36] are used as input 

parameters in the theoretical simulation.  Gas composition at the inlet, exhaust and the average of 

these two (should be more suitable) are used as gas composition at the cathode surface.   

Figure 2 compares the modeling results with the experimental data from [36].  The 

difference between the modeling results and experimental data is smaller when the average gas 

composition is adopted.  Although the calculated current density is about 25% smaller than the 

measured current density at 1.1V, the calculated data at other potentials agree well with the 

experimental results.  In the subsequent parametric simulation, typical data from the literature 



 11

(i.e. thickness of SOEC components) are used, as shown in Table 2.  It should be noted that there 

are 4 gas species in the cathode, although molar fractions of only 3 gas species are provided.   

3.2. Effect of operating temperature 

The effects of operating temperature on co-electrolysis of CO2 and H2O in an SOEC are 

shown in Fig. 3.  It is found that the rate of reversible WGSR varies from negative values near 

the cathode surface to positive values near the cathode-electrolyte interface (Fig. 3a).  The results 

also indicate that the WGSR does not reach equilibrium.  The negative rate of WGSR at the 

cathode surface is mainly due to relatively high molar fractions of CO2 and H2 near the cathode 

surface  (Figs. 3b and 3c).  The positive rate of WGSR inside the cathode (particularly near the 

cathode-electrolyte interface) is mainly caused by relatively high concentration of CO inside the 

cathode (Fig. 3c).  It is also found that the rate of WGSR increases with increasing temperature, 

due to the considerably increase in the value of 
sfk  from 8

1.14516 10
−× mol.m

-3
.Pa

-2
.s

-1
 at 873K 

to 7
1.620625 10

−×  mol.m
-3

.Pa
-2

.s
-1

 at 1073K.  The calculated rate of reversible WGSR is 

generally higher than the data for SOFC with internal reforming, such as [68].  This is because 

the rate of WGSR depends on not only the temperature, but also the products of 
2H Op  and 

COp  

as well as 
2Hp  and 

2COp , as can be seen from Eq. 19.  The molar fractions of CO2 and CO in an 

SOFC fueled by pre-reformed syngas are typically about 4.4% and 2.9%, respectively [52,68], 

much lower than the data used in SOEC for co-electrolysis.  The current densities for H2O 

electrolysis and CO2 electrolysis increase with increasing temperature, as the activation 

overpotentials and the ohmic overpotential are smaller at higher temperature, (Fig. 3d).   

A common understanding on co-electrolysis of H2O/CO2 in an SOEC is that the WGSR 

always contributes to CO production [38,40].  Based on existing experimental studies, it is 

difficult to confirm the above expectation and difficult to quantify the contribution of WGSR to 
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CO production [45].  It is understood that mass transfer becomes limiting only at very high 

current density and thus the CO production is governed by electrochemical reaction (electrolysis) 

and chemical reaction (WGSR).  In this study, a new method is proposed to examine the 

contributions of reversible WGSR and electrolysis to CO production, by comparing the fluxes of 

CO at the cathode-electrolyte interface and at the cathode surface respectively.  The flux of CO 

caused by electrochemical reaction can be easily calculated by Eq. (27).  The difference in CO 

fluxes at the cathode surface and at the cathode-electrolyte interface is caused by the reversible 

WGSR.  At a temperature of 873K, the fluxes of CO and H2 are negative at the cathode surface.  

This means these species diffuse from the inside of the cathode to the cathode surface (Fig. 3e).  

Larger CO flux at the cathode surface than at the cathode-electrolyte interface (Eq. 27) means 

that the reversible WGSR contributes to CO production.  The reversible WGSR and CO2 

electrolysis contribute to CO production by 25% and 75%, respectively (Fig. 3e).  Accordingly, 

the reversed WGSR consumes H2, leading to lower H2 flux at the cathode surface than at the 

cathode-electrolyte interface (Fig. 3e).  At 1073K, the CO flux at the cathode surface is about 

19% lower than at the cathode-electrolyte interface (Fig. 3f), meaning that CO is consumed by 

WGSR.  The above analyses show that the reversible WGSR can produce or consume CO, 

depending on the average rate of WGSR.  It is also different from the common understanding on 

co-electrolysis that WGSR always contribute to CO production.   

 

3.3. Effect of gas composition at the cathode surface 

The inlet gas composition is varied to examine its effect on co-electrolysis behavior.  

Three cases are examined with different molar fractions at the cathode surface – case 1: H2O 

(49.7%), H2 (25%), CO2 (25%), CO (0.3%); case 2: H2O (49.7%), H2 (0.3%), CO2 (25%), CO 
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(25%); and case 3: H2O (25%), H2 (25%), CO2 (49.7%), CO (0.3%).  Figure 4a shows the 

comparison of the calculated rates of WGSR inside the porous cathode for the three cases, at 

operating temperature of 1073K, potential of 1.3V.  It is found that the rate of WGSR is positive 

in most of the cathode layer for case 2 – decreasing from about 200 mol.m
-3

.s
-1

 at the cathode 

surface to about 0 at the cathode-electrolyte interface (Fig. 4a).  For the other two cases (1 and 3) 

with very low CO molar fraction at the cathode surface, the rate of WGSR increases from 

negative values at the cathode surface to slightly positive values at the cathode-electrolyte 

interface.  The molar fractions of gas species in the cathode for case 2 and 3 are shown in Figs. 

4b and 4c.  High molar fraction of CO is observed inside the cathode, indicating the slow 

diffusion of CO from the inside of the cathode to the surface of the cathode.  For comparison, the 

light H2 molecules can diffuse more easily thus the molar fraction variation is smaller.  Despite 

the different rates of WGSR, there is no big difference in the calculated current density for 

different gas composition at the cathode surface (Fig. 4d).  The fluxes of CO and H2 are shown in 

Fig. 4e and 4f for case 2 and 3, respectively.  For case 2, the CO flux increases from about           

-0.02mol.m
-2

.s
-1

 at the cathode-electrolyte interface to about +0.02mol.m
-2

.s
-1

 at the cathode 

surface (Fig. 4e).  The negative flux at the electrode-electrolyte interface (E in Fig. 4e) represents 

CO production by electrochemical reaction (electrolysis).  The positive flux at the cathode 

surface means that CO flows into the cathode, as WGSR consumes CO.  Since H2 is produced 

from reversible WGSR, the flux of H2 at the cathode surface is higher than at the cathode-

electrolyte interface.  For case 3, the CO flux is considerably higher at the cathode surface than 

at the cathode-electrolyte interface (Fig. 4f), due to the high rate of the reversed WGSR inside 

the cathode.   
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3.4. Effect of applied potential 

The effect of applied potential on co-electrolysis behavior of the SOEC is shown in Fig. 

5.  It is found that the rates of WGSR vary from about –200 mol.m
-3

.s
-1

 at the cathode surface to 

positive values at the cathode-electrolyte interface as the potential is increased from 1.0V to 1.4V 

(Fig. 5a).  As expected, the current densities increase with increasing operating potential (Fig. 

5d), which in turn increases the molar fraction of CO and H2 inside the cathode (Fig. 5b, 5c).  At 

a relatively low operating potential (1.0V), the CO flux at the cathode surface is about 3 times of 

the CO flux at the cathode-electrolyte interface (Fig. 5e), indicating the significant contribution 

of the reversed WGSR to CO production.  In addition, the positive H2 flux at the cathode surface 

means the H2 molecules diffuse into the cathode and are consumed by the reversed WGSR (Fig. 

5e).  At an operating potential of 1.4V, the flux of CO at the cathode surface is smaller than at 

the cathode-electrolyte interface (Fig. 5f), indicating the average rate of WGSR is positive.  

From the above analysis, it can be seen that the reversible WGSR can contribute significantly to 

CO production at a low operating potential but it can consume CO at a high operating potential.   

 

4. Conclusions 

An electrochemical model is developed to characterize the performance of an SOEC used 

for H2O/CO2 co-electrolysis.  The model is validated by comparing the simulation results with 

experimental data from the literature.   

It is found that the rate of WGSR in the porous cathode can be positive or negative, 

depending on the temperature and local gas composition.  A new method is proposed to quantify 

the contribution of reversible WGSR to CO production, by comparing the CO fluxes at the 

cathode-electrolyte interface and at the cathode surface.  It is also found that reversible WGSR 
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can produce CO or consume CO, depending on the average rate of WGSR in the porous cathode.  

In the simulated case at an operating temperature of 873, the reversible WGSR contributes to 

about 25% of CO production, while at 1073K, the reversible WGSR consumes about 19% of CO 

produced from CO2 electrolysis.  In addition, the gas composition at the cathode surface greatly 

influences the distribution of WGSR rate inside the cathode.  Large negative rate of WGSR is 

observed near the cathode surface with very low molar fraction of CO.  Generally, the WGSR 

plays an important role in CO production at a low operating potential while the WGSR can 

consume CO at high operating potential.    

The present study provides detailed information for better understanding the working 

mechanism of SOEC used for H2O/CO2 co-electrolysis.  The new method proposed is useful to 

quantify the contributions of WGSR and CO2 electrolysis to CO production.  The 

electrochemical model can be integrated into 2D/3D model for more detailed analysis and 

simulation.   
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Table 1. Parameters used in calculating the effective diffusion coefficients [51] 

 CO CO2 H2 O2 N2 H2O 

i
σ  

3.69 3.941 2.827 3.467 3.798 2.641 

/
i

kε  91.7 195.2 59.7 106.7 71.4 809.1 
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Table 2. Parameters used in the simulation 

Parameter  Value  

Operating temperature, T (K) 1073 

Operating pressure, P (atm) 1.0 

Electrode porosity, ε 0.4 

Electrode tortuosity, ξ 2.0 

Average pore radius, rp (µm)  0.5 

Cathode-supported SOEC: 

Anode thickness da (µm) 

Electrolyte thickness, L (µm) 

Cathode thickness, dc (µm) 

 

50 

50  

500 

Anode inlet gas molar ratio: O2/N2  0.21/0.79 

Cathode inlet gas molar ratio*: H2O/CO2/H2/CO 0.497/0.25/0.25/0.03 

SOEC operating potential (V) 1.3 

* Various gas compositions are studied and the details can be found from the text. 
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Fig. 1.  
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Fig. 2. 
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Fig. 3.  
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Fig. 4.  
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Fig. 5.   




